Supporting Information

Visual determination of ferric ions in aqueous solution based on a high selectivity and sensitivity ratiometric fluorescent nanosensor

Haolan Wu^a, Lian Yang^b, Linfeng Chen^c, Fang Xiang^d and Hongyu Gao^{f,*}

^a School of Water Resources and Environment, China University of geosciences (Beijing), Beijing 100083, China.

^b Research Center for Sewage Recycling Engineering of Beijing, Beijing 100124, China

^c Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074China

^d School of Foreign Language, China University of Geosciences, Wuhan 430074, China

^{*f*} Institute for resources and environmental engineering, Shanxi University, Taiyuan 030000, China. E-mail: <u>sailor0611@163.com</u>

Scheme.S1. The synthetic route of the RhB

¹H NMR (400MHz, CDCl₃) δ (ppm): 7.97 (d, 1H), 7.45 (m, 4H), 7.11 (d, 1H), 6.48 (m, 4H), 6.20 (m, 2H), 3.91 (m, 6H), 3.31(m, 4H), 2.31 (s, 6H), 1.15 (t, 6H).

¹³C NMR (400MHz, d₆-DMSO) δ (ppm): 165.46, 156.82, 152.11, 150.14, 140.95, 134.45, 129.08, 127.16, 122.02, 120.71, 118.51, 61.32, 49.79, 15.97, 13.74.

Elemental analysis: calcd for C₃₄H₃₄N₄O₅: C, 70.57; H, 5.92; N, 9.68. Found: C,

Fig. S1. The ¹H NMR spectrum of RhB in CDCl₃

Fig. S2 The 13 C NMR spectrum of RhB in d_6 -DMSO

Fig. S3. The TEM image of (a) CdTe QDs and (b) CdTe@SiO₂ QDs.

Fig. S4. (a) The stability of the RhB-CdTe@SiO₂ QDs sensor in acetonitrile/water mixtures (1:4 v/v, 1/1; pH=7.0). (B) The stability of the RhB-CdTe@SiO₂ QDs sensor in the presence of 4.5 μ M of Fe³⁺.

Rhodamine-based fluorescence sensor for Fe ³⁺	LOD	linear ranges(mol/L ⁻¹)
An "off-on" rhodamine-based fluorescence probe 1	14 nM	6.0×10 ⁻⁸ -7.2×10 ⁻⁶
Ferric ion chemosensor based on rhodamine derivative ²	0.32 µM	0-2.0×10 ⁻⁵
Rhodamine-based "off-on" chemosensors for ferric ion ³	5.0 µM	5.0×10^{-6} - 2.0×10^{-5}
Rhodamine hydroxamate as fluorescent chemosensor ⁴	1.0 µM	1.0×10^{-6} - 2.0×10^{-5}
Rhodamine-based thiacalix[4]arene fluorescent sensor ⁵	35.0 nM	5.0×10^{-6} - 6.0×10^{-5}
This Work	20.5 nM	0-3.5×10 ⁻⁶

Table S1 The comparison of the LOD and linear range for the detection of Fe^{3+} by other rhodamine-based fluorescence sensor.

References

- 1. J. Mao, Q. He and W. Liu, Anal. Bioanal. Chem., 2010, 80, 2093.
- 2. H. Liu, X. Wan, L. Gu, T. Liu and Y. Yao, *Tetrahedron*, 2014, 70, 7527-7533.
- Z. Yang, M. She, B. Yin, J. Cui, Y. Zhang, W. Sun, J. Li and Z. Shi, *J. Org. Chem.*, 2012, 77, 1143.
- 4. K. S. Moon, Y. K. Yang, S. Ji and J. Tae, *Tetrahedron Lett.*, 2010, 51, 3290-3293.
- 5. X. Y. Zheng, W. J. Zhang, L. Mu, X. Zeng, S. F. Xue, Z. Tao and T. Yamatob, *J. Incl. Phenom. Macro.*, 2010, 68, 139-146.