Electronic Supplementary Information

Dual-modal fluorescence and light-scattering sensor based on water-soluble carbon dots for silver ions detection

Guoliang Liu,^{a,b,c} Chenglei Xuan,^b Da-Qian Feng,^{*a,b,c} Dongliang Hua,^b Tianhao Liu,^b Gang Qi,^b and Wei Wang^{*b}

^aJiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China.

 ^{b.}School of Chemical and Chemical Engineering, Yancheng Institute of Technology, Yancheng
224051, China. *E-mail address: dqfeng09@163.com, wangw@ycit.edu.cn. Tel/ Fax: +86-515-88298186.

^c Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.

Method	Linear range (nM)	Detection limit (nM)	References
Flame atomic absorption spectrometric detection	-	8.24	31
Visual detection	1000-170000	1000	32
Colorimetric detection	5000-40000	1000	33
ICP-MS ^a	1.85-4630	37	34
CdS-based fluorescence detetion	100-1500	68	35
AgNCs-based fluorescence detetion	50-500	10	36
Resonance Rayleigh scattering	167-2333	160	37
CDs-based dual-modal fluorescence detection	100-265000	50	This study
CDs-based dual-modal LS detection	10-4000	2	This study

Table S1 Comparison of analytical data of the methods for the detection of Ag⁺.

^a ICP-MS: inductively coupled plasma-mass spectrometry

References:

31 M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, A. Najibi and M. Soylak, *J. Hazard. Mater.*, 2009, **168**, 1022–1027.

- 32 B. X. Liu, H. L. Tan and Y. Chen, Microchim. Acta, 2013, 180, 331-339.
- 33 Y. He, Y. Liang and H. Song, *Plasmonics*, 2016, 11, 587-591.
- 34Q. B. Lin, B. Li, H. Song and H. J. Wu, *Food Addit. Contam. A*, 2011, **28**, 1123–1128.
- 35 T. Khantaw, C. Boonmee, T. Tuntulani and W. Ngeontae, *Talanta*, 2013, **115**, 849–856.
- 36 J. Lee, J. Park, H. H. Lee, H. Park, H. Kim and W. J. Kim, *Biosens. Bioelectron.*, 2015, **68**, 642–647.
- 37 G. Q. Wen, C. Y. Lin, M. L. Tang, G. S. Liu, A. H. Liang and Z. L. Jiang, *RSC Adv.*, 2013, 3, 1941–1946.

Figure S1 The present size distributions of prepared CDs (a) or CDs/Cys system reaction with Ag^+ ions (b). Conditions: The concentration of cysteine is 0.5 mM; The concentrations of Ag^+ are 265 μ M; BR buffer (pH 7.0).

DLS assays suggest that the hydrated diameter of pre-prepared CDs is 7.0 nm (Fig. S1a). After the addition of cysteine (Cys), the hydrated diameter does not turn up distinct increase. However, upon reacted with Ag⁺ ions, the average hydrated diameter of CDs/Cys system appears significant enhancement with approximately 50.3 nm (Fig. S1b). The results of DLS experimental assays are consistent with those of TEM assays.