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Text S1. Synthesis of tri-PCG 

   We synthesized PCGA-b-PEG-b-PCGA triblock copolymer (tri-PCG) as a thermo-

gelling polymer according to the method reported previouslyS1-3). PCGA-b-PEG-b-PCGA 

triblock copolymers were synthesized by ring-opening copolymerization of CL and GL 

in the presence of PEG1500 as a macroinitiator and Sn(Oct)2 as a catalyst at 160°C for 12 

h. Typically, PEG1500 (16.0 g, 10.4 mmol) in 100 ml flask was dried under vacuum at 

140°C for 3 h. After cooling to r.t., CL (34.4 g, 302 mmol), GL (6.04 g, 52.1 mmol) and 

Sn(Oct)2 (151 mg, 372 µmol) [molar ratio of CL to GL (CL/GL) was 5.8] were added to 

the flask and dried under vaccum at r.t. for 12 h. Polymerization was then carried out at 

160°C for 12 h, the product was purified by reprecipitation using chloroform (100 ml) as 

a good solvent and diethylether (1000 ml) as a poor solvent to give white solid of tri-PCG 

(tri-PCG-1). Similar procedures were carried out by changing feeding ratios of 

CL/GL/PEG to give tri-PCG-1 and tri-PCG-2 with different chain length and CL/GA 

ratios. Mn and the average degrees of polymerization for CL and GA units in a PCGA 

segment were estimated by 1H-NMR (solvent: CDCl3). Mw and the polydipersity index 

(Mw/Mn) were estimated by SEC. Average continuous sequence lengths of caproyl units 

and glycolyl units (Lc and Lg) in a PCGA segment were also estimated from 1H-NMR 

spectra according to the literature S1-3). The results are summarized in Table S1.  

 
References for supporting information 
S1) P. Dobrzynski, S. Li, J. Kasperczyk, M. Bero, F. Gasc, M. Vert, Structure-Property 
Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide 
and ε-Caprolactone. Part 1. Synthesis and Characterization. Biomacromolecules 6 
(2005) 483-488. 
S2) J. W. Pack, S. H. Kim, I-W. Cho, S. Y. Park, Y. H. Kim, Microstructure Analysis and 
Thermal Property of Copolymers Made of Glycolide and ε-Caprolactone by Stannous 
Octoate. J. Polym. Sci. A. Polym. Chem. 40 (2002) 544-554. 
S3)Y. Yoshida, A. Takahashi, A. Kuzuya, Y. Ohya, Instant preparation of a 
biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-
gel transition, Polym. J. 46 (2014) 632-635. 
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Scheme S1. Synthesis of PCGA-b-PEG-b-PCGA triblock copolymer (tri-PCG). 
 
 
Table S1. Characterization of PCGA-b-PEG-b-PCGA triblock copolymers (tri-PCGs) 

Code 
DP of 
CL a) 

DP of 
GA b) 

CL/GA c) LC 
d) LG 

d) Mn (Da) f) Mw/Mn 
g) 

tri-PCG-1 14 4.2 3.4 3.6 1.1 5,300 1.4 
tri-PCG-2 9.4 2.6 3.7 3.8 1.0 4,000 1.4 

a) Degree of polymerization of e-caprolactone unit in a PCGA segment calculated 
from the methylene peaks in 1H-NMR. 

b) Degree of polymerization of glycolic acid unit in a PCGA segment calculated by 
1H-NMR. 

c) Molar ratio of CL/GA in a PCGA segment estimated by 1H-NMR. 
d) Average continuous sequence lengths of caproyl units and glycolyl units, Lc and Lg, 

were calculated by the following equations (ref. S1-S2) using data in 1H-NMR. 
e) Estimated by a differential scanning calorimeter. 
f) Estimated by 1H-NMR (solvent: CDCl3). 
g) Estimated by size-exclusion chromatography (eluent: DMF, standard: PEG). 
 
 
Table S2. Characterization of tri-PCG-Acryl 
Code Mn (Da) b) Mw (Da) c) Mw/Mn c) Degree of substitution (%) d) 
Tri-PCG-Acryl 4,100 4,200 1.3 92 

a) Number-average molecular weight estimated from 1H-NMR spectra. 
b) Estimated by size-exclusion chromatography (eluent: DMF, standard: PEG). 
c) Degree of substitution of acryloyl group calculated by 1H-NMR. 
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Figure S1.  1H-NMR spectra for (a) tri-PCG-2 and (b) tri-PCG-Acryl in CDCl3. 
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Figure S2. SEC elution curves for tri-PCG-2 (dotted red line) and tri-PCG-Acryl (solid 
blue line) (eluent: DMF, standard: PEG). 
 

 
 
Figure S3. Photographs of (a) tri-PCG-1 and (b) tri-PCG-Acryl in dry state at r.t. 
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Text S2. Sol-to-gel transition of tri-PCG, tri-PCG-Acryl, and their mixtures. 

   The temperature-responsive sol-to-gel transition behavior of the copolymers, tri-

PCG-1 and tri-PCG-Acryl, and their mixtures (tri-PCG-1/tri-PCG-Acryl = 1/1, 2/1 and 

5/1 (w/w)) was investigated in PBS at concentration range from 15-25 wt% by a test-tube 

inverting method. These all samples were prepared by heating dissolution. The results are 

shown in Table S3.  

   Pure tri-PCG-1 solution (S(P1)), and the 2/1 and 5/1 mixture solution of tri-PCG/tri-

PCG-Acryl exhibited temperature-responsive sol-to-gel transitions at 15-25 wt%. The 1/1 

mixtures of tri-PCG/tri-PCG-Acryl and pure tri-PCG-Acryl solution (S(PA)) showed 

gelation at 20-25 wt% and only 25 wt%, respectively. These results indicate that mixing 

with tri-PCG-Acryl (less than 50 wt%) did not have a great influence on the sol-to-gel 

transition behavior of the tri-PCG-1 solution. 
  



 

 8 

 
 

Table S3. Gel to sol and gel to sol (syneresis) transition for tri-PCG, tri-PCG-Acryl, and 

their mixture in PBS. 

Sample Total polymer 

concentration 

(wt%) 

sol to gel 

transition 

(°C) 

gel to sol(syneresis) 

transition 

(°C) 

tri-PCG 

15 38 41 

20 34 43 

25 33 47 

tri-PCG-Acryl 

15 N.D. a) 34 b) 

20 N.D. a) 37 b) 

25 32 50 

tri-PCG-Acryl/tri-PCG 

1/1 

15 N.D. a) 37 b) 

20 35 44 

25 33 48 

tri-PCG-Acryl/tri-PCG 

1/2 

15 37 42 

20 35 44 

25 33 48 

tri-PCG-Acryl/tri-PCG 

1/5 

15 37 42 

20 35 44 

25 33 50 

a) Transition was not detected. 

b) Transition from sol state to syneresis. 
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Text S3. Confirmation of incorporation of DPMP in tri-PCG micelle 

In Figure S4, 1H-NMR spectrum of DPMP saturated in D2O are shown. Using the 

spectrum, the solubility of DPMP was calculated from the internal reference (methanol) 

to be 193.4 µg/mL. The results mean the solubility of DPMP is not high, but DPMP can 

actually be detected in D2O by 1H-NMR. Figure S5 shows 1H-NMR spectrum of tri-PCG 

micelle containing DPMP in D2O. The peaks of DPMP were not detected, because DPMP 

was in solid-like state by incorporating into the micelle core. On the other hand, the 

aqueous solution of tri-PCG micelle containing DPMP was freeze-dried, and re-dissolved 

in DMSO-d6. The 1H-NMR of the obtained solution was shown in Figure 6B. The peak 

assigned to DPMP was clearly observed around 2.65 ppm. Such peak was not observed 

in 1H-NMR of tri-PCG in DMSO-d6 (Figure 6C). These all results mean DPMP was 

existed and incorporated in the tri-PCG micelle in aqueous solution. 

 
 

 
Figure S4. 1H-NMR spectrum of saturated DPMP in D2O in the presence of 
0.1% methanol (v/v) as internal reference. 
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Figure S5. 1H-NMR spectrum of tri-PCG micelle containing DPMP in D2O. 
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Figure S6. 1H-NMR spectra for (A) DPMP in DMSO-d6, (B) tri-PCG micelle 
containing DPMP after freeze-drying and re-dissolved in DMSO-d6, (C) tri-PCG 
in DMSO-d6. 
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Figure S7.  Photographs of (a) S(P1/D+PA40), (b) S(P1/D+PA36), (c) S(P1/D+PA33), 

(d) S(P1/D+PA17), (e) S(P1), (f) S(P1/D) and (g) S(PA) after preparation at 25 ºC, 

subsequent heating at 37ºC for 1 min, and further cooling at 4ºC for 1 min. Total 

copolymer concentration = 25 wt%. 
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Figure S8. Storage (G’, closed symbols) and loss moduli (G”, open symbols) of S(P1) 
(● , ○ ), S(P1/D) (■ , □ ), S(PA) (▲ , △ ) as a function of temperature. Total 
copolymer concentration = 25wt% 
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Figure S9. Time course of storage (G’, closed symbols) and loss moduli (G”, open 

symbols) for (a) S(P1/D+PA40), (b) S(P1/D+PA36), and (c) S(P1/D+PA17) after heating 

to 37°C and subsequent cooling to 25°C. Total copolymer concentration = 25wt%. 

Temperature change schedule was shown in the bottom of each Figure.  
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Wavenumber (cm-1) 

 
Figure S10. IR spectra for (A) S(P1/D+PA40), (B) S(P1/D) (tri-PCG containing 
DPMP), and (C) S(PA) (tri-PCG-Acryl) after gelation and freeze-drying by KBr 
method.  
  



 

 16 

 

 

Wavenumber (cm-1) 
 
Figure S11. Differential IR spectra S(P1/D+PA40) - [0.6 ´	S(P1/D) + 0.4 ´	S(PA)]. 

 
 

Text S4. IR spectra measurements. 
We measured IR spectra for the samples after freeze-drying using a FT-IR spectrometer 
(Perkin-Elmer 1600). Figure S10 shows the IR spectra for S(P1/D+PA40), S(P1/D), and 
S(PA) after gelation and freeze drying. However, these spectra are quite similar, and any 
obvious differences were not detected. Then, we calculated the differential IR spectra 
S(P1/D+PA40) - [0.6 ´ S(P1/D) + 0.4 ´ S(PA)] (Figure S11). In the differential spectrum, 
slight absorbance around 2900 cm-1 which can be assigned to C-S-C bonds was observed. 
The result suggests the formation of new S-C bonds by thiol-ene reaction. 
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Figure S12.  Time course of storage moduli of previously reported system using 

NH2/OSu coupling after heating to 37 °C and further maintaining at 37 °C. [ref.35] 

 

 

Figure S13. Degradation profiles of tri-PCG-1 hydrogel (S(P1)) soaked in PBS at 

37 °C. 
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Figure S14. Photograph of S(P1/D+PA40) 30 days after s.c. implantation and soaking in 
acetone. 
 
 


