Supporting Information

Sequential growth of CaF₂:Yb,Er@CaF₂:Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis

Kun Liu,^{†,⊥} Xu Yan,^{‡,⊥} Yun-Jun Xu,^{§,⊥} Liang Dong,^{*II*,*} Li-Na Hao,[†] Yong-Hong Song,[‡] Fei Li,[‡] Yang

Su,[‡] Ya-Dong Wu,[‡] Hai-Sheng Qian,[†],* Wei Tao,[†] Xian-Zhu Yang,[†] Wei Zhou[†] and Yang Lu,[‡],*

[†]School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

^{\$}School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

[§]Department of Radiology, Anhui Provincial Hospital, Hefei, Anhui 230001, China

^{*II*}Department of Chemistry, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

*Corresponding author. *Fax: +86-551-62901285. E-mail: dldisc@ustc.edu.cn (L. D.), shqian@hfut.edu.cn (H.-S. Q.), yanglu@hfut.edu.cn (Y. L.)

 $^{\perp}$ These authors contribute equally to this work.

(a)	Spectrum	1 Area 1		(c)	Spectrum	2	Area 2
600 nm				600 nm			
(b)	Element	Weight%	Atomic%	(d)	Element	Weight%	Atomic%
	F	16.04	39.42		F	0	0
	Ca	8.43	9.82		Са	0	0
	Cu	65.2	47.91		Cu	100	100
	Gd	2.41	0.71		Gd	0	0
	Er	0	0		Er	0	0
	Yb	7.93	2.14		Yb	0	0
	Totals	100	100		Totals	100	100

Fig. S1. The detailed elemental compositions of the as-prepared CaF₂:Yb,Er@CaF₂:Gd nanoparticles at different transmission electron microscopy (TEM) image area (a, b were at nanoparticles area 1 and c, d were at blank area 2).

Fig. S2. The X-ray photoelectron spectra (XPS) of the as-prepared CaF₂:Yb,Er@CaF₂:Gd nanoparticles: (a) Survey spectrum, (b) Ca 2p spectrum, (c) Gd 4d spectrum, (d) F 1s spectrum.

Fig. S3. FT-IR spectra of the CaF₂:Yb,Er@CaF₂:Gd-OA (black line), the hydrophilic CaF₂:Yb,Er@CaF₂:Gd nanoparticles(red line) and the PEG-PAA di-block copolymer (blue line).

Fig. S4. TEM images of (a) the as-prepared CaF₂:Yb,Er@CaF₂:Gd-OA nanoparticles dispersed in cyclohexane and (b) the hydrophilic CaF₂:Yb,Er@CaF₂:Gd nanoparticles dissolved in water.

Fig. S5 Absorption spectra of arsenazo III at different filtrates time points obtained after dialysis of 1 mg Gd/mL (a) GdCl₃ aqueous solution and (b) the hydrophilic CaF₂:Yb,Er@CaF₂:Gd nanoparticles aqueous solution to study the leaching of Gd ions from the original aqueous solution .Water and GdCl₃ aqueous solution (1 μ g Gd/mL, 10 μ g Gd/mL and 100 μ g Gd/mL)were used as negative and positive controls, respectively.

Fig. S6. Hydrodynamic size of the hydrophilic CaF₂:Yb,Er@CaF₂:Gd nanoparticles aqueous solution at different storage time points measured by dynamic light scattering (DLS).

Fig. S7. Zeta potential of the hydrophilic CaF_2 :Yb,Er@CaF_2:Gd nanoparticles aqueous solutions at different storage time points.

Scheme S1. Schematic illustration of the detail structure difference between as-prepared CaF_2 : Yb, Er@CaF_2: Gd nanoparticles and CaF_2: Gd nanoparticles.

Fig. S8. (a) T_1 maps of the hydrophilic CaF₂:Gd nanoparticles; (b) Comparison of longitudinal relaxivity r_1 of the hydrophilic CaF₂:Gd nanoparticles under 3.0 T.

Fig. S9 The other variations of indices of hepatic function, renal function and blood routine tests (n=3), including aspartate transaminase / alanine transaminase ratio (AST/ALT), albumin (ALB), blood urea

nitrogen / creatinine ratio (BUN/CREA), uric acid (UA), lactate dehydrogenase (LDH), white blood cells (WBC), red blood cells (RBC), hemo-globin (HGB), hematocrit (HCT), plateletcrit (PCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), red blood cell distribution width measured by standard deviation (RDW-SD), red blood cell distribution width measured by variation coefficient (RDW-CV), mean corpuscular hemoglobin concentration (MCHC), platelet distribution width (PDW), lymphocyte (LYMPH), mean platelet volume (MPV), platelet-large contrast ratio(P-LCR), platelets (PLT).

Table S1. The detailed elements composition of the hydrophilic CaF₂:Yb,Er@CaF₂:Gd nanoparticles measured by means of ICP-AES.

Element	ICP-AES data (μg/mL)	Weight%	Atomic%
Ca	206.2	22.06	54.31
Yb	491.7	52.59	29.94
Er	34.5	3.69	2.17
Gd	202.5	21.66	13.57
Totals		100	100