ELECTRONIC SUPPLEMENTARY INFORMATION FOR THE PAPER

Combined headspace single-drop microextraction and solid-phase microextraction for the determination of phenols as their methyl ethers by gas chromatography-mass spectrometry

Archana Jain, Soumitra Soni, Kishan Reddy-Noone, Aradhana K.K.V. Pillai and Krishna K. Verma*

Department of Chemistry, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India

* Corresponding author Tel.: +91 761 2605103. E-mail: <u>arichna@sancharnet.in</u> (Krishna K. Verma)

ORCID Krishna K. Verma: 0000-0003-2223-3027 **Table S1** The analytical features of merit of methods based on different strategies of derivatization and extraction in the determination of phenols byGC

Derivatizing reagent/reaction scheme	Detection technique	Matrix (phenolics)	Extraction/derivatization method	Linear range/ (LOD; S/N = 3)	Ref.
None	GC-FID	Water (phenol, and chlorophenols)	SPME (polyaniline film electrodeposited on the platinum wire inserted into the needle of homemade syringe); 15 mL sample.	0.05-5 mg L ⁻¹ (0.69-3.7 μg L ⁻¹)	1
None	GC-MS	Human urine (chlorophenols)	In-syringe dispersive μ-SPE using carbon fibres; 10 mL sample.	1-1000 μg L ⁻¹ (0.1-0.9 μg L ⁻¹)	2
None	GC-MS	Bio-mass combustion smoke (alkyl- and methoxy-phenols)	HS-SPME (CW-DVB, 65 µm); 5 mL of total 100 mL impinger extract used for SPME.	2-30 μg L ⁻¹ (1.1-4.2 μg L ⁻¹)	3
Benzoyl chloride	GC-MS	Water (phenol, nitro- and chlorophenols)	Multi-valve SPE of benzoates (PS-DVB, 8 μm); 1 μL of 200 μL extract injected. Sample 80 mL.	0.1-100 μg L ⁻¹ (8-90 ng L ⁻¹)	4
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) $F_{3}O^{H}$ $F_{3}O^{H}$ $SiMe_{3}$ $SiMe_{3}$ G^{H} $SiMe_{3}$	GC-MS/MS	Human urine (chlorophenols)	SPE (PS-DVB, 100 mg); 2 mL aqueous sample; 1 μL of 50 μL extract injected.	0.1-32 μg L ⁻¹ (0.01-0.03 μg L ⁻¹)	5
Trimethylsilyl-N,N-dimethylcarbamate	GC-MS	Water (phenol, alkyl- and chlorophenols)	SPE (hypercrossed linked PS-DVB); 100 mL sample; 2.5 mL of extract concentrated to 1 mL, 10 μ L injected.	0.001-25 mg L ⁻¹ (0.05-100 ng L ⁻¹)	6

<i>tert</i> -Butyldimethylsilyl- <i>N</i> - methyltrifluoroacetamide $F_{3}O$ M_{e} $F_{3}O$ M_{e} M_{e} M_{e} M_{e} M_{e} M_{e}	GC-MS	Sewage influent and effluent (alkylphenols, parabens, phenylphenol, bisphenol)	SPE (Oasis MAX); 1 L sample; 1 µL of final 1 mL extract injected.	0.01-10 μg L ⁻¹ (0.01-0.1 μg L ⁻¹)	7
N, O-Bis(trimethylsilyl)acetamide	GC-MS	Water (chlorophenols)	SDME (2.5 μ L of hexyl acetate); in-syringe silvlation by drawing the 0.5 μ L of reagent into the same syringe, sealing by placing GC septum at needle tip, and heating; 3 mL sample; the whole mixture injected.	0.05-50 μg L ⁻¹ (4-61 ng L ⁻¹)	8
2,3,4,5,6-Pentafluorobenzyl bromide (PFBBr)	GC-ECD	Wastewater irrigated soil (pentachloro-phenol)	LLE (10 g soil extracted with 100 mL hexane and acetone, $1:1 \text{ v/v}$); extract concentrated to 1 mL, and 1 μ L injected.	5-1000 μg L ⁻¹ (0.4 μg L ⁻¹)	9

$ \begin{array}{c} & & & \\ & & & & \\ & & & & $					
Methyl iodide	GC-FID	Water (phenol, methyl-, chloro- and nitrophenols)	LLE (tetraalkylammonium bromide as phase transfer catalyst, and 1 mL of dichloromethane); 45 min reaction at 65°C; extract concentrated to 200 µL, and 2 µL injected.	250-760 μg L ⁻¹ (0.5-12 μg L ⁻¹)	10
Acetic anhydride	GC-ECD	Water (chlorophenols)	CSDFME; 10 mL aqueous sample; 0.5 µL of 11 µL extract injected.	0.01-300 μg L ⁻¹ (0.005-0.5 μg L ⁻¹)	11
Acetic anhydride	GC-ECD	Water (Chlorophenols)	Dispersive LLME; 5 mL aqueous sample; 0.5 μ L of 10 μ L extract injected.	0.02-400 μg L ⁻¹ (0.01-2 μg L ⁻¹)	12
Acetic anhydride	GC-ECD	Wine (chloro- and bromophenols)	Dispersive LLME (150 μ L of carbon tetrachloride in 1.3 mL of acetone, and reagent); 5 mL sample; 0.5 μ L of extract injected.	10-500 ng L ⁻¹ (2.2-5.3 ng L ⁻¹)	13
Acetic anhydride	GC-ECD	Water (chlorophenols)	Coupled HF-LLLME and SPME; 5 mL aqueous sample.	0.001-500 μg L ⁻¹ (0.4-120 ng L ⁻¹)	14
Acetic anhydride	GC-MS	Water (phenol, methyl- and chlorophenols)	HS-SPME (PDMS, 100 µm and CAR-PDMS, 74 µm); 5 mL sample.	0.08-13.3 μg L ⁻¹ (0.3-18 ng L ⁻¹)	15
Acetic anhydride	GC-MS	Water (bromo- and chlorophenols)	HS-SPME (CAR-PDMS, 75 µm); 10 mL sample.	0.1-10 μg L ⁻¹ (1.3-46 ng L ⁻¹)	16
Acetic anhydride	GC-ECD	Water (chlorophenols)	Coupled SPE (PS-DVB, 100 mg) and dispersive	0.001-20 μg L ⁻¹	17

LOD, limit of detection; SPME, solid-phase microextraction; HS-SPME, headspace solid-phase microextraction; CW-DVB, carbowax-divinylbenzene; SPE, solid-phase extraction; PS-DVB, polystyrene-divinylbenzene; SDME, single drop microextraction; LLE, liquid-liquid extraction; CSDFME, continuous sample drop flow microextraction; dispersive LLME, dispersive liquid-liquid microextraction; HF-LLLME, hollow fiber liquid-liquid microextraction; PDMS, polydimethylsiloxane; CAR-PDMS, carboxene-polydimethylsiloxane; DVB/CAR/PDMS, divinylbenzene/carboxene/polydimethylsiloxane.

References

- 1 H. Bagheri, A. Mir and E. Babanezhad, *Anal. Chim. Acta*, 2005, 532, 89-95.
- 2 M. T. Garcia-Valverde, R. Lucena, S. Cardenas and M. Valcarcel, J. Chromatogr. A, 2016, 1464, 42-49.

- 3 F. J. Conde, A. M. Afonso, V. Gonzalez and J. H. Ayala, *Anal. Bioanal. Chem.*, 2006, 385, 1162-1171.
- 4 S. Mishra, A. Jain and K. K. Verma, *Analyst*, 2001, 126, 1663-1668.
- 5 L. Schmidt and T. Goen, *Anal. Chim. Acta*, 2017, 965, 123-130.
- 6 A. Kovacs, M. Mortl and A. Kende, *Microchem. J.*, 2011, 99, 125-131.
- 7 H.-B. Lee, T. E. Peart and M. L. Svoboda, J. Chromatogr. A, 2005, 1094, 122-129.
- 8 M. Saraji and M. Bakhshi, J. Chromatogr. A, 2005, 1098, 30-36.
- 9 Y. Liu, B. Wen and X.-q. Shan, *Talanta*, 2006, 69, 1254-1259.
- 10 Y. C. Fiamegos, C. G. Nanos, G. A. Pilidis and C. D. Stalikas, J. Chromatogr. A, 2003, 983, 215-223.
- 11 M. Karimaei, K. Sharafi, M. Moradi, H. R. Ghaffari, H. Biglari, H. Arfaeinia and N. Fattahi, *Anal. Methods*, 2017, 9, 2865-2872.
- 12 N. Fattahi, Y. Assadi, M. R. M. Hosseini and E. Z. Jahromi, J. Chromatogr. A, 2007, 1157, 23-29.
- 13 C. Pizarro, C. Saenz-Gonzalez, N. Perez-del-Notario, J. M. Gozalez-Saiz, J. Chromatogr. A, 2010, 1217, 7630-7637.
- 14 M. Saraji and M. Ghani, J. Chromatogr. A, 2015, 1418, 45-53.
- 15 M. Llompart, M. Lourido, P. Landin, C. Garcia-Jares and R. Cela, J. Chromatogr. A, 2002, 963, 137-148.
- 16 M. Polo, M. Llompart, C. Gargia-Jares, G. Gomez-Noya, M.-H. Bollain and R. Cela, J. Chromatogr. A, 2006, 1124, 11-21.
- 17 N. Fattahi, S. Samadi, Y. Assadi and M. R. M. Hosseini, J. Chromatogr. A, 2007, 1169, 63-69.
- 18 G. Gao and H. K. Lee, J. Chromatogr. A, 2012, 1243, 14-22.

No.	Phenols	Methyl ethers	Electron ionization mass spectra of derivatives
1	Phenol	Anisole OMe	Abundance 108 8000 6000 65 78 4000 51 0 40 60 80 100 120 108 1093 m/z - >0 36 40 60 80 100 120
2	2-Cresol OH Me	2-Methylanisole	Abundance 122 8000 6000 2000 m/z50 107 120 140 Abundance 122 107 1
3	4-Cresol OH Me	4-Methylanisole OMe Me	Abundance 122 8000 - 6000 - 4000 - 51 - 60 80 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 8000 - 40 60 80 100 100 120 140
4	2,6-dimethylphenol OH Me Me	2,6-Dimethylanisole	Abundance 121 136 8000 4000 2000 200 40 60 80 100 120 140 160 Library spectrum 121 136 8000 4000 2000 77 91 105 105 91 105 91 105 91 105 91 105 91 105 100 120 140 160 200 200 400 100 120 140 160 100 105 105 105 105 105 105 10
5	2,5-dimethylphenol	2,5-Dimethylanisole OMe Me	Abundance 136 8000 4000 2000 51 6000 20 20 40 51 65 105 105 121 105 105 100 120 140 160 121 140 160 121 140 160 121 140 160 120 140 160 15 15 17 105 121 140 160 120 140 160 120 140 160 15 15 15 105 105 120 140 160 120 140 160 120 140 160 120 140 160 15 15 15 15 27 105 105 105 105 105 120 140 160 120 140 160 15 15 27 105 15 27 105 15 27 105 15 20 40 60 80 100 120 140 160
6	2,3-Dimethylphenol	2,3-Dimethylanisole	Abundance 121 136 8000 91 4000 51 0 20 40 60 80 100 120 140 160 8000 Library spectrum 12^{136} 91 91 121 136 91 91 91 91 91 91 91 91 91 91
7	3,4-Dimethylphenol	3,4-Dimethylanisole OMe Me Me	Abundance 121 136 8000 4000 2000 0 20 51 20 60 100 140 180 121^{136} 120 140 180 121^{136} 120000 120000 120000 120000 120000 120000 120000 1200000 12000000 12000000000000000000000000000000000000

Table S2. Structures of phenols and their methyl derivatives, and their recorded/library EI mass spectra

