Supporting Information

A squaraine-based sensor for colorimetric detection of CO₂ gas in aqueous medium through an unexpected recognition mechanism

Jianqi Sun^{‡a,b}, Xiangjuan Zheng^{‡a}, Xinjie Wu^a, Dong Li^a, Guomin Xia^a, Shuxian Yu^a, Qiming Yu and Hongming Wang^a*

^a College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China

^b College of Chemistry and Envioronmental Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China

Detection Limit ^[1]. The detection limit was calculated on the basis of the UV-Vis titration. The UV-Vis spectrum of **SQM** (7.5 μ M) in MeCN-H₂O (V : V = 90 : 10) was measured 12 times, and the standard deviation of blank measurement was achieved. To gain the slope, the absorbance at 627 nm versus amount of pure CO₂ gas was plotted. The detection limit was calculated using the following equation:

Detection limit =
$$3\sigma/k$$
 (1)

Where σ is the standard deviation of blank measurement, and k is the slope between the absorbance versus the volume of pure CO₂ gas (V_{CO2}).

References

[1] S. Samanta, S. Goswami, M. N. Hoque, A. Rameshm and G. Das, *Chem. Commun.*, 2014, **50**, 11833.

[‡]These authors contributed equally to this work.

Captions:

Fig. S1 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with 50-fold weak base EA, DEA, TEA and Py in MeCN respectively.

Fig. S2 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with DBU in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional DBU.

Fig. S3 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with TMG in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional TMG.

Fig. S4 UV-Vis spectral changes obtained during the course of titrating sensor **SQM** (7.5 μ M) with [NBu₄]F in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional [NBu₄]F.

Fig. S5 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with (a) 2-fold TBD; (b) 5-fold DBU in MeCN then bubbled with different volumes of CO₂ gas in a sealed cuvette.

Fig. S6 (a) UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with DBU in MeCN-H₂O (V : V = 90 : 10); (b) then bubbled with different volumes of CO₂ gas in a sealed cuvette. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional DBU or volume of CO₂ gas.

Fig. S7 UV-Vis spectrum of precursor SQ (7.5 μ M) in MeCN-H₂O (V : V = 90 : 10).

Fig. S8 The absorbance of **SQM** (7.5 μ M) at 627 nm in MeCN-H₂O with different volume fractions of H₂O after addition of 20 eq TBD (the black bar) followed by bubbling 5 mL CO₂ gas (the green bar) in a sealed cuvette.

Fig. S9 The absorbance of **SQM** (7.5 μ M) at 627 nm with the addition of TBD (20 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

Fig. S10 The absorbance of SQM (7.5 μ M) at 627 nm with the addition of DBU (20 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

Fig. S11 The mass spectrometry analysis of SQM in MeCN with addition of TBD in positive mode.

Fig. S12 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10)

with addition of TBD in positive mode.

Fig. S13 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of TBD followed by CO₂ gas in positive mode.

Fig. S14 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of NaOH in positive mode.

Fig. S15 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of NaOH followed by CO_2 gas in positive mode.

Fig. S16 The absorbance of SQM (7.5 μ M) at 627 nm with the addition of NaOH (300 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

Fig. S17 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of TBD followed by CO₂ gas in negative mode.

Fig. S18 Partial ¹H-NMR spectra obtained during the course of titrating sensor SQM (5.0 mM) with NaOH followed by CO_2 in DMSO- d_6 .

Fig. S19 ¹H NMR spectrum of SQM

Fig. S20 ¹³C NMR spectrum of SQM

Fig. S21 The mass spectrometry analysis of SQM in MeCN in positive mode.

Fig. S1 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with 50-fold weak base EA, DEA, TEA and Py in MeCN respectively.

Fig. S2 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with DBU in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional DBU.

Fig. S3 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with TMG in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional TMG.

Fig. S4 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with [NBu₄]F in MeCN. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional [NBu₄]F.

Fig. S5 UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with (a) 2-fold TBD; (b) 5-fold DBU in MeCN then bubbled with different volumes of CO₂ gas in a sealed cuvette.

Fig. S6 (a) UV-Vis spectral changes obtained during the course of titrating sensor SQM (7.5 μ M) with DBU in MeCN-H₂O (V : V = 90 : 10); (b) then bubbled with different volumes of CO₂ gas in a sealed cuvette. Inset: The corresponding plots of absorbance at indicated wavelengths versus additional DBU or volume of CO₂ gas.

Fig. S7 UV-Vis spectrum of precursor SQ (7.5 μ M) in MeCN-H₂O (V : V = 90 : 10).

Fig. S8 The absorbance of **SQM** (7.5 μ M) at 627 nm in MeCN-H₂O with different volume fractions of H₂O after addition of 20 eq TBD (the black bar) followed by bubbling 5 mL CO₂ gas (the green bar) in a sealed cuvette.

Fig. S9 The absorbance of SQM (7.5 μ M) at 627 nm with the addition of DBT (20 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

The detection limit in MeCN-H₂O (V : V = 90 : 10) (3.0 ml) was calculated to be about $1.59*10^{-6}$ M (ca. 39.0 ppm, 1atm, 25°C)

Fig. S10 The absorbance of SQM (7.5 μ M) at 627 nm with the addition of DBU (20 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

The detection limit in MeCN-H₂O (V : V = 90 : 10) (3.0 ml) was calculated to be about $2.0*10^{-6}$ M (ca. 49.1 ppm, 1atm, 25°C)

Fig. S11 The mass spectrometry analysis of SQM with addition of TBD in MeCN in positive mode.

Fig. S12 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of TBD in positive mode.

Fig. S13 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of TBD followed by CO_2 gas in positive mode.

Fig. S14 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of NaOH in positive mode.

Fig. S15 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of NaOH followed by bubbling CO₂ gas in positive mode.

Fig. S16 The absorbance of SQM (7.5 μ M) at 627 nm with the addition of NaOH (300 eq) versus the volume of pure CO₂ gas in MeCN-H₂O (V : V = 90 : 10).

The detection limit in MeCN-H₂O (V : V = 90 : 10) (3.0 ml) was calculated to be about $1.20*10^{-6}$ M (ca. 29.4 ppm, 1atm, 25°C)

Fig. S17 The mass spectrometry analysis of SQM in MeCN-H₂O (V : V = 90 : 10) with addition of TBD followed by CO₂ gas in negative mode.

Fig. S18 Partial ¹H-NMR spectra obtained during the course of titrating sensor SQM (5.0 mM) with NaOH followed by CO_2 in DMSO- d_6 .

Fig. S19 ¹H NMR spectrum of SQM

Fig. 20 ¹³C NMR spectrum of SQM

Fig. 21 The mass spectrometry analysis of SQM in MeCN in positive mode.