

Supplemental Methods and Data

Methods

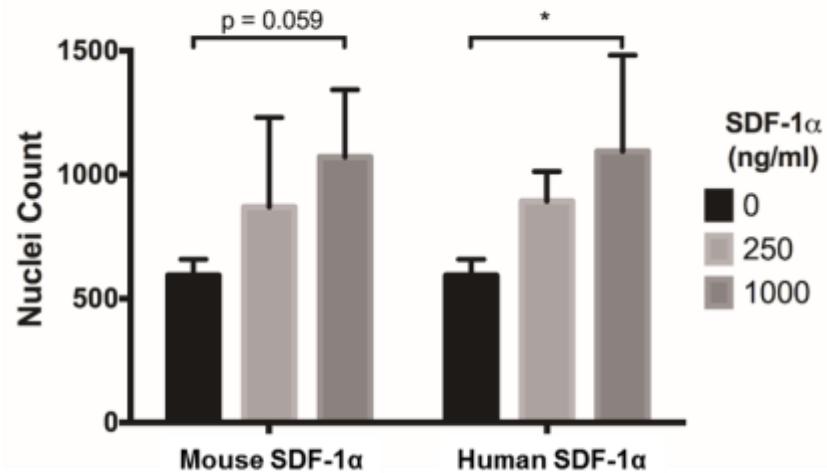
Antibodies Used for IHC

Stain	Primary Antibody	Vendor, Catalog #	Dilution	Secondary Antibody	Vendor, Catalog #	Dilution
SDF-1/CXCL12	Rabbit Polyclonal anti-SDF-1	Abcam, Ab25117	1:500	Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555	ThermoFisher Scientific, A-21429	1:750
Doublecortin	Rabbit polyclonal to Doublecortin	Abcam, ab18723	1:2000	Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555	ThermoFisher Scientific, A-21429	1:500
Nestin	Chicken polyclonal to Nestin	Novus Biological, NB100-1604	1:400	Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor 555	ThermoFisher Scientific, A-21437	1:500
GFAP	Goat polyclonal to GFAP	Abcam, ab53554	1:1000	Donkey anti-Goat IgG (H+L) Secondary Antibody, Alexa Fluor 555	ThermoFisher Scientific, A-21432	1:500
Iba-1	Rabbit polyclonal to Iba1	Wako Pure Chemical Industries Ltd, 019-19741	1:250	Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555	ThermoFisher Scientific, A-21429	1:750

NPSC Harvest and Culture

Murine fetal derived neural progenitor/stem cells (NPSCs) were isolated from the medial and lateral germinal eminences of E14.5 C57BL/6 mice based on previously published protocols and in accordance with approval by the Institutional Animal Care and Use Committee at Arizona State University [25]. The germinal eminences were harvested, mechanically disassociated and cultured in NPSC medium (Dulbecco's modified eagle medium (DMEM:F12) with 2.4mg/mL sodium bicarbonate (NaHCO₃), 6 mg/mL glucose, 5mM HEPES, 62.9 ng/mL progesterone, 9.6 µg/mL putrescine, 1.83 µg/mL heparin, 1X B27 growth supplement, 20 ng/mL epidermal growth factor (EGF), 5 ng/mL bFGF, 5 µg/mL insulin, 5 µg/mL transferrin, and 5 ng/mL sodium selenite). NPSCs were cultured as non-adherent neurospheres and used for experimentation between passages 3-6.

Chemotactic NPSC Migration Assay


NPSC chemotaxis in a modified-Boyden chamber assay was used to validate AFsDF-1 bioactivity on mouse-derived NPSCs as previously described [26]. In short, disassociated NPSCs were plated (70,000 cells/cm²) on laminin-coated transwell inserts with 8µm pore diameter (Millipore, Temecula, CA). Growth factor-free NPSC medium (no EGF or bFGF) with 0, 250, or 1000ng/mL SDF-1α was added in the bottom chamber. NPSCs were then allowed to undergo chemotaxis for 24hrs in an incubator (37°C and 5% CO₂). Subsequently, cells on the top side of the transwell membrane were removed using a cotton swab whereas migrated cells that reached the bottom were fixed, underwent a DAPI nuclear stain and imaged. NPSC nuclei have diameters of approximately 20µm [27]. After intensity thresholding, nuclei count was quantified using a particle count

algorithm in ImageJ where stained nuclei 10-30 μ m in diameter were counted as individual cells. Nuclei count was determined by imaging and quantifying whole transwell membranes.

Supplemental Data

The N-terminus of SDF-1 is critical for binding and activation of CXCR4 [32]. Thus, site-specific modifications for fluorescent tagging at the C-terminus is predicted to better maintain SDF-1 bioactivity [33]–[36]. The only commercially available fluorescently-tagged SDF-1 was human-derived recombinant SDF-1 with AlexaFluor-647 conjugated to the C-terminus (AFSDF-1) from Almac Chemokines (Craigavon, UK). Previous studies have noted cross-reactivity between diverse species, yet we verified that mouse NPSCs respond to human AFSDF1. A modified-Boyden chamber migration assay was used with 8 μ m pore width membranes. NPSCs were plated on the topside of membrane and the nuclei of cells that migrate to reach the bottom in response to SDF-1 α were counted after a 24hr incubation period. Since the SDF-1 gene is over 90% homologous between mouse to human species, both types of SDF-1 α elicited a similar pattern of migratory behavior from mouse-derived NPSCs (Supplemental Figure 1) [37]. Three different SDF-1 α concentrations (0, 250 & 1000ng/ml) were evaluated in the bottom chamber of the Boyden assay. Nuclei count increased in a SDF-1 α dose-dependent manner although only the human SDF-1 α at 1000ng/ml was able to garner a statistically significant change in nuclei count. Regardless, similar patterns in NPSC response validated the bioactivity of human-derived SDF-1 α on mouse NPSCs.

Human-Derived SDF-1 α Cross-reacts with mouse NPSCs

Supplemental Figure 1: Boyden chamber migration assay verified bioactivity of human-derived SDF-1 α on mouse NPSCs. Human SDF-1 α was compared to mouse SDF-1 α at 0, 250 and 1000ng/ml. Only the human SDF-1 α at 1000ng/ml was statistically different compared to control. However, both human and mouse SDF-1 α exhibited similar trends in eliciting a migratory response from mouse NPSCs. (* represents $p < 0.05$)