## INFRARED AND RAMAN SPECTROSCOPY OF AUTOMOTIVE PAINTS FOR FORENSIC IDENTIFICATION OF NATURAL WEATHERING

Andrey Giovanni Gomes de Oliveira<sup>1\*</sup>, Ewelina Wiercigroch<sup>2</sup>, Juliano de Andrade Gomes<sup>3</sup>, Kamilla Malek<sup>2\*</sup>

<sup>1</sup>Fundação de Peritos em Criminalística Ilaraine Acácio Arce, Rua das Figueiras, Lote 07, 71.906-750 Brasília, Brazil

<sup>2</sup>Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland <sup>3</sup>Instituto de Criminalística, Polícia Civil do Distrito Federal, Setor de Áreas Isoladas, bloco C, 70.610-907 Brasília, Brazil

This supplementary information contains a figure illustrating the natural environment where the impounded vehicles were weathered and the collection of the paint samples took place. It also shows a comparison of optical microphotograph cross sections of samples R1 and W1 depicting original and post-manufacture coatings. Tables describing the assignment of bands of chemical components in automotive paint by using Infrared and Raman

spectroscopies. Furthermore, NIR Raman imaging and average spectra recorded on the surface of W1 LD sample as well as a comparison between Vis Raman spectra collected from the R2 LD basecoat and primer surfacer are exhibited.

**S**1

| Band position (cm <sup>-1</sup> ) | Mode Assignment                               | Binder Component                |
|-----------------------------------|-----------------------------------------------|---------------------------------|
| 700                               | =C-H deformation of the aromatic ring         | Styrene <sup>33</sup>           |
| 760                               | Out-of-plane deformation of the CH            | Styrene <sup>33</sup>           |
| 815                               | Out-of-plane deformation of the triazine ring | Melamine <sup>33</sup>          |
| 848                               | Unknown                                       |                                 |
| 991                               | Unknown                                       |                                 |
| 1090–1050                         | C-C stretching                                | Urethane                        |
| 1170, 1160, 1150                  | C-O stretching of the ester groups            | Acrylic <sup>3, 13, 33</sup>    |
| 1218                              | Amide III – NH and CN vibrations              | Urethane <sup>36</sup>          |
| 1236                              | Amide III – NH and CH vibrations              | Urethane <sup>36</sup>          |
| 1455, 1375                        | CH bending of the $CH_2$ and $CH_3$ groups    | Acrylic <sup>3, 26</sup>        |
| 1460                              | Isocyanurate ring stretching                  | Urethane 33                     |
| 1495                              | Aromatic ring stretching vibrations           | Styrene <sup>26</sup>           |
| 1525, 1520                        | Amide II – NH bending and CN stretching       | Urethane <sup>22, 26</sup>      |
| 1550                              | In-plane deformation of the triazine ring     | Melamine <sup>33</sup>          |
| 1605                              | Amide I – band of primary urethane            | Urethane <sup>26</sup>          |
| 1690, 1685                        | Carbonyl C=O stretching                       | Urethane <sup>21</sup>          |
| 1730, 1725                        | Ester carbonyl C=O stretching                 | Acrylic <sup>4</sup>            |
| 1730                              | C=O Stretching of the urethane linkage        | Urethane <sup>22</sup>          |
| 3000–2800                         | Aliphatic CH stretching                       | Acrylic/ Urethane 4, 26         |
| 3380                              | OH and NH stretching                          | Acrylic/ Urethane <sup>20</sup> |

**TABLE S1.** Absorption bands in IR spectra characteristic for automotive binder components.

| Band position (cm <sup>-1</sup> ) | Binder Component  | W2           | R2           | <b>S1</b>    | S2                                    |
|-----------------------------------|-------------------|--------------|--------------|--------------|---------------------------------------|
| 700                               | Styrene           | 1            | Ļ            | 1            | Ļ                                     |
| 760                               | Styrene           | 1            | Ļ            | 1            | $\downarrow$                          |
| 850                               | unknown           |              | $\downarrow$ |              |                                       |
| 990                               | unknown           |              |              | $\downarrow$ |                                       |
| 1030                              | unknown           |              |              |              | $\downarrow$                          |
| 1090—1050                         | Polyurethane      | ↑            | Ļ            | Ļ            |                                       |
| 1170-1100                         | Acrylic           | $\downarrow$ | ↑            | Ļ            | $\downarrow$                          |
| 1220                              | Urethane          | Ļ            |              |              |                                       |
| 1240                              | Urethane          |              |              | $\downarrow$ |                                       |
| 1380                              | Acrylic           | $\downarrow$ | Ļ            | $\downarrow$ | $\downarrow$                          |
| 1460—1450                         | Acrylic, Urethane | Ļ            | Ļ            | -            | $\downarrow$                          |
| 1525                              | Urethane          | $\downarrow$ | ↑            | $\downarrow$ |                                       |
| 1575-1545                         | unknown           |              |              |              | ↑                                     |
| 1605                              | Urethane          |              | $\downarrow$ |              |                                       |
| 1640                              | Urethane          | $\downarrow$ | $\downarrow$ | $\downarrow$ | ↑                                     |
| 1690                              | Urethane          | $\downarrow$ |              | $\downarrow$ |                                       |
| 1725                              | Acrylic           | $\downarrow$ | _            | $\downarrow$ | $\downarrow$                          |
| 2855                              | Acrylic/ Urethane | 1            | Ļ            | 1            | ↑                                     |
| 2930–2920                         | Acrylic/ Urethane | 1            | Ļ            | ↑            | $\downarrow$                          |
| 2950                              | Acrylic/ Urethane |              |              |              | $\downarrow$                          |
| 3380                              | Acrylic/ Urethane | ↑            | Ļ            | _            | red-shift by ca. 100 cm <sup>-1</sup> |

**TABLE S2.** Changes in the IR profile of the clearcoats of the weathering vehicle MD samples in comparison to the LD samples;  $\uparrow$ : intensity increase,  $\downarrow$ : intensity decrease, -: no change.

| Rand position (cm <sup>-1</sup> ) | Pand accignment                                                                      | Binder/ Pigment                   |
|-----------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|
|                                   | Danu assignment                                                                      | Component                         |
| 609, 446, 238                     | Ti-O vibrations                                                                      | Rutile - PW6 <sup>5, 40, 41</sup> |
| 824, 340                          | Vibrations of CrO <sub>4</sub> <sup>-</sup> and MoO <sub>4</sub> <sup>-</sup> anions | Lead chromate                     |
|                                   |                                                                                      | molybdate - PR104 <sup>42</sup>   |
| 830–720                           | Ring deformation of benzene                                                          | Styrene <sup>5</sup>              |
| 900–850                           | Symmetric C–N–C stretching from                                                      | Urethane <sup>5</sup>             |
|                                   | secondary amines                                                                     |                                   |
| 975                               | Triazine ring breathing                                                              | Melamine <sup>5</sup>             |
| 1001                              | Trigonal ring breathing                                                              | Styrene <sup>5</sup>              |
| 1031                              | In-plane aromatic CH deformation                                                     | Styrene <sup>5</sup>              |
| 1190                              | C <sub>6</sub> H <sub>5</sub> –C stretching                                          | Styrene <sup>5</sup>              |
| 1305                              | CH <sub>2</sub> in-phase twisting                                                    | Acrylic                           |
| 1310–1175                         | CH <sub>2</sub> twisting and rocking vibrations                                      | Acrylic <sup>5</sup>              |
| 1449                              | CH <sub>3</sub> and CH <sub>2</sub> deformations                                     | Acrylic                           |
| 1602                              | Ring stretching                                                                      | Styrene <sup>5</sup>              |
| 1603, 1549, 1488, 1361,           | C.C.C.N. stratching and deformations                                                 | NA                                |
| 1243                              | C=C, C=N stretching and deformations                                                 | WIONOazo-PR170                    |
| 1730, 1725                        | Carbonyl C=O stretching                                                              | Acrylic <sup>5</sup>              |
| 2960–2940                         | C-H stretching                                                                       | Acrylic/Urethane 20               |
| 3060                              | Aromatic CH stretching                                                               | Styrene/Urethane <sup>5</sup>     |

**TABLE S3.** Raman bands characteristic for automotive binder and pigment components.

**FIGURE S1.** Outdoor area where the Civil Police of the Federal District (PCDF) keeps impounded vehicles in Brasília, Brazil.



**FIGURE S2.** Studied vehicles under natural weathering conditions at the Civil Police of the Brazilian Federal District: A) W1 right door, LD, a) W1 roof, MD, B) W2 left fender, LD, b) W2 front bumper, MD, C) R1 front bumper, LD, c) R1 back bumper, MD, D) R2 front bumper, LD, d) R2 back bumper, MD, E) S1 back bumper, LD, e) S1 hood, MD, F) S2 back bumper, LD, f) S2 right fender, MD. Red arrows indicate a site on the panels from where the paint chips were extracted. W (white), R (red), S (silver) denote colors of the vehicles while LD and MD indicate the degree of damage (less- and more-degraded vehicle paints, respectively).



**FIGURE S3.** Microphotography of cross-sections of the samples R1 and W1: (a) R1 back bumper, MD, (b) R1 front bumper, LD (c) W1 right door, LD, (d) W1 roof, MD. Left (a and c) and right (b and d) panels show original- and post- manufacture coating, respectively.



**FIGURE S4.** (a) Visual image of the surface of the sample W1 LD with labelled Raman mapping area (6.56 mm<sup>2</sup>), (b) UHCA false-color cluster map, (c) average NIR Raman spectra extracted from the cluster map in (b), the colors of spectra correspond to the colors of clusters in (b).



**FIGURE S5.** Single point Vis Raman spectra collected from the cross-section layers of R2 LD: (a) the basecoat (red layer). b, c) the primer surfacer (white layer).

