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S1.    Data pre-processing

Crucial and minimal data pre-processing was performed to facilitate the extraction of 
chemical information of the Raman mapping data, and thus to improve the model accuracy in 
the subsequent data analysis procedure.  The pre-processing methods included: (i) 
morphological weighted penalized least-squares (MPLS) [1] for mitigating baseline artefact of 
spectra as baseline arising from particle size effects, sample surface roughness and unwanted 
shot noise could obscure the Raman signal identification and quantification of low-content 
analytes, (ii) kernel principal component analysis residual diagnosis (KPCARD) [2, 3] for 
removal of detrimental spikes caused by cosmic ray events, (iii) spectrum exclusion [2] to reject 
those with intensities 70% lower than the total average spectral intensity of each Raman 
mapping measurement because of mapping edge effect, (iv) multiplicative scatter correction 
(MSC) [4-6] and standard normal variate (SNV) [4-6] to reduce scattering variations between 
spectra or measurements for the PLS modelling procedure, (v) spectrum normalization to scale 
each individual spectrum in the predefined variable region to unit area under the spectrum 
curve, and (vi) variable selection using the ant colony optimization (ACO) method [7, 8].  
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S2.    Description of chemometric methods 

Conventional notation for variables has been adopted throughout this paper: underlined 
uppercase boldface letters for three-way arrays (e.g., DX×Y×λ), and uppercase boldface letters 
for two-way matrices (e.g., D).  Lowercase boldface characters denote vectors (e.g., s), 
italicized subscript characters for vector index (as tk), and lowercase italicized letters for scalars 
(as ).  Superscripts were assigned as follows: T, vector or matrix transpose; –1, matrix kf
inverse; and +, pseudoinverse of the non-square matrix of an overdetermined system (in this 
case one in which the number of spectral variables are far in excess of the number of samples). 
 Matrix and vector Frobenius norms (i.e., 2-norms) are indicated by bracing the quantity (e.g., 

).   T
kksc

Each Raman mapping measurement generated a three-way array (DX×Y×λ), where X and Y 
respectively denote the spatial co-ordinates of each pixel and λ refers to the spectral pattern 
along the wavenumber axis for the xyth pixel [9].  These three-way datasets (DX×Y×λ) were then 
unfolded into two-way matrices, DXY×λ, to enable bilinear Beer-Lambert Law models to be 
developed.  A brief theoretical background of the methods used in this study is given here, but 
readers could look for more information in the supplied references.   

S2.1.    BR-PCHIP
A simple univariate approach can be used to quantitatively analyze the constituent in 

spectroscopic measurements by means of the signal at selective wavenumbers, which is 
specific for the constituent, e.g., the characteristic bands or the ratio between bands, and among 
others [10-12].  These characteristic bands and/or their ratio require to be free of interference 
from other constituents and to necessitate if and where the constituent is present in 
spectroscopic measurements.  In the context of the investigated mixtures, the piracetam band 
at 1652 cm−1 and proline band at 448 cm−1 were both used for calculating their intensity ratios 
in each spectrum, as is:      

                                                                                                (1)
448

1652

I
Irpp 

The 1652 and 448 cm−1 bands were selected because they were unique to the components, non-
overlapping, and minimally affected by the baseline.  The use of a band ratio, instead of an 
individual analyte band intensity, not only reduced the influence of measurement error but also 
mitigated multiplicative scattering effects between spectra. 

Given n band ratios ( ) corresponding to the distinct piracetam content (nlr l_pp  ..., 1,  , 

) in n sample spectra, there is a unique shape-preserving piecewise cubic Hermite ly
interpolating polynomial (PCHIP) [13-15]: 
                                                                            (2)nlyrP ll_pp  ..., 1,  , )( 

This polynomial was able to satisfy interpolation conditions on the lth interval ( ), l_ppl_pp rr 1

hence either exactly producing or approximating the given data ( ).  The band ratios not ll_pp yr  ,

fulfilling a linear relationship with the piracetam content in the sample accounted for the 
deployment of PCHIP for the curve fitting purpose. 
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This univariate analysis method was simple, very computationally efficient, and reduced 
modelling complexity, however, it excluded a lot of the spectral information contained in the 
data.  In more complex samples/situations, constituent-specific spectral bands free of 
interferences may not often be available and therefore, multivariate methods are instead 
applied, using regions of spectral data to analyze Raman mapping data through two-way matrix 
or three-way data array [2, 9, 16-24].  

S2.2.    PLS
The partial least squares (PLS) [25] method relates a spectral matrix (D) with the 

dependent response variables (y, e.g., piracetam content) in an indirect linear formulation: 
                                                                                             (3)eDby  PLS

through decomposing:  
                                                                                              (4)ETPD  T

                                                                                              (5) eUQy T

where  is called the inner-relationship coefficients and can be specified by identifying r PLSb

underlying factors (or latent variables, LVs) that explicitly maximize covariance (say ) yDT

between D and y.  Matrix T holds the factors ( ), and U corresponds to scores (rkk   ..., 1,  , t

) for y, while P and Q individually have their loadings (  and ).  e, E, and rkk   ..., 1,  , u kp kq

 are the model errors or residuals.  e
There are multiple algorithms available to extract PLS factors and these are all based on 

iterative calculations.  For example, the eigenvalue decomposition algorithm extracts PLS 
factors from the first up to the rth ( ) successively in three stages: (1) iterative rk   ..., 1,

estimation of factor scores (  and ) and inner weight ( ), (2) estimation of outer weights kt ku kw

( ) and loadings ( ), and path coefficients, and (3) obtainment of regression coefficients kq kp

:  PLSb

                                                                                (6)T1T )( QWPWb PLS

where W stands for the weights ( ). rkk   ..., 1,  , w
Clearly, PLS calibration does not require that the individual spectra of each analyte and 

interference be known in advance.  However, a sample set spanning an appropriate sample 
variance range (e.g., concentration, physical properties, etc.) is required to build a calibration 
model, and then to predict for new samples.  Unfortunately, when samples are complex, e.g., 
multicomponent pharmaceutical formulations, it becomes difficult to obtain sufficiently 
comprehensive calibration sets, which limits the practical use PLS based methods. 

S2.3.    NAS-CLS
Classical least squares (CLS) [26, 27] is based on the Beer-Lambert law and assumes that 

a sample spectrum is made up of linearly independent signals weighted by the concentrations 
of individual spectrally-active components/analytes, and can be formulated as:  
                                                                                                (7)ecSd  T
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where d is one measured spectrum of the data matrix D, S is the spectrum matrix consisting of 
independent untainted signals and cyclic noise of each pure chemical component corresponding 
to unit concentration, with dimensions of number of spectroscopic measurement domain (λ) by 
r components.  c stands for the concentration weights of components, representing the degree 
to which each component contributes to the overall measurement.  Given the measurement d 
and reference spectra S, the concentration c can be estimated by the least square approximation,
                                                                                            (8)    1T )(  SSdSĉ

The critical is that all the spectrally-active components (S) must be independent and 
available so that c can be accurately estimated.  However, in most practical cases where S is 
usually unknown, this becomes quite difficult or even impossible.  Therefore, the net analyte 
signal (NAS)-based calibration has been applied for solving the problem. 

NAS [28, 29] aims to discriminate the measured spectrum d into two different 
contributions: one stemming from the analyte k of interest ( ), and all the remaining kd

information from other sources of variability ( ), which not only includes interference but kd
also residual not explained by the model:  
                                                                                             (9)    kk  ddd
This equation can be written in a multi-wavelength and multi-sample embodiment in the matrix 
form: 
                                                                      (10)    kkkk   DscDDD T

k

 and  correspond to the sensitivity vector of the analyte k and its concentrations in each of ks kc
spectra D, respectively.  The signal contributions of all the other components, except for that 
from the analyte k ( ), give rise to .kD kD

If a NAS filtering can be defined, then  is able to be removed from D:NASF kD

                                                                                    (11)   kkNAS 

 DDIF

                                                 (12)   EFscFDscDF   NASkkNASkkkNAS
TT )(

E indicates the model error, I means an identity matrix, and  is the pseudoinverse of .  
kD kD

Owing to there is no a priori knowledge about , a common alternative is to obtain a matrix kD

that can account for as much of the possible variability in : kD

                                                     (13)DccccIscDD ])([ T1TT
kkkkkkk


 

Thus, the filter  is computed for the NAS-CLS method, and the concentrations of the NASF
analyte k in new samples can be then predicted.  

S2.4.    PCA-CLS
Principal component analysis (PCA) [30] combined with CLS provided another route to 

perform indirect quantitative calibration.  Based on Equation (4), the spectra D can be 
decomposed to yield r orthogonal factors or principal components (PCs) in P.  Then, with these 
r PCs, the reference spectra S of the pure chemical components in Equation (8) were substituted 
to estimate the concentration C: 
                                                                    (14)    1T1T )()(   PPDPSSDSĈ
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These r PCs are not identical to the spectra of the pure chemical components in the sample, 
however, for a given analyte, its relative concentration distribution in the estimated 
concentration  may be proportional to the actual distribution in the absolute concentration C Ĉ
associated with S.  Using a set of samples with known concentrations, it was possible to 
perform least squares to calibrate the estimated  for the analyte of interest. Ĉ

S2.5.    MCR-BANDS
Multivariate curve resolution (MCR) refers to a family of self-modeling mixture analysis 

methods [31-33].  In general, with no prior knowledge about the mixture sample, MCR makes 
use of the bilinearity of the experimental data matrix (D), resolving pure chemical components 
(S) and their contribution profiles (C):  

                                                                      (15)    EscECSD  


r

k
kk

1

TT

However, for accurate MCR decomposition two intrinsic problems have to be dealt with, i.e., 
rotational and intensity ambiguities [34].  To address these problems, some powerful strategies 
have been adopted to assist the data resolution.  On one hand, the incorporation of additional 
information concerning the sample when available can make the MCR solutions more physical 
meaningful, for instance, initializing the spectral estimate with known pure chemical 
compositions.  On the other hand, the application of certain constraints such as non-negativity, 
unimodality, closure, or local rank and selectivity, etc. to the solution can lead to results closer 
to the true sources of data variation [35].  

For the MCR analysis, the lack of model fit (LOF) between the obtained results and 
original data can be described in relative percentage terms by the expression:

                                                                            (16)    










,

2
,

2

100 LOF

xy
xy

xy
xy

d

e
%

where  and  respectively stand for the  element in the experimental spectra DXY×λ xyd xye thxy

and the residual associated with the reproduction of  by the MCR model.  The explained xyd
variance can be indicated as (100−%LOF) and both two parameters have been utilized to 
measure the quality of MCR model fit.  

MCR-BANDS [35, 36] evaluated the degree of rotation ambiguities associated with the 
MCR solution, based on the calculation of the relative signal contribution of each component 
in the mixture:  

                                                                                              (17)    T

T

CS

sc kk
kf 

where  is a scalar value that defines the relative contribution of the kth particular component kf

( ) to the entire signal ( ) considering of the r components in the measured mixture (T
kksc TCS

), by using the quotient of two Frobenius norms of them.r...k  , ,1
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Under a set of constraints, the method looks for a particular set of profiles of  and  kc ks
for the kth component within the band boundaries of feasible solutions and calculates the 
maximum and minimum values of the relative contribution function, giving  and  max

kf
min

kf
respectively.  Then, the extent of rotational ambiguity can be evaluated by the difference 
between  and values for each component ( ).  Appreciable difference would max

kf
min

kf r...k  , ,1
indicate the presence of rotational ambiguity.  Otherwise, the MCR solutions are unique, and 
the obtainment of S is reliable.  Therefore, the concentration profiles C can be used for 
quantitative calibration purpose with confidence, according to equation (14).

Unlike the PLS method that requires a calibration phase with a large set of comprehensive 
samples, MCR needs less calibration samples to scale the scores in the estimated concentration 
profiles C and thus may be preferable.  This has to be taken into consideration in that a large 
set of calibration samples may not be always available due to sample complexity, overly capital 
and/or laborious cost, among others, particularly in the cases of pharmaceutical applications.        

S3.    Raman mapping analysis scheme 

Figure S-1:  Scheme of Raman mapping data analysis procedure in this study.

S4.    PLS quantification Model2 with non-OSC treated data 

PLS was implemented after assessing a variety of pre-processing methods, and combinations 
of methods.  The best results were obtained when MSC, SNV, and ACO variable selection 
were applied.  ACO was performed with the rate of pheromone evaporation = 0.65, ant number 
= 350, sensor width = 2, a maximum number of time steps of 50, and 100 repeated Monte Carlo 
calculation cycles to build a histogram of variable selection probability.[37]  142 variables were 



Electronic Supplementary Information

Page 7 of 19

selected from the 200−1896 cm−1 range and using these variables, one PLS factor, and mean-
centering (MC), 50 segmented piracetam concentration PLS quantification models were 
created for all ten spectral channels. 

All channel-specific models gave quite similar RMSEC/RMSECV errors, even though 
they used Raman spectra with different SNRs [37].  This indicated that the pre-processing 
methods were suitable and optimized.  For Model2 (0−2.5%), orthogonal signal correction 
(OSC) [38] was also implemented after SNV and before MC because for the low-content 
samples, subtle spectral differences were convoluted with noise and small sampling variations. 
 OSC was better able to minimize noise and contributions from the more intense proline signal 
in this case, leading to a more accurate low-content Model2 with a mean REC% and RECV% 
of 6.94% and 7.52% respectively, which was a ~2-fold improvement compared to the non-OSC 
treated data (Table S-1, SI).  In contrast to the best BR-PCHIP result, the LCQ accuracy was 
approximately 2.5-fold better. 

The correlation coefficients between the pure spectra of piracetam, proline, and the PLS 
factors (LVPLS) from Model1 were also calculated.  The results (taking channel 5 data as an 
example) showed that all the correlation coefficients between the piracetam spectrum and 
LVPLS for the 142 ACO-selected variables were equal or larger than 0.93.  The comparison 
between the spectra of pure piracetam, proline, and the PLS factor in Model1, revealed that 
LVPLS mostly overlapped the piracetam spectrum.  In contrast, the correlation coefficients 
between LVPLS and the proline spectrum were ca. −0.40 which proved that the selected 
variables were more descriptive of piracetam, and hence accurate piracetam prediction models 
were achieved.
Another important reason why PLS generated accurate LCQ was that there were a sufficiently 
large number of calibration samples available.  Since predictive error is directly dependent on 
calibration set size, more and more samples are required to reduce prediction error [39], 
particularly for LCQ and this is not always feasible.  There are also many practical difficulties 
with preparing calibration samples with precisely known low levels of analytes/contaminants.  
Therefore, we examined the feasibility of using NAS and MCR based approaches where 
smaller sized calibration sample sets might be employed, particularly for more complex 
mixtures with multiple low content components.

Table S-1:  RMSEC/RMSECV values (in w/w%) obtained for the piracetam quantification models in 
the 0−2.5% piracetam content range by PLS method and non-OSC treated spectra for each spectrometer 
channel.  Model accuracy was assessed by REC% and RECV% for calibration and cross-validation 
respectively. 

PLS Model2Piracetam 
in 0−2.5% RMSEC RMSECV
Channel 1 0.063670 0.079980
Channel 2 0.058344 0.074055
Channel 3 0.058794 0.071869
Channel 4 0.052208 0.066314
Channel 5 0.063635 0.078263
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Channel 6 0.068452 0.082948
Channel 7 0.057291 0.069536
Channel 8 0.060373 0.072486
Channel 9 0.058560 0.070503
Channel 10 0.057939 0.069599
mean value 0.060 0.074
standard dev. 0.004 0.005
REC%/RECV% 11.89 14.60

S5.    Piracetam prediction by the NAS-CLS method. 

The piracetam content in the mixtures was predicted by the NAS-CLS models.  In the 
0.05−1.0% range, the 0.197% and 0.357% samples were overestimated, giving large errors: the 
predicted piracetam concentrations were 0.354% and 0.502% respectively, which were 
highlighted with red solid circles.  If excluding these two samples, then the RMSEP and REP 
became much smaller as were 0.03% and 7.06%, for the prediction of piracetam content in the 
0.05−1.0% range. 

The comparison of the piracetam content of these two mixture samples respectively 
predicted from the triplicate measurements for each sample by the NAS-CLS and PLS models 
shows that the NAS-CLS gave a higher prediction of piracetam content at almost every pixel.  
The correlation coefficients between the 841 NAS-CLS and PLS predictions of piracetam 
content were 0.977 for the 0.197% sample, and 0.984 for the 0.357% sample, respectively.  The 
differences between the 841 NAS-CLS and PLS predictions of piracetam content were (0.144 
± 0.056)% for the 0.197% sample, and (0.149 ± 0.065)% for the 0.357% sample.
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Figure S-2:  Predictions of piracetam content at all the 841 pixels of Raman mapping measurement of 
(left) 0.197% and (right) 0.357% piracetam mixture samples by the PLS and NAS-CLS models, with 
respect to (top) the histograms, and (bottom) the predictive piracetam content at each pixel.  The 
piracetam content was the mean value of triplicate measurements for each sample.  

S6.    MCR analysis 

S6.1.    Variance analysis of MCR factors
Table S-2:  Spectral variance explained by MCR factors for the 10 spectrometer channel spectra using 
three specific ranges of 480−830, 1040−1510, and 1628−1740 cm−1.  Two MCR factors (  and mcr1s

) were obtained from the 0−100% piracetam content sample spectra for each channel.  Both the mcr2s
cumulative variance and %LOF were also calculated. 

Spectral 
data (X)

% Variance 
captured by mcr1s

% Variance 
captured by mcr2s

Cumulative % 
variance

%LOF

Channel 1 56.1113 43.7195 99.8307 0.1693
Channel 2 55.0360 44.7875 99.8235 0.1765
Channel 3 55.1602 44.6612 99.8214 0.1786
Channel 4 55.2812 44.5401 99.8213 0.1787
Channel 5 55.3274 44.4913 99.8186 0.1814
Channel 6 55.2106 44.5980 99.8087 0.1913
Channel 7 55.1366 44.6797 99.8163 0.1837
Channel 8 54.9694 44.8519 99.8212 0.1788
Channel 9 54.9576 44.8629 99.8205 0.1795
Channel 10 54.9752 44.8487 99.8238 0.1762

S6.2.    MCR-BANDS optimization
Table S-3:  Rotation ambiguity measured by MCR component relative contribution function maximum 
and minimum values, for the 10 spectrometer channel spectra using three specific ranges of 480−830, 
1040−1510, and 1628−1740 cm−1.   and  respectively signify two MCR components (  max

,f 21
min
,f 21 mcr1s

and ) in terms of the maximum and minimum values in each channel case.  Constrains of spectrum mcr2s
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normalization and non-negativity of both spectra and concentrations were applied.  The differences 
(either −  or − ) between  and  were zero, indicating that the obtainment maxf1

minf1
maxf2

minf2
max
,f 21

min
,f 21

of MCR components was unique.      

1st Component ( )mcr1s 2nd Component ( )mcr2sSpectral 
data (X) maxf1

minf1
maxf2

minf2

Channel 1 0.7334 0.7334 0.6474 0.6474
Channel 2 0.7263 0.7263 0.6552 0.6552
Channel 3 0.7271 0.7271 0.6543 0.6543
Channel 4 0.7280 0.7280 0.6534 0.6534
Channel 5 0.7284 0.7284 0.6531 0.6531
Channel 6 0.7276 0.7276 0.6539 0.6539
Channel 7 0.7270 0.7270 0.6544 0.6544
Channel 8 0.7257 0.7257 0.6555 0.6555
Channel 9 0.7257 0.7257 0.6557 0.6557
Channel 10 0.7258 0.7258 0.6555 0.6555

Figure S-3:  Details about MCR-BANDS optimization results, using the spectra in three specific ranges 
of 480−830, 1040−1510, and 1628−1740 cm−1 obtained from the spectrometer channel 5 data.   
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S6.3.    High-content quantification of piracetam

Figure S-4:  High-content quantification of piracetam in mixture samples in the high concentration 
range of 1.0−100%, predicted by: (a) MCR, (b) NAS-CLS, (c) PCA-CLS, and (d) PLS models.  

S7.    PCA-CLS modelling 

Figure S-5:  PCA component loadings in the spectral ranges of 480−830, 1040−1510, and 1628−1740 
cm−1, compared with pure piracetam and proline spectra.  They were obtained from Model1 using 
spectrometer channel 5 spectra.



Electronic Supplementary Information

Page 12 of 19

S8.    Maps of 0.103% piracetam powder mixture  

Figure S-6:  Raman maps of the 0.103% piracetam powder mixture, showing the integrated intensity 
of 10 channel averaging spectra of (a) raw data, and (b) NAS-CLS prediction scores.  Colour bars 
represent intensity and piracetam content in w/w%, respectively.  

Table S-4:  Similarity in terms of correlation coefficient between the maps represented by the integrated 
intensity (IntInt) of raw Raman spectra of the 0.103% piracetam powder mixture, and prediction scores 
obtained by PLS, NAS-CLS, MCR, PCA-CLS, and BR-PCHIP methods. 

Similarity IntInt PLS NAS-CLS MCR PCA-CLS BR-PCHIP
IntInt 1 0.048 0.212 0.097 0.009 0.061
PLS 0.048 1 0.737 0.780 0.912 0.645
NAS-CLS 0.212 0.737 1 0.781 0.596 0.521
MCR 0.097 0.780 0.781 1 0.764 0.572
PCA-CLS 0.009 0.912 0.596 0.764 1 0.634
BR-PCHIP 0.061 0.645 0.521 0.572 0.634 1

S9.    Selection of three specific spectral ranges  

Three specific spectral ranges (480−830, 1040−1510, and 1628−1740 cm−1) were selected 
for use in model development, based on their Raman scattering coefficients, the ratio of the 
spectrum overlap integral to the total spectral area, and the correlation coefficients between the 
spectra, as detailed below: 
 Piracetam and proline had approximately equal Raman scattering coefficients, i.e., the 

piracetam-to-proline ratio of their individual integrated spectra (PPSR) in the entire range 
of 200−1896 cm–1 was 100:94.  This means that LOD is limited by such a ratio, with LOD 
decreasing as the relative scattering efficiency of the target analyte increases, compared to 
the matrix component.  The ratio of the spectrum overlap integral to the total spectral area 
(SOTAR) of a constituent was 0.59 for piracetam and 0.63 for proline; in essence, both 
were close to 50%.  The smaller this ratio (which can vary from 0 to 1), the easier it should 
be to quantify a low-content analyte in mixtures.  
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 In the 480−830 cm−1 spectral range: (1) the piracetam-to-proline ratio of the individual 
integrated spectra was 100:31; (2) the ratio of the spectrum overlap integral to the total 
spectral area was 0.21 for piracetam and 0.67 for proline; (3) the correlation coefficient 
(CC) between the two spectra was −0.024.

 In the 1040−1510 cm−1 range: (1) the piracetam-to-proline ratio of the individual integrated 
spectra was 100:104; (2) the ratio of the spectrum overlap integral to the total spectral area 
was 0.36 for piracetam and 0.35 for proline; (3) the correlation coefficient between the two 
spectra was −0.136.

 In the 1628−1740 cm−1 range: (1) the piracetam-to-proline ratio of the individual integrated 
spectra was 100:6; (2) the ratio of the spectrum overlap integral to the total spectral area 
was 0.05 for piracetam and 0.75 for proline; (3) the correlation coefficient between the two 
spectra was −0.084.

Table S-5:  Comparison of the piracetam and proline Raman spectra in specific ranges.

SOTARSpectral ranges PPSR Pir Pro CC

200−1896 cm–1 100:94 0.59 0.63   0.252
480−830 cm−1 100:31 0.21 0.67 −0.024
1040−1510 cm−1 100:104 0.36 0.35 −0.136
1628−1740 cm−1 100:6 0.05 0.75 −0.084
200−480 cm−1 100:89 0.62 0.69   0.085
830−1040 cm−1 100:148 0.76 0.51   0.145
1510−1628 cm−1 100:155 0.94 0.61 −0.230
1740−1896 cm−1 100:117 0.99 0.85   0.964

Therefore, one could conclude that in these three ranges, the piracetam spectrum had high 
selectivity, and the selected Raman bands did not overlap with the proline spectrum too much, 
leading to more accurate models.  In contrast, the piracetam and proline Raman spectra were 
strongly overlapped in the ranges of 200−480, 830−1040, 1510−1628, and 1740−1896 cm−1, 
and so were not used.

S10.    Rationale for piracetam/proline model system   

Piracetam (API) and proline (excipient) were selected as a model system to develop a 
robust analytical methodology for several reasons: 

(1) First, piracetam and proline have approximately equal Raman scattering coefficients.  
When we compared the integrated spectra (200~1896 cm–1 range) the piracetam-to-
proline-to-hydrated proline ratio was 100:94:13.  Obviously, the Limit of Detection 
(LOD) will be determined largely by this ratio, with LOD decreasing as the relative 
scattering efficiency of the target analyte increases compared to the matrix component.  

(2) Second, the ratio of the spectrum overlap integral to the total spectral area of a constituent 
was 0.59 for piracetam and 0.63 for proline; in essence, both were close to 50%.  The 
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smaller this ratio (which can vary from 0 to 1), the easier it should be to quantify a low-
content analyte in mixtures.  We selected this combination, as it was in the middle of the 
range and possibly more representative of the degree of spectral overlap encountered in 
real world applications. 

(3) Third, to ensure facile HPLC validation of the Raman method, piracetam and proline 
could be easily separated and the low-content piracetam produced a quite strong peak 
facilitating accurate quantification by HPLC.  

(4) Finally, the piracetam polymorph was stable while the proline matrix was sensitive to 
environmental factors, e.g., water absorption leading to hydrate formation.  This 
introduced another variable, which made the quantification of low-level analyte more 
complicated than a simple binary mixture model.  Hydration is a common issue with 
solid-state matrix/formulation analysis, and this method needed to be able to identify 
samples that have been compromised.

Figure S-7:  Overlaid Raman spectra of piracetam, proline, and hydrated proline powders.  
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S11.    Samples used for study   

Low content High content
No. of Samples

20 30
Range  0~0.95% 1.0~100%

1 S0P000R1/2/3   S2P1R1/2/3   
2 S1P005R1/2/3 S3P2R1/2/3   
3 S2P010R1/2/3  S4P3R1/2/3   
4 S3P015R1/2/3  S5P4R1/2/3   
5 S4P020R1/2/3  S6P8R1/2/3   
6 S5P025R1/2/3  S7P12R1/2/3  
7 S6P030R1/2/3  S8P16R1/2/3  
8 S7P035R1/2/3  S9P20R1/2/3  
9 S8P040R1/2/3  S10P24R1/2/3

10 S9P045R1/2/3  S11P28R1/2/3
11 S10P050R1/2/3 S12P32R1/2/3
12 S11P055R1/2/3 S13P36R1/2/3
13 S12P060R1/2/3 S14P40R1/2/3
14 S13P065R1/2/3 S15P44R1/2/3
15 S14P070R1/2/3 S16P48R1/2/3
16 S15P075R1/2/3 S17P52R1/2/3
17 S16P080R1/2/3 S18P56R1/2/3
18 S17P085R1/2/3 S19P60R1/2/3
19 S18P090R1/2/3 S20P70R1/2/3
20 S19P095R1/2/3 S21P80R1/2/3
21 S211P84R1/2/3   
22 S212P88R1/2/3   
23 S22P90R1/2/3    
24 S221P92R1/2/3   
25 S222P96R1/2/3   
26 S223P97R1/2/3   
27 S224P98R1/2/3   
28 S225P99R1/2/3   
29 S2255P995R1/2/3
30 S23P100R1/2/3   

Code:  S____P_____R1/2/3
First digits after S were the sample number, and numbers after P were the piracetam 
concentration, 0 to 0.95% w/w for the low-content range, and 1.0 to 100% w/w for the high-
content range.  Number after R meant each sample was prepared in triplicate. 
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S12.    Effect of varying sample number on model accuracy   

Figure S-8:  Predictive errors showing the MCR, PLS and NAS-CLS model performance 
accuracy varied with the sample numbers.  Leave-one-out (LOO) cross validation was used for 
calculating the model prediction errors.  Data were from channel 5 spectra of the 0.05−1.0% 
piracetam content samples.

S13.    MCR Factors. 

Figure S-9:  Overlaid plot of the S1mcr and S2mcr factors from the MCR model with the Raman 
spectra of pure piracetam and proline showing the almost perfect agreement.  [Channel 5 data 
only].



Electronic Supplementary Information

Page 17 of 19

S14.    References 

[1] Z. Li, D.-J. Zhan, J.-J. Wang, J. Huang, Q.-S. Xu, Z.-M. Zhang, Y.-B. Zheng, Y.-Z. Liang, 
H. Wang, Morphological weighted penalized least squares for background correction, Analyst, 
138 (2013) 4483-4492.
[2] B.Y. Li, A. Calvet, Y. Casamayou-Boucau, C. Morris, A.G. Ryder, Low-Content 
Quantification in Powders Using Raman Spectroscopy: A Facile Chemometric Approach to 
Sub 0.1% Limits of Detection, Anal Chem, 87 (2015) 3419-3428.
[3] B. Li, A. Calvet, Y. Casamayou-Boucau, A.G. Ryder, Kernel principal component analysis 
residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman 
spectra, Anal Chim Acta, 913 (2016) 111-120.
[4] J. Engel, J. Gerretzen, E. Szymanska, J.J. Jansen, G. Downey, L. Blanchet, L.M.C. 
Buydens, Breaking with trends in pre-processing, TrAC-Trend Anal Chem, 50 (2013) 96-106.
[5] M. Vidal, J.M. Amigo, Pre-processing of hyperspectral images. Essential steps before 
image analysis, Chemometr. Intell. Lab. Syst., 117 (2012) 138-148.
[6] T. Fearn, C. Riccioli, A. Garrido-Varo, J.E. Guerrero-Ginel, On the geometry of SNV and 
MSC, Chemometr. Intell. Lab. Syst., 96 (2009) 22-26.
[7] M. Shamsipur, V. Zare-Shahabadi, B. Hemmateenejad, M. Akhond, Ant colony 
optimisation: a powerful tool for wavelength selection, J. Chemometr., 20 (2006) 146-157.
[8] F. Allegrini, A.C. Olivieri, A new and efficient variable selection algorithm based on ant 
colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis, 
Anal Chim Acta, 699 (2011) 18-25.
[9] L. Zhang, M.J. Henson, S.S. Sekulic, Multivariate data analysis for Raman imaging of a 
model pharmaceutical tablet, Anal. Chim. Acta, 545 (2005) 262-278.
[10] M. Fischer, C.D. Tran, Investigation of solid phase peptide synthesis by the near-infrared 
multispectral imaging technique: A detection method for combinatorial chemistry, Anal Chem, 
71 (1999) 2255-2261.
[11] X.X. Han, Y. Xie, B. Zhao, Y. Ozaki, Highly Sensitive Protein Concentration Assay over 
a Wide Range via Surface-Enhanced Raman Scattering of Coomassie Brilliant Blue, Anal 
Chem, 82 (2010) 4325-4328.
[12] S. Sasic, D.A. Clark, J.C. Mitchell, M.J. Snowden, A comparison of Raman chemical 
images produced by univariate and multivariate data processing - a simulation with an example 
from pharmaceutical practice, Analyst, 129 (2004) 1001-1007.
[13] S. Pruess, Shape-preserving C-2 cubic spline interpolation, Ima Journal of Numerical 
Analysis, 13 (1993) 493-507.
[14] R.E. Carlson, F.N. Fritsch, An algorithm for monotone piecewise bicubic interpolation, 
Siam Journal on Numerical Analysis, 26 (1989) 230-238.
[15] C.M. David Kahaner, Stephen Nash Numerical Methods and Software, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1989.
[16] A. de Juan, R. Tauler, R. Dyson, C. Marcolli, M. Rault, M. Maeder, Spectroscopic imaging 
and chemometrics: a powerful combination for global and local sample analysis, TrAC-Trends 
Anal. Chem., 23 (2004) 70-79.
[17] K.C. Gordon, C.M. McGoverin, Raman mapping of pharmaceuticals, International 
Journal of Pharmaceutics, 417 (2011) 151-162.



Electronic Supplementary Information

Page 18 of 19

[18] H. Shinzawa, K. Awa, W. Kanematsu, Y. Ozaki, Multivariate data analysis for Raman 
spectroscopic imaging, J. Raman Spectrosc., 40 (2009) 1720-1725.
[19] P.G. Hans Grahn, Techniques and Applications of Hyperspectral Image Analysis, John 
Wiley & Sons Ltd., Chichester, 2007.
[20] B. Vajna, I. Farkas, A. Szabo, Z. Zsigmond, G. Marosi, Raman microscopic evaluation of 
technology dependent structural differences in tablets containing imipramine model drug, 
Journal of Pharmaceutical and Biomedical Analysis, 51 (2010) 30-38.
[21] J.M. Amigo, C. Ravn, Direct quantification and distribution assessment of major and 
minor components in pharmaceutical tablets by NIR-chemical imaging, European Journal of 
Pharmaceutical Sciences, 37 (2009) 76-82.
[22] C. Gendrin, Y. Roggo, C. Collet, Pharmaceutical applications of vibrational chemical 
imaging and chemometrics: A review, J. Pharm. Biomed. Anal., 48 (2008) 533-553.
[23] W.F. de Carvalho Rocha, G.P. Sabin, P.H. Marco, R.J. Poppi, Quantitative analysis of 
piroxicam polymorphs pharmaceutical mixtures by hyperspectral imaging and chemometrics, 
Chemometr. Intell. Lab. Syst., 106 (2011) 198-204.
[24] T.T. Lied, P. Geladi, K.H. Esbensen, Multivariate image regression (MIR): 
implementation of image PLSR-first forays, J. Chemometr., 14 (2000) 585-598.
[25] S. Wold, M. Sjöström, L. Eriksson, PLS-regression: a basic tool of chemometrics, 
Chemometr. Intell. Lab. Syst., 58 (2001) 109.
[26] T.N. H. Martens, Multivariate Calibration, Wiley, New York, 1989.
[27] M.J. Pelletier, Quantitative analysis using Raman spectrometry, Appl Spectrosc, 57 (2003) 
20A-42A.
[28] A. Lorber, K. Faber, B.R. Kowalski, Net Analyte Signal Calculation in Multivariate 
Calibration, Anal. Chem., 69 (1997) 1620.
[29] J.H.K. J. Palmer, Net analyte signal (NAS) for selection of multivariate calibration models 
and development of NAS sample-wise target calibration model attributes, in: 40 Years of 
Chemometrics – From Bruce Kowalski to the Future, Chapter 9, 2015.
[30] I.T. Jolliffe, Principal Component Analysis, 2nd ed., Springer, New York, 2002.
[31] E.R. Malinowski, Factor Analysis in Chemistry, Wiley, New York, 2002.
[32] J.H. Jiang, Y.Z. Liang, Y. Ozaki, Principles and methodologies in self-modeling curve 
resolution, Chemometr. Intell. Lab. Syst., 71 (2004) 1-12.
[33] A. de Juan, R. Tauler, Multivariate curve resolution (MCR) from 2000: Progress in 
concepts and applications, Crit. Rev. Anal. Chem., 36 (2006) 163-176.
[34] E. Spjotvoll, H. Martens, R. Volden, Restricted least-squares estimation of the spectra and 
concentration of 2 unknown constituents available in mixtures, Technometrics, 24 (1982) 173-
180.
[35] J. Jaumot, R. Tauler, MCR-BANDS: A user friendly MATLAB program for the evaluation 
of rotation ambiguities in Multivariate Curve Resolution, Chemometr. Intell. Lab. Syst., 103 
(2010) 96-107.
[36] R. Tauler, Calculation of maximum and minimum band boundaries of feasible solutions 
for species profiles obtained by multivariate curve resolution, J. Chemometr., 15 (2001) 627-
646.



Electronic Supplementary Information

Page 19 of 19

[37] B. Li, A. Calvet, Y. Casamayou-Boucau, C. Morris, A.G. Ryder, Low-content 
quantification in powders using Raman spectroscopy: a facile chemometric approach to sub 
0.1% limits of detection, Anal Chem, 87 (2015) 3419-3428.
[38] S. Wold, H. Antti, F. Lindgren, J. Ohman, Orthogonal signal correction of near-infrared 
spectra, Chemometr. Intell. Lab. Syst., 44 (1998) 175-185.
[39] H.A. Martens, P. Dardenne, Validation and verification of regression in small data sets, 
Chemometr. Intell. Lab. Syst., 44 (1998) 99-121.


