Supporting Information

A New '*Turn-on*' PET-CHEF based fluorescent sensor for Al³⁺ and CN⁻ ions: Applications in real samples

Akul Sen Gupta, Kamaldeep Paul and Vijay Luxami*

School of Chemistry and Biochemistry, Thapar University, Patiala-147 004, INDIA Email: vluxami@thapar.edu; vjluxami@gmail.com

Table of Contents

S. No.	Contents			
1	¹ H NMR spectrum of probe 1	S2		
2	¹³ C NMR spectrum of probe 1	S2		
3	Mass spectrum (ESI-MS) of probe 1	S3		
4	Benesi-Hildebrand plot from absorption titration data of receptor with Al ³⁺	S4		
5	Plot of absorption intensity ratio between 405 and 350 nm (A ₄₀₅ / A ₃₅₀) vs $[Al^{3+}]$ ions of probe 1	S4		
6	Benesi-Hildebrand plot from emission titration data of receptor with Al ³⁺	S6		
7	Plot of emission intensity at 505 nm (F_{505}) vs [Al ³⁺] ions of probe 1	S6		
8	Interference of probe 1 with various metal ions in the presence of Al ³⁺	S 7		
9	Benesi-Hildebrand plot from emission titration data of receptor with CN^{-} in CH_3OH .	S7		
10	$\begin{array}{ c c c c c } \hline 0 & Plot of absorption intensity ratio between 400 and 350 nm (A_{400} / A_{350}) vs [CN^{-}] \\ & ions of probe 1 \end{array}$			
11	Benesi-Hildebrand plot from absorption titration data of receptor (20 μ M) with CN ⁻ .	S8		
12	Plot of emission intensity at 520 nm (F ₅₂₀) vs [CN ⁻] ions of probe 1	S9		
13	Interference of probe 1 with various anions in the presence of CN-	S9		
14	Jobs plot diagram of probe 1 with Al ³⁺	S10		
15	Detection limit of probe 1 for CN-	S10		
16	Detection limit of probe 1 for Al ³⁺	S11		
17	Al ³⁺ detection by the standard method.	S12		
18	Effect of Al^{3+} ions on absorption and emission spectrum of probe 1 (20 μ M, H ₂ O).	S13		

Figure S1: ¹H NMR spectrum of probe 1

Figure S2: ¹³C NMR spectrum of probe 1

Figure S3: Mass spectrum of probe 1

Calculations of binding constant

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(A-A_o) = 1/{K(A_{max}-A_o)[M^{x+}]^n} + 1/[A_{max}-A_o]$$

Here A_o is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added $[M^{x+}]_{max}$ and K is the association constant. The association constant (K) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[M^{x+}] and is found to be 1.78 X 10³M⁻¹ in case of case aluminium ions in methanol.

Figure S4: Benesi-Hildebrand plot from absorption titration data of receptor (20 μ M) with Al³⁺.

Figure S5. Plot of absorption intensity ratio between 405 and 350 nm (A_{405} / A_{350}) vs [Al³⁺] ions of probe 1 (20 μ M, CH₃OH)

By fluorescence method

The binding constant value of anions with receptor has been determined from the emission intensity data following the modified Benesi–Hildebrand equation,

 $1//\Delta I = 1//\Delta I \max + (1/K[C]) (1//\Delta I \max)$

Here $\Delta I = I - I_{min}$ and $\Delta I \max = I_{max} - I_{min}$, where I_{min} , I, and I_{max} are the emission intensities of receptor observed in the absence of anions, at an intermediate anion concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the anion concentration respectively. From the plot of [1 / (Imin -I)] against [C]-1 for receptor, the value of K has been determined from the slope. The association constant (*Ka*) as determined by fluorescence titration method for the receptor with cyanide ions in methanol is found to be 5.2 X 10^3 M^{-1} (error < 10%).

The detection limit was calculated on the basis of emission studies. The fluorescence intensity of probe 1 (20 μ M) was measured thrice and the standard deviation of blank measurements was calculated in order to determine the signal-to-noise ratio. The limit of detection was therefore calculated using the mathematical expression,

Detection limit = $3\sigma bi/m$

where σ bi is the standard deviation of blank measurements; m is the intensity slope v/s sample concentration.

Figure S7. Plot of emission intensity at 505 nm (F_{505}) vs [Al³⁺] ions of probe 1 (20 μ M, CH₃OH)

Figure S8. Blue bars represent selectivity of probe 1 (20 μ M) upon addition of different metal ions in MeOH and red bars shows the competitive selectivity of probe 1 in the presence of Al³⁺.

Figure S9: Benesi-Hildebrand plot from absorption titration data of receptor (20 μ M) with CNin CH₃OH.

Figure S10. Plot of absorption intensity ratio between 400 and 350 nm (A_{400} / A_{350}) vs [CN⁻] ions of probe 1 (20 μ M, CH₃OH)

Figure S11: Benesi-Hildebrand plot from emission titration data of receptor (20 μ M) with CN⁻ in CH₃OH.

Figure S12. Plot of emission intensity at 520 nm (F_{520}) vs [CN⁻] ions of probe 1 (20 μ M, CH₃OH)

Figure S13. Blue bars represent selectivity of probe 1 (20 μ M) upon addition of different anions in CH₃OH and red bars shows the competitive selectivity of probe 1 in the presence of CN⁻.

Figure S15: linear dependence of emission for probe 1 with concentration of CN^{-} ions from 2-240 μ M.

Figure S16: linear dependence of emission for probe 1 with concentration of Al^{3+} ions from 95-220 μ M for Al^{3+} ions

Sophisticated Analytical Instruments Laboratories

Society (Registered as Society with Registrar of Firms & Societies, Punjab, Chandigarh) Thapar Technology Campus, Bhadson Road, Patiala-147 004 (India)

TEST REPORT

Test Report No.: NN/15-16/199		02.01.2016			
Service No. NN/15-16/199 (01)		Sample submitted by Mr. Akul dtd 30.12.2015			
nd address:					
ry & Biochemistry					
Patiala					
Luxmi					
	Liquid Sample (Liquid Sample (Research Sample)			
ple received	0.K.	0.K.			
identification No. (if any)					
samples	One	One			
(if any)					
	Aluminium	Aluminium			
on/Method followed	AAS	AAS			
ting this report (if any)	'	'			
ipt of Job	Date of Completion of	f Job Total Number of Pages			
015	02.01.2016	1			
	NN/15-16/199 NN/15-16/199 (01) ad address: ry & Biochemistry Patiala / Luxmi nple received identification No. (if any) samples e (if any) on/Method followed ting this report (if any) ipt of Job 015	NN/15-16/199 Date: NN/15-16/199 (01) Customer's Ref. address: Customer's Ref. ry & Biochemistry Patiala / Luxmi Liquid Sample pple received O.K. identification No. (if any) samples One 2 (if any) and for the report (if any) ing this report (if any) ipt of Job Date of Completion on 015 02.01.2016			

S. No. Parameter Test Method Unit Results 1 Aluminium as Al Atomic Absorption Spectrometer mg/I 8.74			TEST RESULTS		
1 Aluminium as Al Atomic Absorption Spectrometer mg/l 8.74	S. No.	Parameter	Test Method	Unit	Results
	1	Aluminium as Al	Atomic Absorption Spectrometer	mg/l	8.74

.....end of report.....

Phone: +91(175) 2393552 Fax : +91(175) 2393548 Email: office.sailabs@thapar.edu, info@sailabs.org URL: www.sailabs.org

