Support Information

Rapid and Sensitive Colorimetric Sensing of the Insecticide Pymetrozine Using Melamine-Modified Gold Nanoparticles

Jing-yan Kang,^{ab} Yu-jie Zhang,^b Xing Li,^{*ab} Chen Dong,^b Hong-yu Liu,^b Li-jing Miao,^b Paul J. Low,^c Zhi-xian Gao,^d Narayan S. Hosmane^a and Ai-guo Wu^{*a}

^a Key Laboratory of Magnetic Materials and Devices, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201, China
^b School of Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
^c School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
^d Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Health and Environmental Medicine, Tianjin 300050, China

*Corresponding Author

*E-mail: aiguo@nimte.ac.cn. Phone: +86 574 86685039. Fax: +86 574 86685163 *E-mail: lixing@nbu.edu.cn. Phone: +86 574-87600869 Fax: +86 574 87609987.

Table of concent

Characterization of materials

FigureS1. (a) The structure of pymetrozine; (b) The structure of melamine	5-2
Figure S2. The EDS of Au NPs and M-Au NPs	S-2
Optimized of experiment conditions	
Figure S3 Effect of different concentration of melamine for the detection of 0.1µM PYM with Au NPsS-3	
Figure S4. Effect of pH on the detection of 0.2 μ M PYM with M-Au NPs	S-3
Figure S5. Effect of reaction time on the detection of 0.2 μ M PYM with M-Au NPs	S-4
Figure S6. UV-Vis absorption spectra of (a) M-Au NPs and (b) M-Au NPs with $0.08\mu M$ PYM.S	S-4
Table S1. Comparison of various typical techniques for PYM analysis in solution	S-5

Characterization of materials

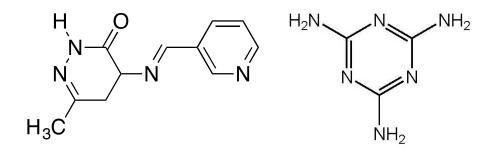


Figure S1. (a) The structure of pymetrozine; (b) the structure of melamine

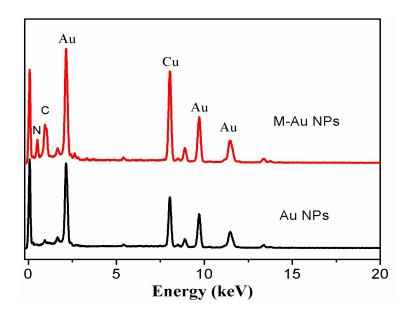
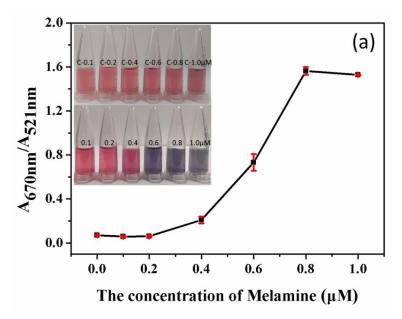
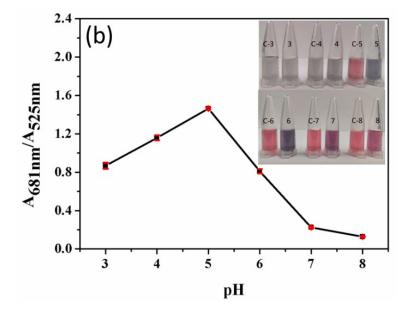




Figure S2. The EDS of Au NPs and M-Au NPs

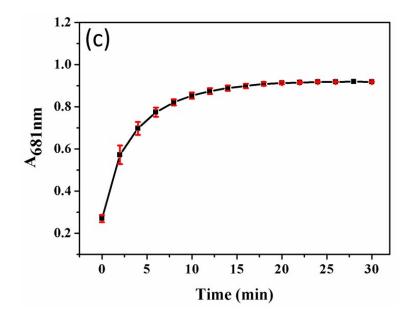

Optimized of experiment conditions

Figure S3. Effect of different concentration of melamine for the detection of 0.1μ M PYM with M-Au NPs (A_{670nm}: the absorbance of the new appeared peak of M-Au NPs dispersion with PYM and A_{521nm}: the absorbance of primary peak of M-Au NPs)

Figure S4. Effect of pH on the detection of 0.2 μ M PYM with M-Au NPs (A_{681nm} is the absorbance of the new appeared peak of M- Au NPs dispersion with PYM and A_{525nm} is the absorbance of primary peak of M-Au NPs)

Figure S5. Effect of reaction time on the detection of 0.2 μ M PYM with M-Au NPs at pH=5 (A_{681nm} absorbance: the new peak of M-Au NPs dispersion with PYM)

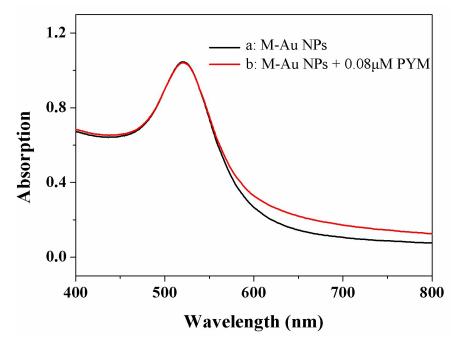


Figure S6. UV-Vis absorption spectra of (a) M-Au NPs and (b) M-Au NPs with $0.08 \mu M$ PYM

Method	LOD (Naked eyes / UV-Vis)	Selectivity	Linear range (nM)	Ref.
GC	/ 55nM		13.8-4600	7
Electrochemical	/80nM		100-5000	11
DPP	/148nM	Good	497-7350	13
HPLC	/92nM			29
Colorimetry	/46nM	Good	92-460	25
Colorimetry	1μM/	Good	4.6-368	26
Colorimetry	80nM/10nM	Good	10-1000	This work

Table S1. Comparison of various typical techniques for PYM analysis in solution