
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

1 2 **Electronic supplementary information** 3 4 For 5 6 Chemical state and isotope ratio analysis of individual uranium particles by a combination of micro-Raman spectroscopy secondary ion mass spectrometry 10 Takumi Yomogida*, Fumitaka Esaka, and Masaaki Magara Research Group for Safeguards Analytical Chemistry, Japan Atomic Energy Agency 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan 13 *Corresponding author. Tel.: +81-29-284-3667, Fax.: +81-29-282-6950. E-mail address: yomogida.takumi@jaea.go.jp (T.Yomogida). 15 16

17 Figure S1. Changes in the MRS spectrum of a UO_2 particle with a diameter of 3 μ m with 18 measurement time. The laser powers of (a) 0.1 mW and (b) 1.0 mW were used for the 19 measurement.

20

23

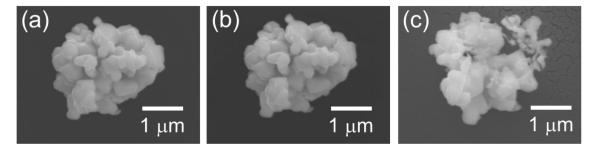


Figure S2. The scanning electron images of a uranium particle (UO_2) with a diameter of 3 μ m 22 (a) before and after MRS measurements with the laser powers of (b) 0.1 mW and (c) 1.0 mW.

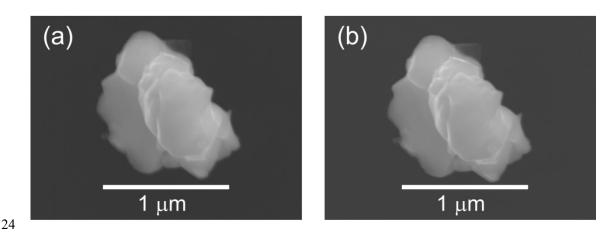


Figure S3. Scanning electron images of a uranium particle (UO₂) with a diameter of 1 mm (a) before and (b) after MRS measurement with a 0.1 mW laser power.

Table. S1 Particle sizes and $^{234}\text{U}/^{238}\text{U}$ and $^{235}\text{U}/^{238}\text{U}$ isotope ratios of individual particles in a uranium dioxide sample with natural composition. The errors represent the expanded uncertainties with a coverage factor of k=2.

Particle No.	Size (µm)	234 U/ 238 U isotope ratio / × 10^{-5}	235 U/ 238 U isotope ratio/ \times 10^{-3}
1	5.1	5.1 ± 0.4	7.32 ± 0.07
2	4.1	5.1 ± 0.4	7.23 ± 0.06
3	3.4	5.1 ± 0.2	7.19 ± 0.05
4	1.9	5.1 ± 0.4	7.24 ± 0.07
5	2.2	5.5 ± 0.3	7.21 ± 0.06
6	3.9	4.9 ± 0.4	7.24 ± 0.05
7	3.0	5.4 ± 0.5	7.30 ± 0.07
8	4.2	5.7 ± 0.4	7.24 ± 0.04
9	1.1	5.4 ± 0.5	7.18 ± 0.07
10	4.1	5.2 ± 0.3	7.25 ± 0.07
Average	-	5.2 ± 0.5	7.24 ± 0.09
Literature[*1]	-	5.5 ± 1.0	7.25 ± 0.02

^{31 *1}P. De Bi'evre, P.D.P. Taylor, *Int. J. Mass Spectrom. Ion Processes* **1993**, 123, 149–166.

32