Supporting Information for

Highly efficient fluorescent and colorimetric sensing of organic amine vapors based on Organometal halide perovskite nanostructures

Pengcheng Wu^{a,b,c}, Qingguo He^{a*}, Defeng Zhu^a, Haibo Jiang^{a,b,c}, Zinuo

Jiao^{a,c}, YuZhang^a, WeiXu^a, Yanyan Fu^a, Huimin Cao^a and Jiangong

Cheng^{a*}

^aState Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China

^bSchool of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai, 201210, China.

^cUniversity of the Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100039, P. R. China.

Excitation and Emission discussing

Figure S1. The emission of MaPbBr₃ at different excitation wavelengths (a), the normalized emission of MaPbBr₃ at different excitation wavelengths (b)

We obtain the fluorescence spectrum under the excitation of the typical absorption band, such as 300 nm, 400 nm, 427 nm, 467 nm, 525 nm, respectively. We also selected

365 nm for excitation because we often monitor the fluorescence image via naked eye under the excitation of one handheld UV lamp with a wavelength of 365 nm. As shown in Figure S1 (a), the emission spectrum only exhibited a highly symmetric band centered at 534 nm, and the normalized emission peak are completely overlapped [Figure S1 (b)]. It seems that 400 nm is the most appropriate excitation wavelength as the emission intensity is the strongest.

The changes of absorption spectrum discussing

We think the small absorption peaks at 427 nm and 525 nm are related to the crystal structure of MAPbBr₃. The reason is that upon interaction with BA and DEA, the crystal state is destroyed, but the crystal state is kept upon interaction with AN by XRD result in Figure 9. Correspondingly, the absorption band changed upon exposure to BA and DEA, but no change for AN. So we think the two absorption peaks are related to the crystal structure of MAPbBr₃.

In the Figure 8, we prepared four samples of MAPbBr₃ film, one for reference and the other three for exposure to BA, DEA and AN. But after exposure to AN, it seems that the absorption peak at 525 nm is increased, and the position is overlapped with the emission band at 534 nm. If it is true, the energy hopping should happen.

To prove it, we designed and conducted another experiment. Firstly, at the bottom of the cuvette a piece of cotton was placed, then one MAPbBr₃ film was put inside on top of the cotton. The film was fixed at an angle of 30° relative to the incident light. After that, the absorption spectrum of MAPbBr₃ was measured as Figure S2(a) shows. Secondly, a drop of AN was injected into the bottom of cuvette to avoid a direct contact of the AN liquid with MAPbBr₃. One minute later, the absorption spectrum of AN vapor-treated MAPbBr₃ was obtained as Figure S2(b). This test could prevent the problem of the position and angle change of MAPbBr₃ film before and after the interaction with AN. As can be seen in Figure S2(a) and S2(b), the position and absorbance of the absorption band at 525 nm showed no any change (both were 0.057). So the fluorescence quenching should not come from the increased self-absorption, and not from the energy hopping.

Figure S2. The absorption spectrum of MAPbBr₃ (a) and the absorption spectrum of MAPbBr₃ exposed to AN vapour (b). Inset: photographs of the emitter illuminated with UV light-lamp centered at 365 nm.

But another concern is, why the normalized absorption in Figure 8 showed the misleading result? We doubt it may be related to the position and angle of the film, which changed the ratio of the absorbance between the absorption band at 525 and 400 nm. So we did another experiment. A MAPbBr₃ film was put inside the cuvette, the absorption band was measured at angles of 30°, 45 ° and 60 ° relative to the incident light. As Figure S3 shows, although the sample is same, the relative ratio of absorbance at 400 and 525 nm will change when the angle of the sensing film relative to the incident light is changed.

Figure S3. The absorption spectrums of MAPbBr₃ when the angle between the incident light and the sensing film was 30° , 45° and 60° , respectively.

Fluorescence Lifetime fitting

Calculated using 3 exponentials

Prompt data : Prompt Decay data : AN-treated MAPbBr₃+vacuum treatment Decay

The initial parameters are:

Shift Value = Fixed 00 ch; sec T1 Estimate = 0.0995ch; 1.091907E⁻¹¹ sec 2.183814E⁻¹¹ T2 Estimate = 0.199ch; sec T3 Estimate = 0.3984.367627E⁻¹¹ ch: sec A Free B1 Free B2 Free **B3** Free Prompt and decay LO = 426ch; 4.674897E⁻⁰⁸ sec Prompt and decay HI = 3992ch; 4.380796E⁻⁰⁷ sec Background on prompt = 3.259259Time calibration = $2.194787E^{-10}$ sec/ch The fitted parameters are: SHIFT = 0 chsec T1 = 0.11448091.256306E⁻¹¹ $S.Dev = 2.473097E^{-13}$ ch; sec T2 7.463655E⁻⁰⁹ $S.Dev = 1.023386E^{-10}$ = 68.01256 ch: sec sec = 234.8233 2.576936E⁻⁰⁸ $S.Dev = 9.787781E^{-10}$ T3 ch; sec sec $S.Dev = 4.247609E^{-02}$ Α = 4.776157 [0.01 Rel.Ampl][0.04 Alpha] S.Dev = 42.10135 **B**1 = 81.45789 [88.38 Rel.Ampl][0.92 Alpha] S.Dev = 6.279984 B2 = 1749.974**B**3 = 66.71081 [11.63 Rel.Ampl][0.04 Alpha] S.Dev = 1.337844 Average Life Time = $7.787254E^{-09}$ sec CHISQ = 1.077861 [3560 degrees of freedom] Chi-squared Probability = $1.9288E^{-20}$ percent Durbin-Watson Parameter = 1.783174 Negative residuals 32.32408 percent = Residuals < 1 s.dev 59.85422 percent =

Figure S4. The residuals (a) and the autocorrelation of the residuals (b)

Calculated using 3 exponentials

Prompt data : Prompt Decay data : MAPbBr₃ Decay

The initial parameters are:

Shift Value = Fixed 0ch; 0 sec T1 Estimate = 92.8822 ch; 1.019283E⁻⁰⁸ sec 2.038567E⁻⁰⁸ T2 Estimate = 185.7644 ch; sec 4.077134E⁻⁰⁸ T3 Estimate = 371.5288 ch; sec A Free B1 Free B2 Free B3 Free Prompt and decay LO = 421ch; 4.620027E⁻⁰⁸ sec Prompt and decay HI = 3938 ch; 4.321536E⁻⁰⁷ sec Background on prompt = 3.178571Time calibration = $2.194787E^{-10}$ sec/ch The fitted parameters are:

SHIFT = 0 ch

T1	= 105.6316	6 ch;	1.159195	5E ⁻⁰⁸ s	ec S	b.Dev = 6.	871596E ⁻¹⁰	sec
T2	= 437.433	ch;	4.800363	3E-08 s	ec S	b.Dev = 5.	099626E ⁻⁰⁹	sec
Т3	= 58.16223	3 ch;	6.382687	7E ⁻⁰⁹ s	ec S	b.Dev = 1.	218477E ⁻¹⁰	sec
А	= 5.480542	2	$S.Dev = 5.213265E^{-02}$					
B1	= 1225.763 [55.64 Rel.Ampl][0.42 Alpha] S.Dev = 11.48019							
B2	= 17.18046 [3.23 Rel.Ampl][0.01 Alpha] S.Dev $= 0.7912744$							
B3	B3 = 1645.331 [41.13 Rel.Ampl][0.57 Alpha] S.Dev = 18.1317							
Aver	age Life Time	e = 8.84103	6E ⁻⁰⁹ sec					
CHIS	SQ = 1.08437	1	[3511 degree	es of fre	edom]		
Chi-s	squared Proba	bility $= 1.9$	288E-20 perce	ent				
Durbin-Watson Parameter = 1.819796								
Negative residuals = 35.53155 percent								
Resid	duals < 1 s.dev	v =	64.78113 pe	ercent				
Resid	duals < 2 s.dev	v =	94.34338 pe	ercent				
Resid	duals < 3 s.dev	v =	= 99.00512 percent					
Resid	duals < 4 s.dev	v =	99.31779 pe	ercent				
(a)								
			Residu	als				
5								
Dev.	and the state allowed a	and allowed and	etilettillitilitik kinduktikinin	Nielulialia laattekist	and the state of the state	Antificial distribution	Alimitation and the second states of the second sta	hadradal t
PE SE	ander frem folgen von der eine Alle for der	Andre Antoine States	an is the first two in the first	a Mandalan M	da di kana	anadara ang ang ang ang ang ang ang ang ang an	i tain tain an	
-5	500	1000	1500 2000			2000		
	500	1000	1500 2000	2:	500	3000	3500	4000
(b)								
0.1			Residua	als				
5 0.05	de de la facta da de	dittata a		he at some t	1.610.	disconst		L.L.L.
correla	Mallea A ADDA PLACE			MANNAN				
Auto	den den en blite	4 1 tr. 4 4 4 4 4	all here with the	- H M ! H.	u du di	1.1. alter altered	al de liffer and flicke l	alla alla all
-0.05								NUMBER OF T

Figure S5. The residuals (a) and the autocorrelation of the residuals (b)