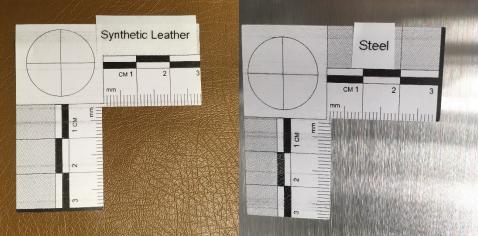
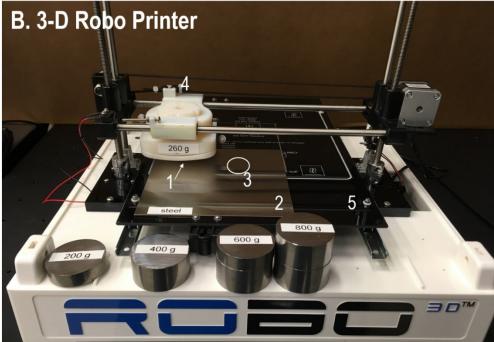
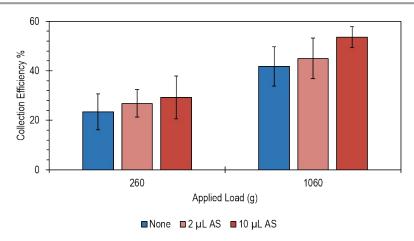

Supporting Information for: A New Wipe-Sampling Instrument for Measuring the Collection Efficiency of Trace Explosives Residues

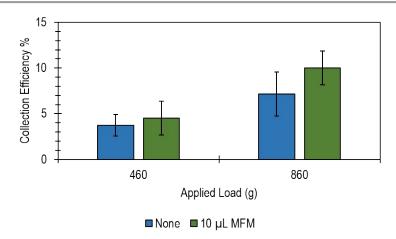
Elizabeth L. Robinson^{a*}, Edward Sisco^a, Matthew E. Staymates^a, and Jeffrey A. Lawrence^a

^aNational Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA

* Correspondence: elizabeth.robinson@nist.gov


Figure S1. Images of ABS plastic with industry standard textured hair-cell finish, ballistics nylon, synthetic leather, and steel test surfaces.



- 1. Wipe
- 4. Wipe holder
- 2. Test surface
- 5. Platform
- 3. Test particles
- 6. Restraining line

Figure S2. Wipe-sampling instruments: Image of the TL-slip/peel tester (A.) with wipe mount and synthetic leather test surface. Image of the Robo3D (B.) with wipe mount and steel test surface.

Figure S3. Comparison of collection efficiencies of RDX using Nomex® wipes and the Robo3D wipe-sampler for ABS plastic test surface conditions: artificial sebum not added (None), addition of 2 μ L of artificial sebum (2 μ L AS), addition of 10 μ L of artificial sebum (10 μ L AS). Uncertainties represent one standard deviation of the mean.

Figure S4. Comparison of collection efficiencies of RDX using Teflon wipes and the Robo3D wipe-sampler for ABS plastic test surface conditions: modified fingerprint mixture not added (None), addition of 10 μ L of modified fingerprint mixture (10 μ L MFM). Uncertainties represent one standard deviation of the mean.