Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Gd³⁺-functionalized gold nanoclusters for fluorescence-magnetic

resonance bimodal imaging

Guohai Liang,¹ and Lifu Xiao^{2*}

¹MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. E-mail: liangguoh@scnu.edu.cn,

² Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, U.S.A. Email:

Lxiao3@nd.edu

*Corresponding author.

Table of contents:

- 1. Fig. S1 XPS spectra for (A) BAG and (B) LAG.
- 2. Fig. S2 Determination of the quantum yields (QY) of the four dual function probes by using Rhodamine 6G as a reference.
- 3. Table S1 T_1 s of samples in Fig.3A (3 T, 25°C)

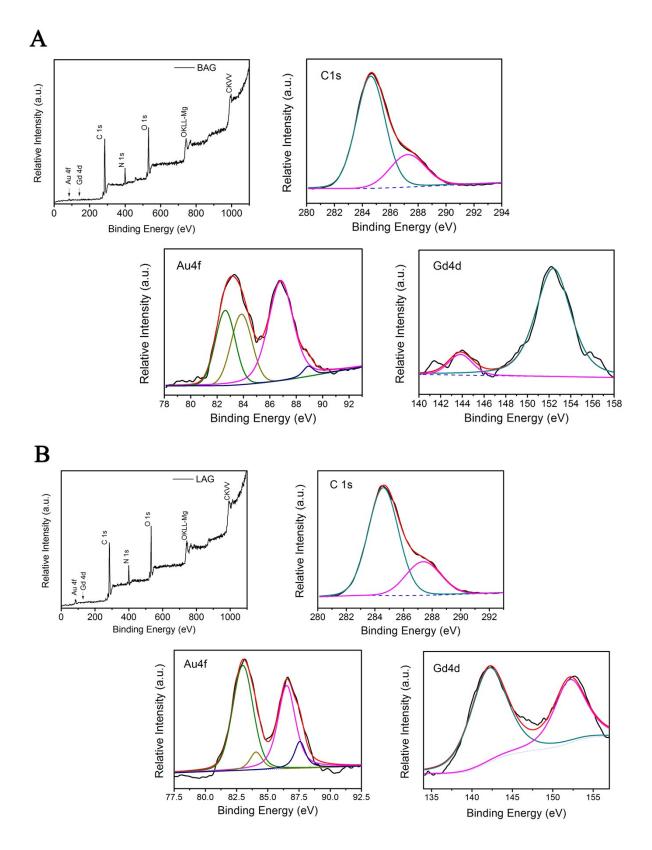


Fig. S1 XPS spectra for (A) BAG and (B) LAG.

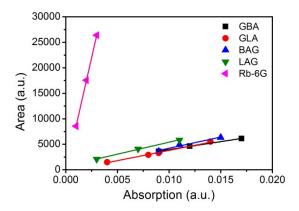


Fig. S2 Determination of the quantum yields (QY) of the four dual function probes by using Rhodamine 6G as a reference. QY of the dual function probes were determined based on the emission peak area and absorbance of the probes and Rhodamin 6G according to the following equation¹:

$$\varphi_{sample} = \varphi_{ref} \times \frac{F_{sample}}{F_{ref}} \times \frac{A_{ref}}{A_{sample}}$$

Where φ_{ref} is the known QY of reference compound, F_{sample} and F_{ref} are the integrated areas of fluorescence of the samples and reference at 550-850 nm following excitation at 510 nm, respectively. A_{ref} and A_{sample} are the absorbance of the reference and samples at excitation wavelength (510 nm). The data points were plotted to obtain the QYs of the probes.

Table S1 T_1 s of samples in Fig.3A (3 T, 25°C)

1	F F	0)			
[Gd] (mM)		0.5	0.4	0.3	0.2	0.1
<i>T</i> ₁ (ms)	BAG	188.0	228.2	303.4	429.8	720.3
	GBA	198.2	240.9	322.6	425.9	722.0
	LAG	209.1	253.5	327.5	459.5	758.4
	GLA	309.5	380.5	463.6	637.0	979.6
	Gd-DTPA	416.1	487.9	610.0	745.0	1233.5A