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Materials.  
 
6’-sialyllactose and 3’sialyllactose glycan were obtained from Carbosynth (San Diego, CA). 
Unless otherwise stated, all other chemicals were purchased from Sigma Aldrich. Purchased 
starting materials were used as received unless otherwise indicated. Size exclusion 
chromatography was performed on a Hitachi Chromaster system equipped with an RI detector 
and a 5 µm, mixed bed, 7.8 mm I.D. x 30 cm TSKgel column (Tosoh Bioscience). Polymers 
were analyzed using an isocratic method: 0.7 mL/min in DMF (0.2% w/v LiBr, 70 oC). 
AlexaFluor 488-C5-malelimide was purchased from Molecular Probes (Cat # A10254). DSPE-
PEG(2000)-DBCO was purchased from Avanti Lipids (Cat # 880229). PD-10 columns were 
purchased from GE Healthcare Life Sciences (Cat. # 17085101). Quick Spin Columns for 
radiolabeled DNA purification were purchased from Roche Diagnostics (Cat. # 11273913001).  
 
 
Synthesis of 6’-sialyllactose-azide triethylammonium salt (1).  
 
Installation of the reducing-end azide was achieved by using similar methods previously 
reported. 1 , 2  In 1 mL of 4:1 D2O:CH3CN, 6’-sialyllactose (28.4 mg, 0.0433 mmol) and 
triethylamine (30 µL, 0.2116 mmol) were mixed and stirred at 0 oC for 5 minutes. Freshly 
recrystallized ADMP (2-azido-1,3-dimethylimidazolinium hexafluorophosphate; 37 mg, 0.1300 
mmol; previously synthesized as previously described3) was added to the stirred solution at 0 oC 
and allowed to react for 3h. NMR of the crude mixture after 3h showed loss of anomeric peaks 
from 6’-sialyllactose (65% conversion). The reaction mixture was then diluted with 4 mL of 
water containing 0.1% trifluoroacetic acid (TFA) and a 1.8 mL aliquot was purified by 
semipreparative HPLC (column, Jupiter Proteo C12, ϕ10 x 250 mm; eluent = 5:100:0.1 
CH3CN:H2O:TFA; flowrate = 4 mL/min; column oven, 27 oC; detection, UV (214 nm). The 
collected fractions were pooled and lyophilized to yield clear colorless crystals (5.54 mg per 
aliquot). 
 

(1) 6’-sialyllactose-azide triethylammonium salt – 
1H NMR (500 MHz, D2O); δ (ppm) 5.34 (s, 1H) 
4.67 (d, J = 7.88, 1H), 4.40 (d, J = 7.88 Hz, 1H), 
4.04 (d, J = 7.88 Hz, 1H), 3.92 - 3.44 (m, 16H), 
3.27 (t, J = 8.95 Hz, 1H), 3.13 (q, J = 7.30 Hz, 6H), 
2.68 - 2.61 (m, 1H), 1.96 (s, 3H), 1.77 - 1.63 (m, 
1H), 1.21 (t, J = 7.40 Hz, 9H). Mass Spectrometry 
(ESI-MS) calculated for C29H52N5O18 [M-Et3N]1-, 

m/z 657.21, found [M-Et3N]1-, m/z 658.31; [M+H-Et3N-N3]1-, m/z 615.36. 
 
 
 
 
 
 
 
 

(1) 
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Figure S1. 1H NMR of 6’-sialyllactose azide (1). 
 

 
 
Figure S2. 13C NMR of 6’-sialyllactose azide (1). 
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Figure S3. ESI-MS of 6’-sialyllactose azide (1). 

 

 

 

 

Scheme 1. Overview of 3’sialyllactose glycopolymer (2) synthesis.  
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Synthesis of 3’-sialyllactose glycopolymer (2) from monomer (2a).  

RAFT polymerization. The RAFT polymerization of this Boc-protected N-
methylaminooxypropylacrylamide (2a) monomer has previously been described.4 A Schlenk 
flask equipped with a magnetic stir bar was charged with an azide-terminated chain transfer 
agent (2a, 38.58 mg, 80.9 µmol, 0.07 mol% with respect to 2a), followed by the radical initiator 
AIBN (11.25 mg. 68.5 µmol, 0.06 mol% with respect to 2a), and the tert-butyl (3-
acrylamidopropoxy)methyl carbamate monomer (2a; 296 mg, 1.15 mmol, delivered as 420 µL of 
a 360 mM solution in anhydrous dioxane), and anhydrous dioxane (172 mg). After degassing 
with six free-pump-thaw cycles, the reaction was allowed to proceed at 65 °C for seven hours. 
The reaction was quenched by submerging the flask in a dry ice-acetone bath. The mixture was 
then diluted in ether, and precipitated three times in hexanes. The resulting residue was 
concentrated in CHCl3 and dried under high-vacuum to yield polymer (2c; 184 mg, 62.2%). 1H 
NMR (CDCl3, 300 MHz): δ (ppm): 3.90-3.65 (bs, 2H), 3.35-2.80 (bm, 5H), 1.80-1.05 (bm, 16H). 
GPC (DMF, 0.2% LiBr): Mw = 6824, Mn = 6010, Đ = 1.136, DP (n) = 22.  
 
 
 
Figure. S4 1H NMR analysis of polymer backbone 2c.  
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End-deprotection and fluorophore labeling. Polymer 2c (9.38 mg) end-deprotection was 
achieved by reaction with n-butylamine in THF (20 mM, 0.5 mL) for 2 hours at 0 °C. Following 
dilution in ether and precipitation with excess hexanes (3x), the end-deprotected polymer (2d) 
was isolated as a white solid (7.99 mg, 81.3%). 1H NMR (CDCl3, 300mHz) δ (ppm): 3.90-3.65 
(bs, 2H), 3.35-2.80 (bm, 5H), 1.80-1.05 (bm, 16H). GPC (DMF, 0.2% LiBr): Mw = 6826, Mn = 
6030, Đ = 1.132, DP ≈ 22. UV–Vis 310 nm (CH2Cl2, 100 µM) = 0.075. The isolated material 
(7.99 mg) was then reacted with an AlexaFluor 488 C5-maleimide/DMF solution (1.1 eq; 2 mM, 
694 µL) overnight at room temperature.  The resulting material was diluted in ether, precipitated 
in excess hexanes (3x), dand ried under high-vacuum to yield the AlexaFluor488-labeled 
polymer (2e; 6.63 mg, 82.9%).  
 
Fig. S5. GPC analysis of polymer backbone (2c; solid) and end-deprotected polymer (2d; 
dotted). A higher molecular weight species is observed in 2d (dotted) due to spontaneous 
oxidation of the free thiols of the polymer to form disulfide bridges.  

 
 
Fig. S6. UV-Vis analysis of polymer backbone (2c; solid) and end-deprotected polymer (2d; 
dotted). The loss of the peak at 310 nm for 2d indicates removal of the trithiocarbonate 
protecting group.  
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Figure S7. 1H NMR analysis of end-deprotected polymer backbone 2d.  

 

 
Boc deprotection and glycan ligation. The AlexaFluor488-labeled polymer backbone 2e (6.63 
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Figure S8. 1H NMR analysis of Boc-deprotected polymer (2f). 

 
 
 
Figure S9. 1H NMR analysis of 3’-sialyllactose azide glycopolymer (2). 
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Synthesis and characterization of lipid conjugates.  
 
6’-sialyllactose-azide (1) or 3’-sialyllactose glycopolymer-azide (2) were reacted with 1.1 eq. of 
DSPE-PEG(2000)-DBCO (3, 10 mM) in a 10% d6-DMSO/D2O solution overnight at RT. The 
resulting crude mixture was used directly for experiments.  
 
Scheme 2. Synthesis of glycolipid and glycopolymer conjugates (4 and 5). 
 

 
 
 
Fig. S10. 1H NMR of 6’-sialyllactose glycolipid conjugate (4). 
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Figure S11. 1H NMR of glycopolymer lipid conjugate (5).  
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Biological materials and methods. CHO-Lec2 cells (originally named Pro-5WgaRII6A) were 
obtained from ATCC (Cat # CRL-1736). CHO-Lec2s were cultured in MEM α (no nucleosides; 
Gibco Cat# 12561056) + 10% FBS (Origin: Australia; Life Technologies 1009133, lot 1647565). 
CHO-Lec2s were cultured as adherent cells on tissue-culture treated plastic dishes, and passaged 
every two days 1:10, by trypsinization with 0.05% Trypsin-EDTA (Gibco Cat # 25300120). The 
following conjugates were obtained commercially: biotinylated Maackia amurensis lectin II 
(bMALII, Cat # B-1265, 1 mg/mL) from Vector Labs (Burlingame, CA); Dylight649 conjugated 
Sambucus nigra lectin (Dy649-SNA, Cat # Dy649-6802-1) and biotinylated Sambucus nigra 
lectin (bSNA, Cat # B-1305, 1 mg/mL) were purchased from EY Labs (San Mateo, CA); Cy5 
conjugated streptavidin (Cy5-Strep, Cat # SA1011) from Molecular Probes (Grand Island, NY). 
 
Cellular remodeling with 6’-SL glycolipid or 3’-SL glycopolymer. CHO-Lec2 cells were 
seeded to confluency 24 hours prior to incubation on tissue-culture treated 24-well plates. Next 
day, cells were washed once with DPBS (-Ca, -Mg), and incubated with desired concentrations 
of the material in MEMα for 1 hour at 37 °C, 5% CO2. Cells were visually checked for general 
health after incubation with the polymers by microscopy. No significant effects on cellular 
morphology were observed up to 1 mM final concentrations of either material. The cells were 
then washed twice with DPBS, trypsinized for 3-5 minutes to detach adherent cells, neutralized 
with an equal volume of MEMα + 10%FBS, and harvested into 1.5 mL eppendorf tubes. Cell 
suspensions were then pelleted (300 xg, 4 min, RT), washed once with DPBS, and fixed (1% 
PFAPBS) for 30-60 minutes at 4°C. After two sequential pelleting and washing steps, the cell 
suspensions were then stained for sialic acids with bMALII (1:100; 10 µg/mL) or Dy649 (1:100; 
5 µg/mL) in 1% BSA/DPBS (+Ca, + Mg) overnight at 4°C, with gentle agitation. bMAL 
samples were washed and pelleted twice prior to labeling with Cy5-Streptavidin (1:500) in 1% 
BSA/DPBS (+Ca, + Mg) for an additional hour at 4 °C. Samples were further washed and 
pelleted twice prior to flow cytometry analysis. Graphs were generated using GraphPad Prism (v 
6.0). Bar graphs and XY-graphs are depicted as means + SD of duplicate wells.  
 
Flow cytometry. CHO-Lec2 or CHO-K1 (WT) cells were dissociated as before, and analyzed on 
a BD Accuri C6 flow cytometer. During collection, cells were gated using a FSC-H vs. SSC-H 
scatter plot, and 10, 000 cells in the relevant gate were collected per sample. FlowJo (v. 10) was 
then used to analyze the results.  
 
Fluorescence microscopy. All imaging and processing was performed with a Zeiss 
AxioVert.A1 epifluorescence microscope and ZEN software, respectively. For visualizing 
polymer incorporation via the AlexaFluor488 fluorophore, cells in 24-well plates were fixed in 
4% PFA/PBS for 10 mins at RT, washed twice with DPBS, and imaged directly in DPBS.  To 
visualize SNA staining, cells were similarly fixed, and were then incubated with bSNA (1:25; 40 
µg/mL) in 1% BSA/DPBS (+Ca, +Mg) overnight at 4°C, with gentle agitation. After washing 
twice, cells were further incubated in Cy5-Streptavidin (1:400) in 1% BSA/DPBS (+Ca, + Mg) 
for an additional hour at RT. Cells were imaged directly in DPBS after two additional washes.  
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Figure. S12. Comparison of CHO-K1 (WT) and CHO-Lec2 sialic acid content. CHO-Lec2 
mutants display significantly less α(2-6) and α(2-3) sialic acids, as indicated by reduced SNA 
and MALII lectin staining, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S13. SNA staining (red) of CHO-Lec2 cells remodeled with or without increasing 
concentrations of (4), compared to CHO-K1 (wild-type) cells. Scale bar: 50 µm.  
 

 
 
Figure S14. AlexaFluor488 polymer fluorescence of CHO-Lec2 cells remodeled with increasing 
concentrations of (5). Scale bar: 50 µm. 
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Figure S15. AlexaFluor488 polymer fluorescence to evaluate nonspecific binding of azido-
polymer 2 versus incorporation of DSPE-terminated polymer 5. Left: fluorescence microscopy, 
scale bar: 50 µm. Right: Flow cytometry analysis. 
 

 
 
 
Figure S16. AlexaFluor488 polymer fluorescence of CHO-Lec2 cells resulting from the 
incubation of AlexaFluor488-labeled 3’-sialyllactose polymer 5 mixed with 6’-sialyllactose 
glycolipid 4. Polymer fluorescence 5 still responds in a dose-dependent manner, even when 
mixed with 4.  
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