Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2017

Supporting information

Chemical Amplification Accelerates Reactive Oxygen Species Triggered Polymeric Degradation

Sangeun Lee, Alexandra Stubelius, Jason Olejniczak, Hongje Jang,

Viet Anh Nguyen Huu and Adah Almutairi

Contents

- Figure S1. NMR spectra of compound 3
- Figure S2. NMR spectra of ROS-ARP
- Figure S3. GPC profile of ROS-ARP in various pH and presence of H₂O₂
- Figure S4. ROS-ARP molecular weight change by pH and H₂O₂
- Figure S5. GPC profile of ROS-ARP in 0 mM and 10 mM H₂O₂
- Figure S6. DLS and TEM image of ROS-ARP NPs
- Figure S7. ROS-ARP NPs stability test
- Figure S8. Representative TEM images of ROS-ARP nanoparticles in 0 mM and 10 mM H₂O₂
- Figure S9. AUC Calculation of released IR-780 at pH 7.4 with 1 mM H₂O₂, and input parameters
- Figure S10. Standard curve of AUC of IR-780 loaded ROS-ARP NPs
- Figure S11. Separated IR-780 NPs signal from released IR-780 after Gaussian fitting

Figure S12. Cell viability test

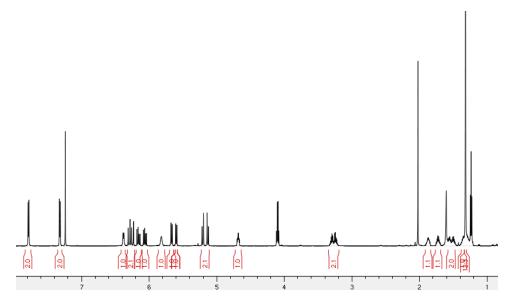


Figure S1. NMR spectra of compound 3

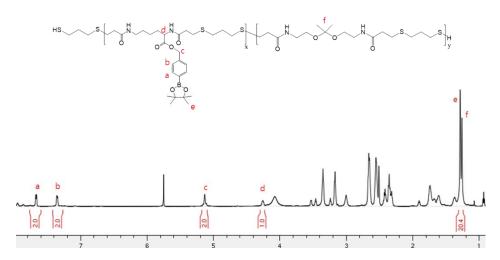


Figure S2. NMR spectra of ROS-ARP

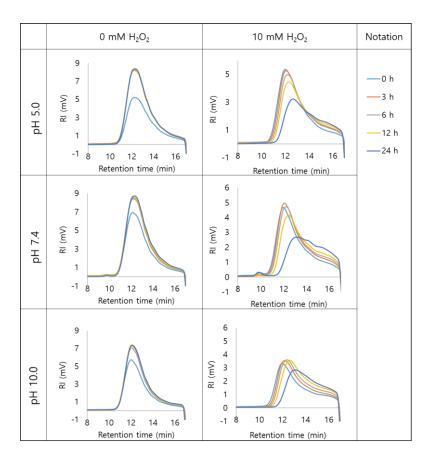


Figure S3. GPC profile of ROS-ARP in various pH and presence of H₂O₂. x/y axis is retention time/RI signal intensity.

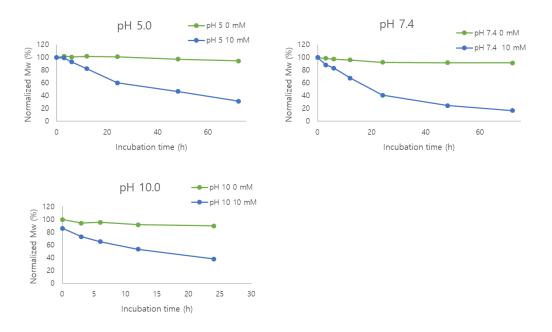


Figure S4. ROS-ARP molecular weight change by pH and H₂O₂. x/y axis represents incubation time/% molecular weight. Polymer incubated with 10 mM H₂O₂ (blue) and without H₂O₂ (green).

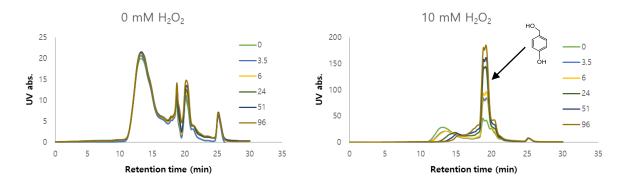


Figure S5. GPC profile of ROS-ARP in 0 mM (left) and 10 mM (right) H₂O₂. x/y axis is retention time/UV absorption signal intensity. (Retention time of 4-hydroxybenzyl alcohol was 19.7 min)

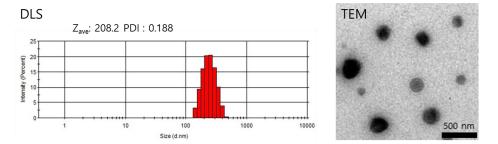


Figure S6. ROS-ARP NPs. Left is DLS data of particle and right is image of particles observed by TEM

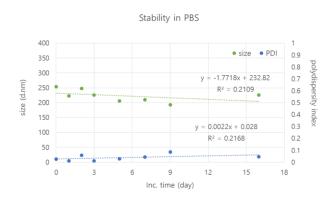


Figure S7. ROS-ARP NPs stability test by size and polydispersity change. Particles in phosphate buffer are incubated at 37 °C for 16 days.

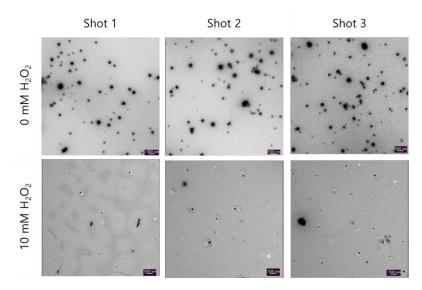
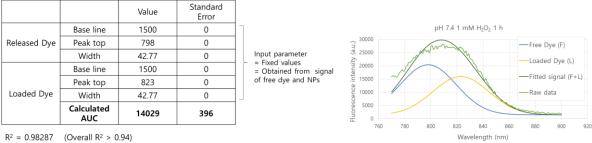



Figure S8. Representative TEM images of ROS-ARP nanoparticles in 0 mM H₂O₂ and 10 mM H₂O₂

 $R^2 = 0.98287$ (Overall $R^2 > 0.94$)

Figure S9. AUC Calculation values of released IR-780 at pH 7.4 with 1 mM H₂O₂, and input parameters for calculation. Input parameters were obtained from measurement of free IR-780 in same condition. (Lest) Fluorescence signal and separated loaded and released dye signal by fitting. (Right)

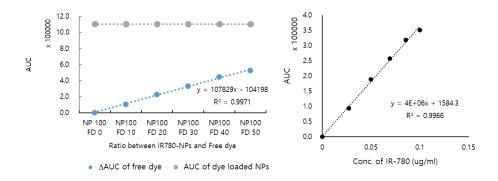


Figure S10. Calculated AUC of IR-780 loaded ROS-ARP NPs and free IR-780 by various mixing ratio. (Left) Calculated AUC of free IR-780 by its concentration. (Right)

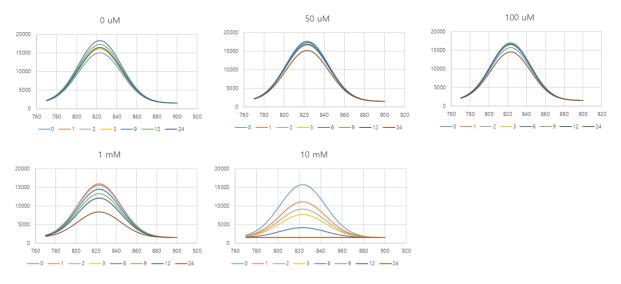


Figure S11. Separated IR-780 NPs signal from released IR-780 after Gaussian fitting.

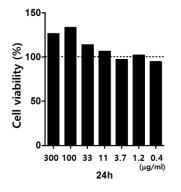


Figure S12. Cell viability of ROS-ARP NPs after 24 hours incubation.