Supporting information for

Construction of a novel ratiometric near infrared fluorescent probe for SO₂ derivatives and its application for biological imaging

Huiming Shang, Keyin Liu, Weiying Lin

Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China.

E-mail: weiyinglin2013@163.com

Fig. S1. The absorption spectra change of **1-SO₂** titrated with SO₃²⁻. 10 μ M of **1-SO₂** interacted with 0 to 30 eq. of SO₃²⁻in (PBS : DMSO = 8 : 2) buffer in 1 cm cell.

Fig. S2. The ratiometric fluorescence change when the SO_3^{2-} to **1-SO₂** ratio is 0 to 6, 10 μ M of **1-SO₂** was used. Excitation by 430 nm and 680 nm; emission monitored at 515 nm and 750 nm respectively.

Fig. S3. High resolution mass spectrum (ESI) of the reaction mixture of the probe 1- SO_2 reacted with SO_3^{2-} .

Fig. S4. ¹H NMR of compound 2 in MeOH-d₄.

Fig. S5. ¹³C NMR of compound **2** in MeOH-d₄.

Fig. S6. ¹H NMR of **1-SO₂** in MeOH-d₄.

Fig. S7. ^{13}C NMR of $\textbf{1-SO}_2$ in MeOH-d4.

Fig. S8. HR-MS of 1-SO₂.