Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells

Jee-Wei Emily Chen^{1,4}, Jan Lumibao^{2,4}, Audrey Blazek³, H. Rex Gaskins^{2,4}, Brendan Harley^{1,4*}

 ¹ Dept. of Chemical and Biomolecular Engineering
² Division of Nutritional Sciences
³ Dept. of Bioengineering
⁴ Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign Urbana, IL 61801

Supplementary Figures

Supplemental Figure 1. Western blot results and quantified bands regarding HIF-1 α expression profiles for (A,C) U87 and (B,D) U87^{vIII} GBM specimens. The early activation of HIF was observed as early as 6hr for -HAMA group and continued for all groups up to 24hr. ^ significant (p < 0.05) between +/- hypoxia; * significant (p < 0.05) between +/- HAMA.

Supplemental Figure 2. Full Western blot results regarding activation of ERK and PI3K pathways for **(A)** U87 and **(B)** U87^{vIII} GBM specimens.

Supplemental Figure 3. Gene expression profiles for **(A, D)** *MMP-2*, **(B, E)** *VEGF*, and **(C, F)** *EGFR* across all time points for U87 and U87^{vIII} GBM specimens, respectively. ^ significant (p < 0.05) for +/- hypoxia; * significant (p < 0.05) for +/- HAMA

Supplemental Figure 4. Mean invasion distance for the 10% of **(A)** U87 and **(B)** U87^{vIII} GBM cells exhibiting the greatest overall invasion into GeIMA and GeIMA-HAMA hydrogels. Observed trends regarding average invasion distance match those experienced by the entire complement of GBM specimens. ^ significant (p < 0.05) for +/- hypoxia; * significant (p < 0.05) for +/- HAMA

Supplemental Figure 5. Representative images of taken from analysis of U87/U87^{vIII} GBM cell invasion into the surrounding GeIMA or GeIMA + HAMA hydrogel environments in the presence of continuous normoxia or hypoxia (day 7). Cell nuclei are stained with Hoechst dye. Scale bar: 500 µm.

Supplemental Figure 6. Quantifying soluble HA production by **(A)** U87 and **(B)** U87^{vIII} GBM specimens in GeIMA and GeIMA-HAMA hydrogels over 7 days in culture as a function of hypoxia vs. normoxia. ^ significant (p < 0.05) for +/- hypoxia; * significant (p < 0.05) for +/- HAMA.

Supplemental Table 1. Mechanical characterization of GeIMA hydrogel variants with (+HAMA) and without (-HAMA) HA functionalization. Total GeIMA wt% was adjusted so that all hydrogel variants containing the identical total wt% of polymer (4 wt%).

Hydrogel	GelMA	HAMA	LAP	Elastic Modulus
-HAMA	4 wt%	0 wt%	0.1 wt%	2.758 ± 0.24 kPa
+HAMA	3.4 wt%	0.6 wt%	0.02 wt%	2.785 ± 0.14 kPa

Supplemental Table 2. Primers used for gene expression.

Gene	Primer Sequence (5'-xxx-3')	Citation
VEGF	Forward: AAGCCCATTCCCTCTTTAGC	1
	Reverse: GGCAAAGTGAGTGACCTGCT	
MMP-2	Forward: ATAACCTGGATGCCGTCGT	2
	Reverse: AGGCACCCTTGAAGAAGTAGC	
EGFR	Forward: GCAACCAGCAACAATTCC	3
	Reverse: AGAGGCTGATTGTGATAGAC	
HIF-1α	Forward: CGTTCCTTCGATCAGTTGTC	4
	Reverse: TCAGTGGTGGCAGTGGTAGT	
GAPDH	Forward: CCTTCCACGATACCAAAGTTG	5
	Reverse: CCATGAGAAGTATGACAACAGCC	

Supplemental Table 3. Antibodies and concentration for Western blot analyses.

Protein	Blocking	Primary antibody	Secondary antibody
ERK 1/2	5% BSA	1:1000 in 5% BSA	Anti-rabbit IgG, HRP-
(42-44 kDa)		(Cell Signaling,	linked antibody (Cell
		Rabbit mAb 9102S)	Signaling, 7074S)
p-ERK 1/2	5% BSA	1:1000 in 5% BSA	1:2500 in TBST
(42-44 kDa)		(Cell Signaling,	
		Rabbit mAb 4370S)	
PI3K	5% NFDM	1:1000 in 2% NFDM	
(85 kDa)		(Cell Signaling,	
		Rabbit mAb 4292S)	
HIF-1α	5% NFDM	1:2000 in 5% NFDM	
(93 kDa)		(Abcam, ab51608)	
β-actin	5% BSA	1:1000 in 5% BSA	
(45 kDa)		(Cell Signaling,	
		Rabbit mAb 4967L)	

Supplemental References

- 1. M. Ryuto, M. Ono, H. Izumi, S. Yoshida, H. A. Weich, K. Kohno and M. Kuwano, *Journal of Biological Chemistry*, 1996, **271**, 28220-28228.
- 2. C. Blázquez, M. Salazar, A. Carracedo, M. Lorente, A. Egia, L. González-Feria, A. Haro, G. Velasco and M. Guzmán, *Cancer Research*, 2008, **68**, 1945.
- 3. M. Zhou, H. Wang, K. Zhou, X. Luo, X. Pan, B. Shi, H. Jiang, J. Zhang, K. Li, H.-M. Wang, H. Gao, S. Lu, M. Yao, Y. Mao, H.-Y. Wang, S. Yang, J. Gu, C. Li and Z. Li, *Cancer Research*, 2013, **73**, 7056.
- 4. S. Pedron, E. Becka and B. A. C. Harley, *Biomaterials*, 2013, **34**, 7408-7417.
- 5. J. Zhou, C. Xu, G. Wu, X. Cao, L. Zhang, Z. Zhai, Z. Zheng, X. Chen and Y. Wang, *Acta Biomaterialia*, 2011, **7**, 3999-4006.