Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

Supplementary information

Non-enzymatic ethanol sensor based on a nanostructured catalytic disposable electrode

Marta M. Pereira Silva Neves^a*, M. Begoña González-García^a, Pablo Bobes-Limenes^a, Alejandro Pérez-Junquera^a, David Hernández Santos^a, Francisco José Vidal-Iglesias^b, José Solla-Gullón^b, Pablo Fanjul-Bolado^{a**}

^a DropSens, S.L., Edificio CEEI, Parque Tecnológico de Asturias, 33428 Llanera, Asturias, Spain

^b Instituto de Electroquímica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain

E-mail: *mmpereira@dropsens.com

E-mail: **pfanjul@dropsens.com

Synthesis and characterization of the PtNPs

The synthesis of the PtNPs was performed using a previously described methodology ^[41]. In detail, 1 L aqueous solution containing 2.5×10^{-4} M H₂PtCl₆ (hydrogen hexachloroplatinate hydrate, 99.99%, ACROS Organics) and 2.5×10⁻⁴ M trisodium citrate dihydrate (99% Sigma Aldrich) was prepared in a glass beaker at room temperature. Then, 5 mL of an ice-cold and freshly prepared 0.1 M NaBH₄ (ReagentPlus®99% Aldrich) solution was directly added to the solution under vigorous stirring. The stirring was slowed down after 60 s and the solution was keep unperturbed for the next 30 min. The morphology of the synthetized PtNPs was characterized by transmission electron microscopy (TEM). TEM experiments were performed with a JEOL, JEM 2010 microscope working at 200 kV. The sample for TEM analysis was obtained by placing a drop of the colloidal solution onto a Formvar-covered copper grid and evaporating it in air at room temperature. The purification of the PtNPs is carried out by adding about 25 NaOH pellets (pellets for analysis, EMSURE® ACS, Reag. Ph Eur., Merck) to the colloidal solution. The addition of NaOH produces the destabilization of the nanoparticles that subsequently precipitate. After complete precipitation, the sample is collected and 3-4 times washed with ultrapure water and stored in a 25 ml water solution to obtain a ~2 mg Pt mL⁻¹ solution. This Pt concentration was confirmed by UV spectrophotometric measurements ^[42]. In brief, a known volume of the solution containing the Pt nanoparticles is incorporated in an aqua regia solution and heated to dryness. The resulting residue is finally dissolved in 20 ml of a 2% HCl solution and its absorbance measured at 262 nm. A platinum atomic absorption standard solution (TraceCERT[®], 1000 mg/L Pt in hydrochloric acid (Fluka Analytical) was used to obtain the corresponding calibration curve between 0 and 25 ppm.

A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, *J. Electroanal. Chem.*, 2010, 644, 117.
M. Georgieva, B. Andonovski, *Anal. Bioanal. Chem.*, 2003, 375, 836.

Figure S1

Fig. S1. Stability study of SPCE modified with PtNPs for a 30 day period. Data is given as average value (n = 3).

Table S1

Table S1. Determination of ethanol in real samples with the developed nanostructured sensor and usingDROPSTAT device.

Samples	Labeled alc. % vol	Sensor response (deviation to labeled value) alc. % vol	Mean alc. % vol	± SD alc. % vol	RSD (%)
BEER					
Sample 1		5.24 (- 0.16)			
Sample 2		5.06 (- 0.34)			
Sample 3	5.4	5.89 (- 0.49	5.23	0.39	7.47
Sample 4		5.04 (- 0.36)			
Sample 5		4.90 (- 0.50)			
WINE					
Sample 1		10.16 (+ 0.16)			
Sample 2		10.30 (+ 0.30)			
Sample 3	10.0	10.15 (+ 0.15)	10.21	0.07	0.73
Sample 4		10.17 (+ 0.17)			
Sample 5		10.29 (+ 0.29)			

Data is given as average \pm standard deviation (SD) (n = 5).