Electronic Supporting Information

A "turn-on" fluorescence sensor for ascorbic acid based on graphene quantum

dots via fluorescence resonance energy transfer

Yue Gao^a[†], Xiaolu Yan^a[†], Meng Li^a, Han Gao^a, Jing Sun^b, Shuyun Zhu^{a,b*},

Shuang Han, ^c Li-Na Jia ^a, Xian-En Zhao ^{a,b*}, Hua Wang ^{a*}

a' Institute of Medicine and Materials Applied Technologies, College of Chemistry and

Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province,

273165, China.

E-mail: <u>xianenzhao@163.com</u> (X. Zhao); <u>shuyunzhu1981@163.com</u> (S. Zhu); huawangqfnu@126.com (H. Wang).

[†] The authors contributed equally to this work.

^b Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest nstitute of Plateau Biology, Chinese Academy of Sciences, Xining City, Qinghai Province, 810001, Qinghai, China.

^c College of Applied Chemistry, Shenyang University of Chemical Technology,
 Shenyang 110142, China.

Fig. S1 Spectral overlap: absorption spectrum of the solution of 14.4 mM SQA and 480 μ M FeCl₃ after incubation for 5 min in 10 mM PBS of pH 6.5 (red) and emission spectrum of 10 μ g/mL GQDs in 10 mM PBS of pH 6.5 (blue).

Fig. S2 Zeta potential of GQDs (A), and SQA-iron(III) (B) in10 mM PBS of pH 6.5.

Fig. S3 Absorption spectrum of SQA-iron(III) (a) and SQA-iron(II) (b) in 10 mM PBS of pH 6.5. [SQA] = 14.4 mM; [FeCl₃] = 480 μ M; [FeCl₂] = 480 μ M

Fig. S4 The influence of pH on the fluorescence intensity of GQDs.

Sample	Amount	Added (µM)	Detected (µM)	Recovery (%)	RSD (%)
	(mg/100 mL)				
orange juice	14.8	10.0	10.4	104	1.98
		40.0	38.68	96.7	2.65
peach juice	5.8	10.0	9.48	94.8	1.69
		40.0	37.5	93.75	3.45

 Table S1 Analytical results of AA in commercial fruit juices (n=5)

 Table S2 Analytical results of AA in vitamin C tablet (n=5)

Sample no.	Amount (µM)	Added (µM)	Detected (µM)	Recovery (%)	RSD (%)
1	5.0	2.0	1.96	98	2.32
2	5.0	5.0	4.89	97.8	1.69
3	5.0	25.0	23.8	95.2	3.11