A facile microwave - hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and its application

Qian Liang ^{*a*, *b*}, Yulin Wang ^{*c*}, Fengcai Lin ^{*a*}, Maosheng Jiang ^{*c*}, Pengfei Li^{*d*} and Biao Huang ^{*a*, *}

^{*a*} College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China.E-mail: bhuang@fafu.edu.cn

^b Jinshan College of Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China.

^c College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China.

^{*d*} Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, Guangxi Province, 530006, China.

Fig. S1 Photostability of the CQDs under continuous irradiation for 2 h.

Fig. S2 The effect of NaCl concentration on CQDs fluorescence intensity.

Fig. S3 Effect of incubation time on the fluorescence quenching of the CQDs based fluorescence sensor toward TNP analysis. Conditions: 50 μ L CQDs + 200 μ L BR buffer solution(pH 3.0) + 10 μ M TNP.

Fig. S4 UV-vis absorption spectra of CQDs (black), TNP (red), and CQDs in the presence of TNP(green).

Fig. S5 The UV-Vis absorption spectra of all niteoaromatic explosives and the fluorescence emission of CQDs (blank).

Fig. S6 (a) Cyclic voltammogram of the CQDs in 0.1 M Bu_4NPF_6 /acetonitrile solution at 100 mV/s. (b) Optical bandgap of CQDs obtained from the UV-vis absorption spectrum.

The HOMO and LUMO energy levels of CQDs were estimated according to the following empirical formula:

$$E_{\rm LUMO} = -(E_{\rm red} + 4.4) \, {\rm eV}$$
 (1)

where Ag/AgCl electrode is employed as the reference. A typical CV curve for a CQDs thin film, deposited on a glassy carbon working electrode, is presented in Fig. S6a.

The $E_{\rm red}$ was determined to be -0.57 eV. The corresponding $E_{\rm LUMO}$ was calculated to be -3.83 eV. The HOMO was then estimated to be -6.98 eV according to the following equation .

$$E_{\rm HOMO} = E_{\rm LUMO} - E_{\rm g} \tag{2}$$

Where the band gap energies (E_g) were estimated to be 3.15 eV by plotting the square of the absorption cofficiency(α) and photon energy (hv) as a function of hv and extrapolating the linear portion to intercept the x abscissa (Fig. S6b).

Fig. S7 The E_{HOMO} and E_{LUMO} of CQDs and TNP. Ex = 380 nm, Em = 450 nm.