Supporting Information

Antibiotic gold: Tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility

Parvesh Wadhwani^{1,†}, Nico Heidenreich^{2,‡}, Benjamin Podeyn², Jochen Bürck¹, and Anne S. Ulrich^{1,2*}

Karlsruhe Institute of Technology (KIT),¹Institute of Biological Interfaces (IBG-2), P.O.B. 3640, D-76021 Karlsruhe, Germany, KIT, ²Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany.

peptide	<i>M. luteus</i> DSM 1790	<i>B. subtilis</i> DSM 346
	μg/ml	μg/ml
PGLa wt	32	4
xPGLa	64	32
MSI-103 wt	4	8
xMSI-103	8	4
MAP wt	8	2
xMAP	32	16
BP100 wt	8	4
xBP100	16	8
TP10 wt	8	4
xTP10	32	8

Table S1: Antimicrobial activity of the peptides with and without CG5 spacer.

 $x = CG_5$ (the slight loss of activity is regained upon binding of the peptides to the gold nanoparticles, see Figure 4)

Table S2: DLS data showing the size range for PFNPs

PFNP	size [nm]
AuNP-PGLa	5-7
AuNP-MAP	3-8
AuNP-MSI-103	5-7

Figure S1: TEM image analysis show a narrow size distribution of the functionalized gold nanoparticles, with 80-99 % of population distributed between 4-9 nm.

Figure S2: CD spectra of free x-peptides. In aqueous buffers free x-peptides are largely disordered with exception of TP10 and MAP (A) where as in a membrane-mimicking environment in the presence of lipid vesicles composed of DMPC and DMPG they show a distinct α -helical signature with minima at 208 and 222 nm (B).

Figure S3: CD spectra of native peptides (A), free x-peptides (B) and the peptides bound to gold nanoparticles (C) in the presence of the helix-promoting solvent 2,2,2-trifluoroethanol (TFE, mixed 1:1 with phosphate buffer), all peptides show that they can fold into their characteristic α -helical form necessary for the antimicrobial action.

Figure S4: Overlapping LC-MS chromatograms showing the degradation of free peptides (black traces either without trypsin or t = 0 min). The red curves show almost completely degraded peptides after 30 minutes of incubation with trypsin.

PGLa

m⁺/z=1970 g/mol (GMASKAGAIAGKIAKVALKAL) m⁺/z=1517 (1495+Na⁺) g/mol (AGAIAGKIAKVALKAL)

MSI-103 m⁺/z=2064 g/mol (KIAGKIAKIAGKIAKIAGKIA) m⁺/z=1510 g/mol (KIAGKIAKIAGKIAK) m⁺/z=1254 g/mol (IAGKIAKIAGKIA) m⁺/z=1198 g/mol (KIAGKIAKIAGK) m⁺/z=885 g/mol (IAKIAGKIA)

MAP m⁺/z=1878 g/mol (KLALKLALKALKAALKLA) m⁺/z=1694 g/mol (KLALKLALKALKAALK) m⁺/z=1324 g/mol (LALKALKAALKLA)

BP100 m⁺/z=1420 g/mol (KKLFKKILKYL) m⁺/z=776 g/mol (KILKYL) m⁺/z=648 g/mol (ILKYL)

TP10 m⁺/z=2183 g/mol (AGYLLGKINLKALAALAKKIL) m⁺/z=1957 g/mol (AGYLLGKINLKALAALAKK) m⁺/z=1829 g/mol (AGYLLGKINLKALAALAK) m⁺/z=1190 g/mol (AGYLLGKINLK)

Figure S5: Sequences of some of the identified peptide fragments (shown in red) that correspond to the molar masses observed in LC-MS (Figure S7), obtained after trypsin degradation of the parent peptides (shown in black).

Figure S6: Overlapping LC-MS chromatograms showing that there is no degradation of the peptides when coupled to the PFNP: before (black lines) and after 24 h of incubation with trypsin (red lines).

Figure S7. Decline in antimicrobial action (seen as increase in MIC value) as a function of trypsin incubation time (A= 0 min, B = 2 h, C=6 h and D=24 h) investigated on five free peptides (blue bars, left) and on PFNP (red bars on right). Free peptides are fully inactive within 2-6 h as seen by higher bars (blue) indicating loss of activity whereas PFNP retain their antimicrobial action even up to 24 h and show only slight decline in antimicrobial action. Each panel shows MIC values (μ g/ml) for *E. coli* DSM 1103.

Figure S8. Decline in antimicrobial action (seen as increase in MIC value) as a function of trypsin incubation time (A= 0 min, B = 2 h, C=6 h and D=24 h) investigated on five free peptides (blue bars, left) and on PFNP (red bars on right). Free peptides are fully inactive within 2-6 h as seen by higher bars (blue) indicating loss of activity whereas PFNP (with an exception of BP100) retain their antimicrobial action even up to 24 h and show only slight decline in antimicrobial action. Each panel shows MIC values (μ g/ml) for *M. luteus* DSM 1790.

Figure S9. Decline in antimicrobial action (seen as increase in MIC value) as a function of trypsin incubation time (A= 0 min, B = 2 h, C=6 h and D=24 h) investigated on five free peptides (blue bars, left) and on PFNP (red bars on right). Free peptides are fully inactive within 2-6 h as seen by higher bars (blue) indicating loss of activity whereas PFNP retain their antimicrobial action even up to 24 h and show only slight decline in antimicrobial action. Each panel shows MIC values (μ g/ml) for *S. aureus* DSM 1104.