Supporting Information for

A Nile Red-based Near-infrared Fluorescent Probe for Endogenous Hydrogen

Polysulfides in Living Cells

Kai-Bin Li,[#] Feng-Zao Chen,[#] Siqi Zhang, Wei Shi, De-Man Han^{*}, Chen Cai, Cai-Xia Chen

Department of Chemistry, Taizhou University, Jiaojiang, 318000, China

Contents list:

- S1. Additional Figures
- S2. Generation of reactive nitrogen and oxygen species (RNS / ROS)
- S3. Original spectral copy of new compounds
- S4. The procedure for the preparation of Na_2S_2 and Na_2S_4

S1. Additional Figures

Fig. S1. HR-MS of the product of KB1+Na₂S₂

Fig. S2. Fluorescence spectra of compound 1 (5 μ M) and KB1+Na₂S₂ (5 μ M)

Fig. S3. Cell viability of (a) MCF-7 and (b) Hela cells in the presence of **KB1** with indicated concentration determined by MTS

S2. Generation of reactive nitrogen and oxygen species (RNS / ROS)

ONOO⁻: The synthesis of peroxynitrite involved nitrosation of H_2O_2 at pH \ge 12.0 by isoamyl nitrite (CAS: 110-46-3).

NO: Nitric oxide was generated from SNP (Sodium Nitroferricyanide (III) Dihydrate, CAS: 13755-38-9).

CIO-: NaCIO was dissolved in deionized water.

H₂O₂: H₂O₂ was dissolved in deionized water.

•OH: Hydroxyl radicals were generated by the addition of Fe^{2+} and H_2O_2 in 10 mM HEPES buffer (pH 7.4).

¹**O**₂: ¹**O**₂ was generated by hydrogen peroxide/sodium hypochlorite system.

 $O_2^-: O_2^-$ was generated by xanthine and xanthine oxidase. Xanthine oxidase was added first. After xanthine oxidase was dissolved, xanthine was added and the mixtures were stirred at 25 °C for 1 h. S3. Original spectral copy of new compounds

HR-ESI-MS of KB1

S4. The procedure for the preparation of Na₂S₂ and Na₂S₄

$$Na_2S + (n-1)S = Na_2S_n$$

To a solution of sodium sulfide (0.78 g, 0.01 mmol) and sulfur (0.32 g, 0.01 mmol) in distilled water (100 mL), the mixture was refluxed for 1h, then 0.1 mol/L of Na_2S_2 solution was obtained. Na_2S_4 solution was obtained by using the same method with 3 equivalents of sulfur.