Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

1 Supplementary

2

3 Fig. I Effects of the beam focus on spectra quality. Single spectra are chosen from the same *Mucor*-infected lung tissue region measured with a lateral resolution 4 of 15.0 μ m × 15.0 μ m, 10.0 μ m × 10.0 μ m and 5.0 μ m × 5.0 μ m. It can be demonstrated, that there is no detrimental effect of the beam focus settings on the

- 5 spectra quality. Spectra demonstrate a slight increase in noise as the aperture size decreases. MIR spectra displayed in the range from 4000 cm⁻¹ to 850 cm⁻¹.
- 6 Major absorption bands are indicated.

7

8 Fig. II Chemical maps and pseudo-color cluster images generated by multivariate imaging analyses of one individual patient lung tissue sample recorded with 9 square apertures of edge sizes: $15.0 \ \mu m \times 15.0 \ \mu m$, $10.0 \ \mu m \times 10.0 \ \mu m$ and $5.0 \ \mu m \times 5.0 \ \mu m$. Results illustrate the capability of spectroscopic imaging to 10 accurately reproduce tissue histology of the tissue section. Detailed histological features of the tissue section become clearly visible at a $5.0 \ \mu m \times 5.0 \ \mu m$ aperture

11 sizes. The MIR microscopic imaging results of the given example demonstrate that it is possible to acquire MIR images at aperture size of $5.0 \ \mu m \times 5.0 \ \mu m$ and 12 that the resolution corresponds with hyphael elements seen in the tissue sample.

14 Tab.I Assignment of some characteristic bands in the MIR spectra of *mucormycete-* infected (M) and human tissue (H). Upward arrows indicate strong 15 absorption band.

Wavenumber (cm ⁻	Tentative Assignment	Μ	Н
¹)			
~3300	protein amide A vibration ^{17, 62}	1	1
~3000 - 2800	C-H stretching vibrations of phospholipids, of protein side chains, nucleic acid sugars, complex carbohydrates as well as that of amorphous or	1	
	fully hydrated sugars ^{17, 18}		
~1740	$v_{C=0}$ esters, phospholipids as well as carbohydrates ^{50, 63}	1	1
~1630	amide-I proteins ^{48, 49}	1	1
~1550	amide-II proteins ^{37,47}	1	1
~1515	amide-II proteins with high tyrosine content ^{33, 37, 47}	1	
~1450-1350	C-H deformation modes and some carboxylic acid modes ^{33, 37, 47}	1	1
~1240	phosphate groups of DNA, RNA as well as some phospholipids ⁴⁴⁻⁴⁶	1	1
~1185	carbohydrate bands ⁴³	1	
~1084	$v_{P=O}$ symmetric vibrations of the > PO ₂₋ groups nucleic acids and phospholipids ⁵¹⁻⁵³	1	
~1060	v_{C-O-C} symmetric vibrations of phospholipids, cholesterols and esters ⁵⁰	1	
~1038	v _{C-O} carbohydrates ^{64, 65}	1	