Electronic Supporting Information

A"turn-on" fluorescence sensor for ascorbic acid based on graphene quantum

dots via fluorescence resonance energy transfer

Yue Gao ${ }^{\mathrm{a}} \dagger$, Xiaolu Yan ${ }^{\mathrm{a}} \uparrow$, Meng Li ${ }^{\text {a }}$, Han Gao ${ }^{\mathrm{a}}$, Jing Sun ${ }^{\mathrm{b}}$, Shuyun Zhu ${ }^{\mathrm{a}, \mathrm{b} * \text {, }}$ Shuang Han, ${ }^{\text {c }}$ Li-Na Jia ${ }^{\text {a }}$, Xian-En Zhao ${ }^{\text {a,b* }}$, Hua Wang ${ }^{\text {a* }}$
${ }^{\text {a }}$ Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, China.

E-mail: xianenzhao@163.com (X. Zhao); shuyunzhu1981@163.com (S. Zhu); huawangqfnu@126.com (H. Wang).
\dagger The authors contributed equally to this work.
${ }^{\mathrm{b}}$ Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest nstitute of Plateau Biology, Chinese Academy of Sciences, Xining City, Qinghai Province, 810001, Qinghai, China
c College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.

Fig. S1 Spectral overlap: absorption spectrum of the solution of 14.4 mM SQA and 480 $\mu \mathrm{M} \mathrm{FeCl} 3$ after incubation for 5 min in 10 mM PBS of pH 6.5 (red) and emission spectrum of $10 \mu \mathrm{~g} / \mathrm{mL}$ GQDs in 10 mM PBS of pH 6.5 (blue).

Fig. S2 Zeta potential of GQDs (A), and SQA-iron(III) (B) in10 mM PBS of pH 6.5.

Fig. S3 Absorption spectrum of SQA-iron(III) (a) and SQA-iron(II) (b) in 10 mM PBS of $\mathrm{pH} 6.5 .[\mathrm{SQA}]=14.4 \mathrm{mM} ;\left[\mathrm{FeCl}_{3}\right]=480 \mu \mathrm{M} ;\left[\mathrm{FeCl}_{2}\right]=480 \mu \mathrm{M}$

Fig. S4 The influence of pH on the fluorescence intensity of GQDs.

Table S1 Analytical results of AA in commercial fruit juices ($\mathrm{n}=5$)

Sample	Amount				
$(\mathrm{mg} / 100 \mathrm{~mL})$	Added ($\mu \mathrm{M})$	Detected $(\mu \mathrm{M})$	Recovery (\%)	RSD (\%)	
orange juice	14.8	10.0	10.4	104	1.98
		40.0	38.68	96.7	2.65
peach juice	5.8	10.0	9.48	94.8	1.69
		40.0	37.5	93.75	3.45

Table S2 Analytical results of AA in vitamin C tablet ($\mathrm{n}=5$)

Sample no.	Amount $(\mu \mathrm{M})$	Added ($\mu \mathrm{M})$	Detected $(\mu \mathrm{M})$	Recovery (\%)	$\operatorname{RSD}(\%)$
1	5.0	2.0	1.96	98	2.32
2	5.0	5.0	4.89	97.8	1.69
3	5.0	25.0	23.8	95.2	3.11

