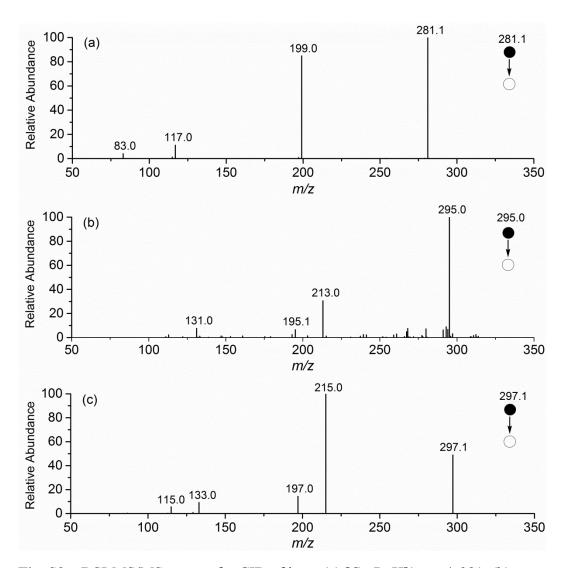
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

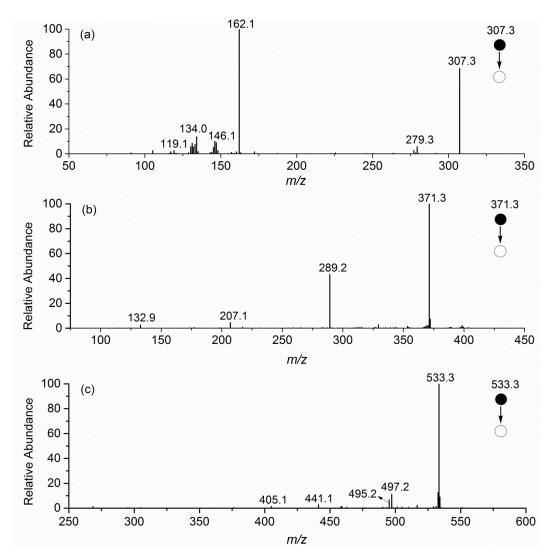
Electronic supplementary information

In situ analysis and real-time monitoring of the decomposition of the 2nd Grubbs catalyst in CH₃CN by droplet spray ionization tandem mass spectrometry

Jie Jiang,*a Dandan Zhao,a Hong Zhang,b Jing Hel and Na Li*a


a School of Marine Science and Technology, Harbin Institute of Technology at
Weihai, Weihai, Shandong 264209, China

^b State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China


Correspondence to: Jie Jiang, E-mail: jiejiang@hitwh.edu.cn,

Na Li, E-mail: <u>dreamerlina@163.com</u>

Fig. S1 Proposed fragment mechanism of 2 at m/z 848.

Fig. S2 DSI-MS/MS spectra for CID of ions: (a) $[Cy_3P+H]^+$ at m/z 281; (b) $[Cy_3PCH_3]^+$ at m/z 295; (c) the hydride of $[Cy_3PCH_3]^+$ at m/z 297.

Fig. S3 DSI-MS/MS spectra for CID of ions: (a) $[H_2IMes+H]^+$ at m/z 307; (b) $[Cy_3PCH_2Ph]^+$ at m/z 371; (c) $[(H_2IMes)ClRu=CHPh]^+$ at m/z 533.

Fig. S4 Proposed fragmentation mechanism of the ions of 12 at m/z 484.

Fig. S5 Proposed fragmentation mechanism of the ions of 8 at m/z 525.

Fig. S6 Proposed fragmentation mechanism of the ions of 10 at m/z 566.

Fig. S7 Proposed fragmentation mechanism of the ions of 6 at m/z 574.

Fig. S8 Proposed fragmentation mechanism of the ions of 9 at m/z 607.

Fig. S9 Proposed fragmentation mechanism of the ions of 5 at m/z 615.

Table S1 The m/z error of compounds.

Compound	Theoretical m/z	Measured m/z	Error (ppm)
2	848.3300	848.3293	-0.83
3	813.3612	813.3600	-1.48
4	533.1292	533.1270	-4.13
5	615.1823	615.1821	-0.33
6	574.1558	574.1539	-3.31
7	854.3877	854.3855	-2.57
8	525.1354	525.1349	-0.95
9	607.1884	607.1895	+1.81
10	566.1619	566.1624	+0.88
11	846.3939	846.3937	-0.24
12	484.1088	484.1084	-0.83

References

¹ H. Y. Wang, W. L. Yim, Y. L. Guo and J. O. Metzger, Organometallics, 2012, 31, 1627-1634.

² H. Y. Wang and J. O. Metzger, *Organometallics*, 2008, **27**, 2761-2766.