
Table S1: Contributions of the three top principal components of data extracted from chemo-

dyes points via NIR-CDS system based on principal components analysis (PCA).

% Principal 

Components (PC)

Dye

points

 

Chemo-dyes

PC1 PC2 PC3

Sum of

Top three 

PCs (%)

1 5, 10, 15, 20 – Tetraphenyl - 21H, 23H-porphine 

manganese (III) chloride 

79.00 1.50 1.40 81.90

2 5, 10, 15, 20 - Tetra phenyl-21H, 23H - porphine 77.00 1.59 1.20 79.79

3 2, 3, 7, 8, 12, 13, 17, 18 - Octaethyl-21H, 23H - 

porphine manganese (III) chloride 

82.00 1.30 1.10 84.4

4 5, 10, 15, 20 – Tetrakis (4 – methoxyphenyl) - 

21H, 23H - porphine iron (III) chloride

76.00 1.30 1.15 78.45

5 5, 10, 15, 20 – Tetraphenyl - 21H, 23H - 

porphine

80.00 2.80 1.30 84.10

6 5, 10, 15, 20 – Tetraphenyl - 21H, 23H - 

porphine copper (II)

75.60 5.20 1.57 82.37

7 5, 10, 15, 20 – Tetraphenyl - 21H, 23H - 

porphine zinc

76.40 4.40 3.20 84.00

8 5, 10, 15, 20 - Tetra phenyl - 21H, 23H - 

porphine iron (III) chloride

80.10 2.10 1.85 84.05

9 5, 10, 15, 20 - Tetrakis (4 – methoxyphenyl) - 

21H, 23H - porphine cobalt(II)

98.36 1.02 0.42 99.80

10 Methyl red 78.00 1.15 1.10 80.25

11 Bromocresol green 70.00 5.50 2.10 77.60

12 Bromothymol blue 81.20 1.05 1.01 83.26
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Fig. S1: SNV preprocessed spectra (a) and MSC preprocessed spectra (b) of cocoa beans 

samples acquired with NIRS- CDS based on TPP-Co 



Fig. S2: The optimized kernel parameter (K) values of K-NN algorithm with their respective 

computed classification rates and principal components (PCs) numbers in both the prediction and 

calibration sets generated for CS e-nose.



Fig. S3: The optimized kernel parameter (K) values of K-NN algorithm with their respective 

computed classification rates and principal components (PCs) numbers in both the prediction and 

calibration sets generated for NIR-CDS with point 9 (TPP-Co)

Formulae / mathematical expressions underlying Algorithms applied

Linear Discrimination Analysis (LDA)

This is based on Bayes rule with the assumption that characteristics or patterns of a class say  𝑘

with a mean that are normally distributed and have a covariance matrix  that relates to all 𝑥⃗𝑖 𝐻
sample classes under consideration.

Hypothetically, applying of the Bayes rule assigns a test pattern denoted by  to a class   with (𝑎) 𝑘
the largest posterior probability  as expressed mathematically below:𝑃(𝑘│𝑎)

- 2log  [𝑃(𝑘│𝑎)] = (𝑎 - 𝑥⃗𝑖)
𝑇𝐻 - 1(𝑎 - 𝑥⃗𝑖) ‒ 2𝑙𝑜𝑔𝜋𝑖 + 𝑙𝑜𝑔⁡|𝐻|



Hence the determinant of , which is  to the class of  maximizes the linear function given 𝐻 |𝐻| 𝑘
as:

𝐿𝑖(𝑎) = 2𝑥⃗𝑖
𝑇𝐻 - 1𝑎 -  𝑥⃗𝑖

𝑇𝐻 - 1𝑥⃗𝑖 + 2𝑙𝑜𝑔𝜋𝑖

Approximating the matrix  by the intra-class covariance matrix (I) becomes:𝐻

 𝐼 = (
𝐴 ‒ 𝐶𝐹)𝑇(𝐴 ‒ 𝐶𝐹)

𝑛 ‒ 𝐹
)

 𝑤ℎ𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑁 𝑥 𝑛 ‒ 𝑜𝑟𝑑𝑒𝑟 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑚𝑎𝑡𝑟𝑖𝑥;

𝐹 𝑖𝑠 𝑡ℎ𝑒 𝐹 𝑥 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑚𝑒𝑎𝑛𝑠;

𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑁 𝑥  𝐹 ‒ 𝑜𝑟𝑑𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 (𝐶𝑖𝑗 = 1,𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑒𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑗 𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

These mathematical expressions stated by González-Rufino et al.17 were used in the 

development of the k-NN algorithms which were written in matlab codes and applied.

K-nearest neighbour (k-NN)

K-NN algorithm was written in Matlab codes based on the following mathematical expressions 
used by O’farrell et al. 16

K-NN algorithm finds or locates the k-nearest patterns to sample ( ) among the calibration data 𝑎

set within the classification set , such that  (𝐺) 𝐺 = {(𝑥𝑖,𝑦𝑖), 𝑖 = 1…𝑛}

Where  𝑥𝑖 𝑑𝑒𝑛𝑜𝑡𝑒 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  𝑑𝑎𝑡𝑎 𝑠𝑒𝑡, 𝑦𝑖 𝑖𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 

  𝑐𝑙𝑎𝑠𝑠, 𝑎𝑛𝑑  𝑖
 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ‒ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝑒𝑔.

.  90 𝑐𝑜𝑐𝑜𝑎 𝑏𝑒𝑎𝑛𝑠 30 𝑥 3)

The classification of the samples into the different groups is algorithmically decided based on the 

highest vote of the nearest neighbours, with the selected class for the sample assigned the code of  

1 or otherwise 0. Thus for completely dissimilar or disjoint classes, the kernel parameter K = 1. 

The higher the K values in a mixed sample, the lesser the cases of misclassifications.

Support Vector Machine (SVM)



This algorithm is underpinned by structural risk minimization, which minimizes the chances of 

sample misclassification of an unseen data among a fixed distribution with an unknown 

probability. The study adopted and applied the SVM algorithm based on mathematical 

expressions used by Chen et al. 15

Taking for instance, a training data set with k number of samples denoted as 

{𝑎𝑖,𝑏𝑖}, 𝑖
= 1, 2,…., 𝑝;𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑠𝑒 𝑎 𝜖 𝑅𝑛, 𝑎𝑛𝑑 𝑖𝑠 𝑛 ‒ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟;𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑎 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 

  The various patterns can be considered as linearly separable given that 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠 𝑏 𝜖 { ‒ 1, + 1}.

vector 𝜔 𝑎𝑛𝑑 𝑠𝑐𝑎𝑙𝑎𝑟 𝛾 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑜 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑏𝑒𝑙𝑜𝑤:

𝜔.𝑎𝑖 + ≥  𝛾 + 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 =  + 1                                       (1)

                                 (2)𝜔.𝑎𝑖 + 𝛾 ≥  ‒ 1,  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 =  ‒ 1

These inequality conditions create a hyperplane that separates data points such that those with 

the same label are located on the same side. For this to occur,  𝜔 𝑎𝑛𝑑 𝛾 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒

condition below is:

𝑏𝑖(𝜔.𝑎𝑖 + 𝛾) > 0                                                               (3)

Satisfying condition (3) enables the creation of a hyperplane that divides the samples into 

different linearly separable classes. Rescaling of  to achieve  𝜔 𝑎𝑛𝑑 𝛾
𝑚𝑖𝑛

1 ≤ 𝑖 ≤ 𝑝 𝑏𝑖(𝜔.𝑎 + 𝛾) ≥ 1,  

leads to the distance from the data point closest to the hyperplane to be . This therefore  1/||𝜔||

modifies condition (3) as:

𝑏𝑖(𝜔.𝑎𝑖 + 𝛾) ≥ 1                                                                (4)

The resulting hyperplane from the adjustment under expression (4), for which the distance to the 

closest point is maximal becomes an optimal separating hyperplane (OSH). The OSH can be 

obtained via minimizing  based on constraint (4) as the distance to the closest point equals||𝜔||2

. This minimization procedure is achieved using Lagrange multipliers and quadratic 1/||𝜔||

programming optimization methods. However, this can lead to maximizing when 

 are positive Lagrange multipliers linked with constraint (4) such that:𝛼𝑖 ≥ 0, 𝑖 = 1,2,…,𝑝



𝐿(𝛼) = ∑
𝑖

𝛼𝑖 ‒ 1/2∑
𝑖.𝑗

𝛼𝑖𝛼𝑗𝑏𝑖𝑏𝑗(𝑎𝑖𝑎𝑗)                                   (5)

Given that ) leads to obtaining an optimal maximization solution for the 𝛼𝑚 = (𝛼𝑚
1 ,𝛼𝑚

2 ,…𝛼𝑚
𝑝

problem under (5). The resultant optimal separating hyperplane can be expressed as:

𝜔𝑚 = ∑
𝑖

𝑎𝑖𝑏𝑖𝛼
𝑚
𝑖                                                                           (6) 

Thus the support vectors then becomes the point where  𝛼
𝑚
1 > 0, 𝑤ℎ𝑒𝑛  𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑛 𝑢𝑛𝑑𝑒𝑟 

.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (4) ℎ𝑜𝑙𝑑𝑠

A slack variable  can be introduced when the data are not linearly separable 𝜂𝑖 ≥ 0, 𝑖 = 1,2….,𝑝

leading to:

𝑏𝑖(𝜔.𝑎𝑖 + 𝛾) - 1 + 𝜂𝑖 ≥ 0                                                          (7)

Thus a generalized OSH is obtained from the difference of expressions (8) – (9).

𝑚𝑖𝑛
𝜔,𝛾,𝜂𝑖,…𝜂𝑝 [

1
2

||𝜔||2 + 𝐾
𝑝

∑
𝑖 = 1

𝜉𝑖]                                                (8)

𝜂𝑖 ≥ 0, 𝑖 = 1,2….,𝑝                                                               (9)

The first and second terms in expression 8, is the same as the linearly separable case, in which 

case they respectively control the algorithm learning capacity and the number of misclassified 

samples; whereas the parameter C is selected by user. Selecting higher value for C suggests 

assigning higher penalty parameter to error. 

However, when it is impossible to define a hyperplane with linear equations on the training data, 

the data is transformed to a higher dimensional space in order to spread it out with the aim of 

finding a linear hyperplane that is computed by using the concept of kernel function (K), by 

mapping (a) it to its feature space  using expression 5 modified as:𝜑(𝑎𝑖)



𝐿(𝛼) = ∑
𝑖

𝛼𝑖 - 1/2∑
𝑖.𝑗

𝛼𝑖𝛼𝑗𝑏𝑖𝑏𝑗(𝜑(𝑎𝑖)𝜑(𝑎𝑗) )                                       (10)

 The kernel function facilitates easier computations in the feature space and it is denoted by:

𝐾(𝑎𝑖,𝑏𝑖) =  (𝜑(𝑎𝑖)𝜑(𝑎𝑗) )

Hence the kernel function is used as a classification function. The SVM was applied to the data 

collected from the samples and transformed them into a higher dimensional feature space, which 

then allows for their classification based on the maximal hyperplane generated.

Extreme Learning Machine (ELM)

For the ELM algorithm which is a single hidden feed forward network, employs the random 

selection of input weights with its resulting output analytically computed. The mathematical 

basis underlying this algorithm as presented by Zheng et al. 14 was adopted.

Given the variable , an input vector; , an activation function;  the weight vector linking the 𝑎 𝐾  𝛿,

hidden node and the output nodes; , the output vector; , weight vector connecting the 𝑓(𝑎) 𝑤

hidden node and the input nodes; and , the bias associated to the hidden node.𝑏

Considering C calibration samples of  where  denotes the output of  (𝑎𝑖,𝑡𝑖)𝜖 𝑅𝑑𝑥 𝑅𝑚, 𝑡𝑖 𝑓(𝑎)

labeled with the codes as the category vector, the ELM algorithm can be expressed and (0,1)𝑚

modeled using its activation function  and  hidden nodes as:𝐾(𝑤,𝑏,𝑎) 𝑃

𝑃

∑
𝑖 = 1

𝛿𝑖𝐾𝑖(𝑤𝑖𝑎𝑖 + 𝑏1) =  𝑡𝑖, 𝑗 = 1,2,…𝑁.                                         (1)

The equation (1) can be simplified as T  with  and  expressed with the equations (2) and = 𝐵𝛿 𝐵 𝛿

(3) respectively below:

𝛿 =  [𝛿𝑇
1
:

𝛿𝑇
𝐶

]𝐿 𝑥 𝑚, 𝑇 = [𝑡𝑇
1
:

𝑡𝑇
𝐶

]𝑃 𝑥 𝑚                                             (2)



     𝐵 = [𝐾𝑖(𝑤𝑖𝑎𝑖 + 𝑏1) .. 𝐾𝑖(𝑤𝑃𝑎𝑖 + 𝑏𝑃)
: .. :

𝐾𝑖(𝑤𝑖𝑎𝐶 + 𝑏1) .. 𝐾𝑖(𝑤𝑃𝑎𝐶 + 𝑏𝑃)]𝐶𝑥𝑃             (3)

The hidden nodes parameters are randomly selected and the weight matrix (  estimated with 𝛿)

expression (4) :

      𝛿̂ = 𝐵𝑇𝑇(𝐵𝑇𝐵 +  𝜆𝐼) - 1                                               (4)

where  is considered a regularized parameter                𝜆 > 0

Based on above expression, the output weights of ELM can be computed. Thus a class of an 

unknown sample (cocoa bean sample)  can be predicted as below:  𝑎̌

), 𝑐𝑙𝑎𝑠𝑠(𝑎̌) = arg 𝑚𝑎𝑥⁡(𝐵̌𝛿̂       𝑤h𝑒𝑟𝑒 𝐵̌ =  𝐾(𝑤1𝑎̌ + 𝑏1)…𝐾(𝑤𝑃𝑎̌ + 𝑏𝑃)


