Supporting Information

ofIron Catalyzed Efficient Synthesis of Poly-functional Primary Amines viaDirect Use of AmmoniaChaoqun Ma, Jianghui Chen, Yuan Sheng, Dong Xing, Wenhao Hu*Shanghai Engineering Research Center of Molecular Therapeutics and New DrugDevelopment, School of Chemistry and Molecular Engineering, East China NormalUniversity, Shanghai, 200062, China
E-mail: whu@chem.ecnu.edu.cn
Table of Contents

1. General Information S2
2. Experimental Procedures S2-S7
3. Characterization Data of the Products S7-S17
4. References S17
5. NMR Spectra of the Products S17-S41
6. Computational details S42-S46

1. General Information:

HRMS (ESI) Mass spectra were recorded on Bruker micrOTOF-Q 10198 mass spectrometer. NMR spectra were recorded on a Brucker Ascend-400 MHz spectrometer. All solvents and reagents were purchased from Sinopharm Chemical Reagent Co., Ltd, and directly used without any purification. Diazo compounds ${ }^{1}$ and benzyl protected isatins ${ }^{2}$ were prepared according to the literature procedure.

2. Experimental Procedures

2.1 General procedure for the three-component reaction of EDA, ammonia and

N-benzyl isatin and cyclization with thiophosgen:

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ $(0.002 \mathrm{mmol})$ and THF (1.5 mL). This solution was purged with ammonia gas for 15 minutes at $25{ }^{\circ} \mathrm{C}$. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then $5 \% \mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added to the mixture, $\mathrm{CSCl}_{2}(0.3 \mathrm{mmol})$ was added subsequently. After 30 minutes, the reaction was quenched with brine (2 mL), extracted three times with EA $(2 \mathrm{~mL} * 3)$. The organic phase was evaporated under vacuum and the crude products were passed through a short column of silica gel, which were subjected to ${ }^{1} \mathrm{H}$ NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: $1: 2$ to 2:1) to give corresponding products.

2.2 General procedure for the three-component reaction of alkyl diazoesters, ammonia and N -benzyl isatins:

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $65^{\circ} \mathrm{C}$. To this solution was added alkyl diazocompounds (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, The solvent was removed under vacuum and the crude products were passed through a short column of silica gel, which were subjected to ${ }^{1} \mathrm{H}$ NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products.

2.3 Experimental procedure for the cyclization of 3c:

To a solution of $\mathbf{3 c}(0.2 \mathrm{mmol})$ in DCM $(2 \mathrm{~mL})$ was added $5 \% \mathrm{NaHCO}_{3}(3 \mathrm{~mL}), \mathrm{CSCl}_{2}$ (0.3 mmol) was added subsequently. Afte 30 minutes, the reaction was quenched with brine $(2 \mathrm{~mL})$, extracted three times with EA $\left(2 \mathrm{~mL}^{*} 3\right)$. The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:2 to 2:1) to give corresponding products.

2.4 Transformation of intermediate a under basic conditions:

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $25{ }^{\circ} \mathrm{C}$. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ was added to the mixture, the reaction was quenched with brine $(2 \mathrm{~mL})$, extracted three times with EA $(2 \mathrm{~mL} * 3)$. The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give 5a in 85% yield.

2.5 Control experiments for insights into excellent chemoselectivity of the threecomponent reaction:

2.5.1 N-H insertion with Ethyl 2-aminopropanoate

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and THF (3 mL). This solution was purged with nitrogen gas for 20 minutes at $65{ }^{\circ} \mathrm{C}$. To this solution was added diazocompounds $(0.3 \mathrm{mmol})$ in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: $1: 8$ to $1: 4$) to give corresponding product in 93% yield.
2.5.2 N-H insertion with three-component product

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and THF (3 mL). This solution was purged with nitrogen gas for 20 minutes at $65{ }^{\circ} \mathrm{C}$. To this solution was added diazocompounds (0.3 mmol) in one portion. After the reaction, no desired product was detected.

2.6 Experimental procedure for the synthesis of 3a:

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and Methanol $(1.5 \mathrm{~mL})$. This solution was purged with ammonia gas for 20 minutes at rt . To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, The solvent was removed under vacuum and the crude products were passed through a short column of silica gel, which were subjected to ${ }^{1} \mathrm{H}$ NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:4 to 1:2) to give corresponding products in 64\% yield and 50:50 dr value.
2.7 Control experiments of the formation of $5 a$ and mechanism considerations

To a reaction tube equipped with a stir bar was added N -benzylisatin $(0.2 \mathrm{mmol})$, $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}(0.002 \mathrm{mmol})$ and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $25^{\circ} \mathrm{C}$. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, N -methylisatin (0.2 mmol) was added subsequently, then $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ was added to the mixture, the reaction was quenched with brine $(2 \mathrm{~mL})$, extracted three times with EA $\left(2 \mathrm{~mL}^{*} 3\right)$. The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products in 88% yield.

To a reaction tube equipped with a stir bar was added N -benzylisatin (0.2 mmol), N methylisatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}(0.002 \mathrm{mmol})$ and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $25^{\circ} \mathrm{C}$. To this solution was added EDA $(0.3 \mathrm{mmol})$ in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ was added to the mixture, the reaction was quenched with brine $(2 \mathrm{~mL})$, extracted three times with EA $(2 \mathrm{~mL} * 3)$. The organic phase was removed under vacuum. The crude products were passed through a short column of silica gel, which were subjected to ${ }^{1} \mathrm{H}$ NMR to detect the diastereoselectivity ($\mathbf{5 a}: \mathbf{5 b} \mathbf{5} \mathbf{5} \mathbf{c}=1: 2: 1$). The crude products were purified by flash
chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products in 73% yield ($\mathbf{5 a}, \mathbf{5 b}$ and $\mathbf{5 c}$).

Mechanism considerations: After completion of the three-component reaction, N methylisatin was added to the mixture, no cross-coupling isatide was detected after acidification of the mixture with 1 M HCl , indicating isatin was not the reaction intermediate. The three-component reaction proceeded if equal mole of N -methyl and N-benzyl isatins were used as reaction substrates. Acidification of the mixture afforded $5 \mathrm{a}, 5 \mathrm{~b}$, and 5 c with a ratio of 1:2:1. According to these facts, we reasoned that a bimolecular radical mechanism might be involved.

2.8 Examine of scope of diazocompounds and carbonyl substrates

2.9 control experiment of Fe (III)-catalyzed N -H insertion

To a reaction tube equipped with a stir bar was added, $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}(0.002 \mathrm{mmol})$ and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $65^{\circ} \mathrm{C}$. To this solution was added alkyl diazocompounds (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The crude product was purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:2 to 1:1) to give corresponding product in 94% yield.

3.0 Control experiment of $\mathrm{N}-\mathrm{H}$ insertion product and isatin

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$ (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at $65^{\circ} \mathrm{C}$. To this solution was added Ethyl 2-aminopropanoate (0.3 mmol) in one portion. No reaction was detected in 30 min .

3.1 Screen of catalyst loading

entry	Catalyst loading	Yield(\%)	dr
1	$(\mathrm{x} \mathrm{mol} \%)$		$59: 41$
2	0.1	48	$60: 40$
3	1	60	$60: 40$
4	10	72	$62: 38$

3. Characterization Data of the Products

(3S,4'R)-ethyl 1-benzyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'-carbox ylate (anti-4a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta=11.18(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.3$, $1 \mathrm{H}), 7.44(\mathrm{t}, J=7.3,1 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{t}, J=7.4$,
$1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.23-3.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta=$ $186.68,170.25,166.23,143.25,135.39,132.14,128.71,127.68$, $127.25,125.64,124.27,123.70,110.26,84.95,63.45,61.75,42.95,13.57$. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 405.0885$, found 405.0896.
(3S,4'R)-ethyl 1-benzyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'-carbox ylate (syn-4a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.17$ (s, 1H), 7.41 (ddd, $J=5.6$, $4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18$
(dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.62(\mathrm{~m}, 2 \mathrm{H}), 0.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

[^0]$133.95,132.96,132.40,129.69,128.78,127.58,115.78,89.53,69.01,68.08,66.65$, 48.45, 18.16. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 405.0885$, found 405.0883.
(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)propanoate (syn3b)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$
$7.17(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.12$ (m, 2H), $2.00(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.57,174.64,143.87,135.50$, $129.99,128.75,127.90,127.62,127.39,124.86,122.68,109.40,78.94,62.19,61.78$, 43.87, 22.28, 13.92. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$377.1477, found 377.1493.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)propanoate (anti3b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04-3.84(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 177.08, 174.60, 143.87, 135.60, $129.79,128.74,127.83,127.67,127.57,125.32,122.69,109.21,62.48,61.50,43.86$, 20.53, 13.63. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$377.1477, found 377.1463.
(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)butanoate (syn-3c) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (dd, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}$),
 $7.38-7.16(\mathrm{~m}, 7 \mathrm{H}), 7.01(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27$ (qd, $J=7.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.82(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.17,173.67,144.16,135.52,129.94,128.70$, 127.67, 127.54, 127.32, 125.39, 122.50, 109.35, 79.87, 65.86, 62.16, 43.81, 27.27, 14.09, 7.63. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 391.1634$, found 391.1648.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)butanoate (anti3c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.04(\mathrm{~m}$, 2 H), 0.87 (dt, $J=11.2,7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.97,173.84,143.87,135.63,129.61,128.73$, $128.13,127.70,127.32,125.48,122.57,109.05,66.67,61.32,43.85,25.27,13.59$, 7.93. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$391.1634, found 391.1814.
(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-ynoate (syn-3d)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-3.99(\mathrm{~m}, 2 \mathrm{H})$, 3.46 (dd, $J=16.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=16.9,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.19-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.70,172.14,143.59,135.38,130.27,128.76,127.69,127.52$, $124.89,122.81,109.48,78.69,77.89,72.19,65.13,62.40,44.01,25.24,13.87$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 401.1477$, found 401.1479.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-ynoate (anti-3d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$
$15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{qd}, J=16.4,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.04,172.65,143.71,135.40,130.09,128.77,127.78,127.69$, $127.05,125.06,122.79,109.33,78.54,72.41,65.33,61.81,43.97,23.73,13.60$. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 401.1477$, found 401.1476.
(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (syn-3e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}$,
$J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.79 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.28$ (dd, $J=$ 13.7, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.52,173.34,143.89,135.50,131.56,130.02$, 128.73, 127.89, 127.61, 127.43, 125.12, 122.64, 120.69, 109.37, 78.96, 65.04, 62.17, 43.91, 38.83, 13.98. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 403.1634$, found 403.1652.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-$ $7.16(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=13.3$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 2 \mathrm{H}), 0.84(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.78,173.44,143.87,135.60$, 131.52, 129.73, 128.73, 127.73, 127.71, 125.50, 122.61, 121.30, 109.10, 65.21, 61.41, 43.90, 37.18, 13.58. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$403.1634, found 403.1636.
ethyl 2-amino-2-(1-benzyl-4-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (syn-3f+anti-3f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.24$ (m, 6H, syn; m, 6H, anti; overlap), $7.03-6.98(\mathrm{~m}, 1 \mathrm{H}$, syn; $\mathrm{m}, 1 \mathrm{H}$, anti; overlap), $6.71-6.66(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $5.70-5.49$ (m, 1 H , syn; m, 1H, anti; overlap), $5.24(\mathrm{~m}, 2 \mathrm{H}$, syn; m, 2H, anti; overlap), 4.96 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, syn), $4.94(\mathrm{t}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 4.74 (d, $J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}$, syn), 4.58 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $4.23-4.08$ (m, 2H, syn), $3.95-$ 3.68 (m, 2H, anti), 3.25 (dd, $J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, syn), 2.92 (dd, $J=13.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 2.72 (dd, $J=13.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 2.55 (dd, $J=13.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}$, syn) 1.18 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 0.89\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, anti). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.75,173.28,173.18,145.20,145.17,135.88,135.59,135.03,134.95,131.25$, $131.18,128.89,128.87,127.94,127.83,127.66,127.38,126.43,126.29,126.09$, $122.51,121.56,120.92,109.92,109.70,65.11,64.94,62.30,61.61,44.01,38.85$, 37.25, 14.00, 13.67. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+} 437.1244$, found 437.1250.
(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-5-methyl-2-oxoindolin-3-yl)pent-4enoate (syn-3g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.06-$ $6.91(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dddd}, J=16.0$, $10.9,8.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.94$ (d, $J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.77 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.29-4.03$ (m, $2 \mathrm{H}), 3.27$ (dd, $J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.7,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.52$, 173.47, 141.48, 135.59, 132.21, 131.59, 130.28, 128.70, 127.78, 127.55, 127.39, 125.98, 120.66, 109.17, 79.21, 64.97, 62.15, 43.88, 38.82, 21.13, 14.01. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 417.1790$, found 417.1788.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-5-methyl-2-oxoindolin-3-yl)pent-4enoate (anti-3g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.06-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.50(\mathrm{~m}, 1 \mathrm{H})$, $5.36-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=13.3,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.74,173.47,141.45,135.69$, 132.12, 131.62, 129.97, 128.69, 127.72, 127.68, 127.64, 126.32, 121.27, 108.89, 65.18, 61.39, 43.88, 37.23, 21.15, 13.65. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 417.1790$, found 417.1786 .
ethyl 2-amino-2-(1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)pent-4enoate (syn-3h+anti-3h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, syn $)$, 7.50 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $7.37-7.22$ (m, 6H, syn; m, 6 H , anti; overlap), 6.57 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 6.53 (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 5.71-5.48(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $5.32-5.17$ (m, 2H, syn; m, 2H, anti; overlap), 4.96 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, syn), 4.92 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 4.76 (d, $J=15.8 \mathrm{~Hz}$, 1 H, syn $), 4.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, anti) $, 4.24-4.11(\mathrm{~m}, 2 \mathrm{H}$, syn $), 3.96-3.72(\mathrm{~m}, 2 \mathrm{H}$, anti), 3.24 (dd, $J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, syn), 2.93 (dd, $J=13.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}$, anti), 2.72 (dd, $J=13.3,9.5 \mathrm{~Hz}, 2 \mathrm{H}$, anti), $2.55(\mathrm{dd}, J=13.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}$, syn), $1.19(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$, syn), $0.90\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, anti). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.29$, $176.05,173.26,173.06,142.97,135.08,135.00,132.76,132.49,131.18,131.11$, 129.96, 128.84, 128.74, 128.43, 127.89, 127.78, 127.64, 127.35, 121.65, 120.98, $115.38,115.33,110.80,110.53,79.03,76.92,65.12,64.96,62.34,61.62,43.96,38.81$, 37.26, 14.00, 13.69. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}\left(\mathrm{M}^{+}\right) 459.0919$, found 459.0918 .

ethyl 2-amino-2-(1-benzyl-5-fluoro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3i+syn-3i)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}$, syn; m, 5H, anti; overlap), $7.18(\mathrm{~m}, 1 \mathrm{H}, s y n ; \mathrm{m}, 1 \mathrm{H}$, anti; overlap), 6.92 (m, 1H, syn; m, 1H, anti; overlap), $6.60(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $5.70-5.48(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $5.31-5.15(\mathrm{~m}, 2 \mathrm{H}$, syn; m, 2H, anti; overlap), $4.97(\mathrm{~d}, J=15.7,1 \mathrm{H}$, syn $), 4.95(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $4.77(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 4.60(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, anti $), 4.23$ $-4.09(\mathrm{~m}, 2 \mathrm{H}$, syn $), 3.95-3.70(\mathrm{~m}, 2 \mathrm{H}$, anti), $3.26(\mathrm{dd}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, syn $)$, $2.94(\mathrm{dd}, J=13.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $2.71(\mathrm{dd}, J=13.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $2.57(\mathrm{dd}, J$ $=13.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, syn $), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, anti $)$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.61,176.29,173.24,173.15,160.20,157.81$, $139.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 139.76(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 135.26,135.17,131.23,131.10,129.44$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}), 128.83,127.87,127.75,127.69,127.39,121.66,121.01,116.19(\mathrm{~d}, J$ $=23.3 \mathrm{~Hz}), 115.90(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 113.89(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 113.48(\mathrm{~d}, J=25.2 \mathrm{~Hz})$, $109.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 109.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 79.08,77.24,65.14,64.94,62.33$, $61.58,44.03,38.69,37.16,31.94,14.00,13.64$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaF}(\mathrm{M}+\mathrm{Na})^{+} 421.1540$, found 421.1535 .
ethyl 2-amino-2-(1-benzyl-6-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3j+syn-3j)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}$, syn; m, 5H, anti; overlap), $7.17-7.05(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $6.99(\mathrm{~m}, 1 \mathrm{H}$, syn $), 6.93(\mathrm{~m}, 1 \mathrm{H}$, anti) , $6.63-6.60$ (m, 1H, syn), $6.58(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$, anti $), 5.65-$ $5.42(\mathrm{~m}, 1 \mathrm{H}$, syn; m, 1H, anti; overlap), $5.25-5.14(\mathrm{~m}, 2 \mathrm{H}$, syn; m, 2H, anti; overlap), $5.06(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $4.92(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$, syn), $4.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, anti $), 4.59(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 3.92(\mathrm{~m}, 2 \mathrm{H}$, syn $)$, $3.85-3.64(\mathrm{~m}, 2 \mathrm{H}$, anti), $3.08(\mathrm{ddd}, J=14.0,5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $2.96-2.86(\mathrm{~m}$, 1 H, syn $), 2.75(\mathrm{~m}, 1 \mathrm{H}, \operatorname{syn} ; \mathrm{m}, 1 \mathrm{H}$, anti; overlap), $0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, anti), 0.91 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, s y n) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.61,176.28,172.88,172.72$, $145.89,145.73,135.21,135.07,131.97,131.92,131.78,131.56,130.67,130.59$,
128.82, 128.79, 127.90, 127.81, 127.57, 127.29, 126.05, 125.91, 124.97, 124.88, $124.56,121.28,121.12,107.62,107.52,79.74,79.67,67.28,66.46,62.12,61.63$, 44.37, 44.29, 40.53, 39.61, 13.75, 13.66. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaCl}$ $(\mathrm{M}+\mathrm{Na})^{+} 437.1244$, found 437.1248 .
(R)-ethyl 2-amino-2-((S)-1-benzyl-7-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4enoate (syn-3k)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{dd}, J=8.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.52$ (m, 1H), $5.41-5.13(\mathrm{~m}, 5 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dd}$, $J=13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}$, $2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.24,173.13,139.90,137.18,132.56,131.34,131.09,128.50,127.14,126.68$, 123.65, 123.53, 120.96, 115.66, 78.10, 65.12, 62.33, 45.07, 38.66, 13.97. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+} 437.1244$, found 437.1241.
(S)-ethyl 2-amino-2-((S)-1-benzyl-7-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4enoate (anti-3k)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.16(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{dd}, J=$ $8.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.09(\mathrm{~m}, 4 \mathrm{H}), 4.04-3.79$ $(\mathrm{m}, 2 \mathrm{H}), 3.02-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.3,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.65$, 173.22, 139.91, 137.04, 132.30, 131.24, 130.89, 128.49, 127.21, $126.84,124.11,123.45,121.55,115.46,76.37,65.27,61.71,44.97,37.21,13.72$. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+}$437.1244, found 437.1239.
(3S)-ethyl 1-benzyl-4'-methyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'carboxylate (4b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.09$ ($\mathrm{s}, 1 \mathrm{H}$), 7.64 - 7.24 (m, $6 \mathrm{H}), 7.24-6.91(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.65(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=6.9$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 187.01, 169.36, 168.13, 142.82, 135.46, $132.03,128.74,127.71,127.25,124.32,123.32,122.40,110.34,86.35,70.49,61.91$, 43.17, 19.74, 13.09. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 419.1041$, found 419.1033.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)acetate (syn-3a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H})$, 0.93 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.27$, $172.25,143.66,135.47,130.11,128.74,127.65,127.44,124.38$, $122.95,109.41,77.35,77.03,76.71,75.04,61.33,60.16,43.87,13.67$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$363.1321, found 363.1324.
(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)acetate (anti-3a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}$, $1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.13,171.11,143.39,135.49$, 129.92, 128.75, 128.43, 127.76, 127.71, 123.84, 123.01, 109.36, 77.35, 77.03, 76.71, 75.03, 61.77, 58.74, 44.15, 13.55. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 363.1321$, found 363.1327.

1,1'-dibenzyl-3,3'-dihydroxy-[3,3'-biindoline]-2,2'-dione (5a)

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.27$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (m, 6H), 7.00 ($\mathrm{s}, 4 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.46(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 174.89, 143.17, 135.67, $130.05,128.40,127.08,126.84,126.62,125.51,122.19$,
109.16, 77.30, 42.71. HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$499.1634, found 499.1646.

1-benzyl-3,3'-dihydroxy-1'-methyl-[3,3'-biindoline]-2,2'-dione

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.86-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $6.35(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 180.27, 179.74, 149.32, 148.27, 140.80, 135.45, 135.25, $133.67,132.27,131.88,131.80,131.61,131.25,129.97,127.43,127.32,114.24$, 113.82, 83.52, 81.64, 47.79, 31.00. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 423.1321$, found 423.1329 .

3,3'-dihydroxy-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H})$, $2.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 174.55, 143.87, $130.07,126.29,125.06,121.89,108.35,77.48,54.87,25.59$. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$
347.1008, found 347.1016.

X-ray sturucure of deriviate of product $\mathbf{4 b}$

CCDC 1502570 (syn-4b) contains the supplementary crystallographic data for this paper. This data can be obtained from www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement for z .	
Identification code	
Empirical formula	C21H20N2O4S
Formula weight	396.45
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=8.7225(7) \mathrm{A} & \text { alpha }=90 \text { deg. } \\ \mathrm{b}=10.1995(8) \mathrm{A} & \text { beta }=90 \text { deg. } \\ \mathrm{c}=22.6633(18) \mathrm{A} & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	2016.2(3) A^3
Z, Calculated density	4, $1.306 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.189 \mathrm{~mm}^{\wedge}$ - 1
F(000)	832
Crystal size	$0.48 \times 0.46 \times 0.14 \mathrm{~mm}$
Theta range for data collection	2.69 to 25.01 deg .
Limiting indices	$-10<=\mathrm{h}<=10,-12<=\mathrm{k}<=12,-26<=1<=26$
Reflections collected / unique	$23366 / 3548[\mathrm{R}(\mathrm{int})=0.0373]$
Completeness to theta $=25.01$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9740 and 0.9145
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3548 / 8 / 253
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.036
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0335, \mathrm{wR} 2=0.0838$
R indices (all data)	$\mathrm{R} 1=0.0364, \mathrm{wR} 2=0.0863$
Absolute structure parameter	0.52(8)
Largest diff. peak and hole	0.196 and -0.205 e. ${ }^{\wedge}$ - 3

4. References

1. Doyle, M. P., Mckervey, M. A. and Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, (1998).
2. Xu, J.; Zhang, W.; Liu, Y.; Zhu, S.; Liu, M.; Hua, X.; Chen, S.; Lu, T.; Du, D., RSC Advances 2016, 6, 18601-18606.

5. NMR spectra of the products

syn-3g

syn-3g

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{pmm})\end{array}$

6. Computational details

Methods

The density functional theory (DFT) calculations were carried out by us using the Gaussian 09 program package. ${ }^{[1]}$ The geometrical structures of intermediates were optimized using the M06 functional combined with the $6-311++\mathrm{G}^{* *}$ basis. ${ }^{[2-3]}$ The solvent effect of THF was considered by performing the single point calculations based on the gaseous structures using the SMD solvation model. ${ }^{[4]}$

References

[1] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[2] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
[3] Y. Zhao, D. G. Truhlar, Org. Lett.2006, 8, 5753.
[4] Marenich,A.V.;Cramer,C.J.;Truhlar,D.G. J. Phys.Chem.B. 2009, 113, 6378.

C
C

1. 48756400
-0. 42653400
2. 10427100
3. 09416400
-0. 38103100
4. 23303300
-0. 53837200
5. 54317100
6. 05428800
7. 26923200
8. 43414500
9. 77006200
10. 65730700
11. 37586500
12. 68110700
13. $26997800 \quad 0.42882100 \quad 1.85144600$
14. 89136200
-1. 54178500
15. 15488300
16. 51258200
-2. 17474800
-0.16377500
-1. 62448900
17. 57394200
18. 14187400
-0. 20199100
19. 17184900
20. 42014800
21. 26620900
22. 06235100
23. 27081800
24. 35546400
25. 34045300
26. 79057000
-1. 85673500
-1. 79967300
27. 50897500
-2. 12331700
-2. 12351900
28. 53213200
-1. 90371900
-2.69188700
-0. 13540000
-2. 84943600
-0. 75975100
0.05282800
-4. 10433900
-0. 69661900
29. 65938600
-2. 55017200
30. 13084200
-0. 97954900
-5. 05600200
31. 22683900
32. 23835400
-4. 33452300
-1. 38233300
33. 47747800
-3. 49959600
34. 05879600
-1. 39401000
-1. 56526000
35. 10138600
-1. 44959200
-4. 75448100
36. 11029400
-0. 79258800
-6. 03151600
37. 26131400
38. 72373500
-3. 25088600
39. 75064400
-2. 19833300
-5. 49266700
40. 84146600
-1. 12188400
-0. 47913900
-1. 39586100
41. 46136100
42. 25648900
-3. 16067400
-0. 82340700
43. 32922100
-0. 81912000
-1. 37063400
44. 48146500
45. 33837800
-1. 67107800
46. 98141500
47. 50300500
-1. 17577600
48. 38722400
49. 29671800
-2. 20959000
50. 05179800
51. 57396400
-1. 09039000
52. 72338800
53. 86273800
-2. 09969900
54. 15955400
55. 23296000
-0. 54189700
56. 73953600
57. 70441800
-0. 36832900
58. 07168200
59. 57095700
-0. 28145100

H	2.02498400	3.38101700	0.64049100
H	2.64632200	4.01564400	-0.90264500
0	2.86676100	-2.31750000	0.49743600
N	3.74543800	-0.58042800	-1.30613200
H	4.04580500	-1.33138200	-0.65584300
H	2.09642100	-1.63033400	-2.07215100

C	1. 17244200	-0. 52490800	1. 15765100
C	-0.21168100	-0.40164800	1. 29440500
C	-0.78012600	0. 56305400	2. 11264500
C	0. 08567800	1. 40351100	2. 81717600
C	1. 46827400	1. 27162200	2. 71605800
C	2. 01573500	0. 28980600	1. 88444100
C	1. 48289500	-1.67392000	0. 21415400
C	0. 05325800	-2. 15946800	-0.16587800
H	-1.86034400	0. 66882900	2. 19816400
H	-0.33477700	2. 17081600	3. 46546000
H	2. 11980200	1. 92503800	3. 29445300
H	3. 09695400	0. 15359700	1. 81474200
C	-2.28248300	-1.61416400	0. 49091700
H	-2.63174300	-1.87278000	1. 50397000
H	-2. 40849200	-2. 50955600	-0.13465400
C	-3. 09455000	-0.46649700	-0. 05187200
C	-4.34258900	-0.18300400	0.50138500
C	-2.63504000	0. 29846300	-1. 12374700
C	-5. 13180100	0. 83991200	-0.01382600
H	-4. 69961100	-0.77370900	1. 34688400
C	-3.42117700	1. 32509500	-1.63388700
H	-1.65157200	0.09822900	-1.54894700
C	-4.67136700	1.59719800	-1.08541800
H	-6. 10525500	1. 04891900	0. 42728700
H	-3. 05084200	1. 91870100	-2. 46833000
H	-5. 28265700	2. 40300500	-1. 48877200
N	-0.85818000	-1. 37620000	0.52010400
0	-0.22544500	-3. 04893500	-0.94085400
C	2. 04096000	-1. 08698100	-1. 26890800
C	1. 66892600	0. 32334100	-1. 49141800

0	2.64620100	1.17553400	-1.11886900
0	0.56891000	0.66647900	-1.85298000
C	2.22360700	2.54025600	-0.92266000
H	1.86695100	2.93743600	-1.88078200
H	1.37536800	2.52957400	-0.22421800
C	3.40131300	3.30412900	-0.38274400
H	3.12846600	4.35396600	-0.22707600
H	3.72721000	2.89204900	0.58029900
H	4.24718300	3.27231800	-1.08010000
O	2.35387500	-2.57157700	0.59465300
N	3.49394700	-1.32962900	-1.11415300
H	3.95137200	-1.68843900	-1.95227800
H	3.95834900	-0.46541100	-0.81637300
H	1.63084900	-1.76446100	-2.02159300
H	3.47045500	-2.00411100	-0.37623600

[^0]: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 192.43,175.92,171.07,148.10,140.54,137.41$,

