Supporting Information

Tertiary amine self-catalyzed intramolecular C_{sp3}-H functionalization with *in situ* generated allenes for the formation of 3-alkenyl indolines

Yulei Zhao, Murong Xu, Zhong Zheng, Yang Yuan and Yanzhong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

Contents:	Page
General methods	S1
Optimization of the reaction conditions about Pd catalysts	S2
Synthesis and characterization of 1	S2-S14
Synthesis and characterization of 3	S14-S27
Synthesis and characterization of 4a	S27
Synthesis and characterization of 5a	S28
References	S28
NMR spectra of new compounds (1, 3, 4a and 5a)	S29-S63
X-ray crystal structure of 3a	S64-S67

General Methods. All reactions were carried out under N₂ except noted. Anhydrous MeCN were prepared by distillation from P₂O₅. Anhydrous toluene, THF, 1,4dioxane, (MeOCH₂)₂ and MeO'Bu was distilled from sodium and benzophenone. MeOH were prepared by distillation from Mg and I₂. Unless noted, all commercial reagents were used without further purification. Column chromatographic purification of products was carried out using silica gel (300-400 mesh). NMR spectra were recorded at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) respectively, referenced to tetramethylsilane ($\delta = 0.00$ ppm) and the residual solvent peak ($\delta = 77.00$ ppm) in CDCl₃ or (CD₃)₂SO (containing 0.03% TMS) solutions. *J* values are in hertz. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers.

O O O O O O O O O O O O O O O O O O O	B(OH) ₂ Cat. (5 mol %) 1,4-dioxane, 100 °C, 12 h 2a	Ph Ph Ph Ph Ph Ph Ph Ph Ph OMe
Entry	Catalyst	Yield (%)
1	Pd(OAc) ₂	-
2	Pd ₂ (dba) ₃	-
3	$Pd(Ph_3P)_2Cl_2$	trace
4	Pd(Ph ₃ P) ₄	90

 Table S1 Optimization of the reaction conditions with Pd catalysts

We screened common palladium catalysts, such as $Pd(OAc)_2$, $Pd_2(dab)_3$, $PdCl_2(PPh_3)_2$ and $Pd(PPh_3)_4$. However, no desired product was detected with 5 mol% of $Pd(OAc)_2$ or $Pd_2(dab)_3$ and a large number of starting material **1a** remained unreacted. With 5 mol% of $PdCl_2(PPh_3)_2$ as the catalyst, only trace of **3a** was generated. Interestingly, **3a** could be obtained in a 90% yield with 5 mol% of Pd (PPh_3)_4. So, we chose Pd (PPh_3)_4 as the catalyst for further investigation.

Synthesis and characterization of 1

The intermediate **B** was prepared according to the literature methods.^{1,2}

Synthesis of the intermediate C: Under an atmosphere of N₂, to a 100 mL Schlenk tube were added **B** (1.29 g, 10.7 mmol), the corresponding iodobenzene (1.2 eq.), CuI (203.8 mg, 0.1 eq.), Glycine (160.6 mg, 0.2 eq.), K₂CO₃ (2.96 g, 2.0 eq.) and DMF (50 mL). Then, the reaction temperature was increased to 130 °C. After C was almost consumed by TLC analysis, the reaction was cooled to room temperature, and 100 mL ethyl acetate was added. Subsequently, the organic layers were washed with brine (80 mL×5) and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 40/1-30/1 as the eluent afforded C with 47-70% yields

Synthesis of the intermediate **D**: Under an atmosphere of N₂, to a 100 mL Schlenk tube were added **C** (6.6 mmol) and DMF (50 mL). After the mixture was cooled to 0 °C, NaH (345.0 mg, 1.3 eq.) was added. 20 min latter, MeI or the corresponding bromide (1.2 eq.) was added dropwise. The mixture was slowly warmed to room temperature. About 30 min latter, after full conversion of **C** by TLC analysis, the resulting mixture was quenched with saturated solution of ammonium chloride, and extracted with ethyl acetate (100 mL). The organic layers were washed with brine and dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel with petroleum ether/ethyl acetate = 30/1-10/1 as the eluent afforded the intermediate **D** with 80-99% yields.

Synthesis of the intermediate D-1e (only for 1e): Under an atmosphere of N_2 , to a 100 mL Schlenk tube were added B-1a (1.21 g, 20 mmol), DMF (40 mL) and benzyl bromide (3 mL, 2.5 eq.). After the mixture was cooled to 0 °C, NaH (1.0 g, 2.5

eq.) was added. 20 min latter, the mixture was slowly warmed to room temperature. After full conversion by TLC analysis, the resulting mixture was quenched with saturated solution of ammonium chloride, and extracted with ethyl acetate (150 mL). The organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel with petroleum ether/ethyl acetate = 150/2 as the eluent afforded the intermediate **D-1e** (yellow oil) with 72% yield.

Synthesis of the intermediate E: To a solution of the corresponding terminal alkyne (1.3 eq.) in THF (40 mL) in Schlenk tube was added *n*-BuLi (2.5 M, 3.2 mL, 1.3 eq.) at -78 °C and then stirred at -78 °C under nitrogen for 30 min. Then, a solution of **D** in THF (5 mL) was added dropwise and stirred at -78 °C for 1-2 h. After full conversion of **D** monitored by thin-layer chromatography, the resulting mixture was quenched with saturated solution of ammonium chloride, and extracted with ethyl acetate (50 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel with petroleum ether/ethyl acetate = 20:1-5:1 as the eluent afforded the intermediate **E** with 71-93% yields.

Synthesis of the substrate 1: To a solution of the corresponding intermediate E (1.5 mmol) in DCM (40 mL) in Schlenk tube was added DMAP (17.0 mg, 0.1 eq.), pyridine (1.2 mL, 10.0 eq.) at 0 °C. Then ClCO₂Me (352 uL, 3.0 eq.) was added dropwise at 0 °C under nitrogen. The mixture was slowly warmed to room temperature. About 30 min latter, after full conversion of E by TLC analysis, the resulting mixture was quenched with saturated solution of ammonium chloride, and extracted with ethyl acetate (100 mL). The organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel with petroleum ether/ethyl acetate/Et₃N = 100/10/1 as the eluent afforded the substrate 1.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1a): yellow oil, 85% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 7.6, 1.2 Hz, 1H), 7.41-7.18 (m, 13H), 6.80 (s, 1H), 6.70 (d, J = 9.2 Hz, 2H), 6.63 (d, J = 9.2 Hz, 2H), 4.83 (s, 2H), 3.69 (s, 3H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.76, 153.23, 147.31, 143.48, 138.91, 135.22, 132.05, 130.92, 129.67, 128.88, 128.66, 128.60, 128.36, 127.41, 127.00, 126.83, 122.27, 117.98, 114.42, 87.34, 85.42, 65.97, 57.35, 55.35, 54.74; HRMS (ESI) calcd for C₃₁H₂₈NO₄ [M+H]⁺: 478.2013, found 478.2010.

1-(2-(benzyl(p-tolyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1b): yellowish oil, 84% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 7.2, 1.2 Hz, 1H), 7.41-7.18 (m, 13H), 6.92 (d, J = 8.4 Hz, 2H), 6.73 (s, 1H), 6.55 (d, J = 8.4 Hz, 2H), 4.86 (s, 2H), 3.66 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.74, 146.98, 146.66, 138.88, 135.69, 132.07, 131.06, 129.78, 129.63, 129.39, 128.90, 128.68, 128.37, 127.82, 127.38, 127.29, 126.99, 122.31, 115.70, 100.64, 87.46, 85.42, 66.04, 56.71, 54.74, 20.05; HRMS (ESI) calcd for C₃₁H₂₈NO₃ [M+H]⁺: 462.2064, found 462.2061.

1-(2-(benzyl(phenyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (**1c**): yellowish oil, 85% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 7.2, 1.6 Hz, 1H), 7.46-7.18 (m, 13H), 7.16-7.08 (m, 2H), 6.78-6.71 (m, 1H), 6.69 (s, 1H), 6.62 (d, J = 8.0 Hz, 2H), 4.91 (s, 2H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.75, 149.08, 146.07, 138.66, 135.86, 132.08, 131.19, 129.95, 129.76, 129.10, 128.95, 128.72, 128.40, 127.62, 127.39, 127.07, 122.27, 118.41, 115.11, 87.59, 85.32, 66.01, 56.44, 54.78; HRMS (ESI) calcd for C₃₀H₂₆NO₃ [M+H]⁺: 448.1907, found 448.1904.

1-(2-(benzyl(4-chlorophenyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1d): yellowish oil, 86% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J

= 7.2, 2.0 Hz, 1H), 7.44-7.21 (m, 13H), 7.05 (d, J = 9.2 Hz, 2H), 6.65 (s, 1H), 6.53 (d, J = 9.2 Hz, 2H), 4.88 (s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ154.77, 147.60, 145.64, 138.12, 135.73, 132.06, 131.31, 130.06, 129.61, 129.05, 128.93, 128.83, 128.45, 127.95, 127.27, 123.32, 122.09, 116.27, 87.78, 85.01, 65.90, 56.52, 54.88; HRMS (ESI) calcd for C₃₀H₂₅ClNO₃ [M+H]⁺: 482.1517, found 482.1515.

1-(2-(dibenzylamino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1e): yellow oil, 77% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.44-7.13 (m, 18H), 7.05 (d, *J* = 7.6 Hz, 1H), 4.25-3.85 (m, 4H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.12, 149.14, 137.88, 133.81, 132.09, 129.56, 129.32, 129.04, 128.84, 128.44, 128.38, 127.32, 125.36, 124.08, 122.41, 87.03, 86.17, 65.43, 58.13, 54.83.

1-(2-((4-methoxyphenyl)(4-methylbenzyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1f): yellowish oil, 78% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.40-7.21 (m, 10H), 7.09 (d, J = 7.6 Hz, 2H), 6.78 (s, 1H), 6.70 (d, J = 9.2 Hz, 2H), 6.63 (d, J = 8.8 Hz, 2H), 4.79 (s, 2H), 3.69 (s, 3H), 3.67 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.78, 153.20, 147.31, 143.63, 136.58, 135.82, 135.28, 132.08, 130.90, 129.68, 129.35, 128.88, 128.64, 128.36, 127.45, 126.78, 122.35, 117.99, 114.46, 87.31, 85.51, 66.00, 57.13, 55.39, 54.73, 20.79; HRMS (ESI) calcd for C₃₂H₃₀NO₄ [M+H]⁺: 492.2169, found 492.2166.

1-(2-((4-bromobenzyl)(4-methoxyphenyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1g): yellowish oil, 83% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.6 Hz, 1H), 7.44-7.16 (m, 12H), 6.77 (s, 1H), 6.70 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 4.76 (s, 2H), 3.70 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.80, 153.54, 147.25, 143.24, 137.99, 135.25, 132.08, 131.79, 130.97, 129.69, 129.25, 128.96, 128.40, 126.99, 122.22, 120.78, 118.27, 114.54, 87.46, 85.29, 65.96, 56.91, 55.40, 54.81; HRMS (ESI) calcd for C₃₁H₂₇BrNO₄ [M+H]⁺: 556.1118, found 556.1116.

1-(2-((4-methoxyphenyl)(methyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1h): yellowish oil, 89% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.2 Hz, 1H), 7.43-7.25 (m, 7H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.79 (s, 1H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H), 3.73 (s, 3H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.93, 152.95, 148.29, 144.66, 135.54, 132.09, 131.10, 129.24, 128.94, 128.42, 127.98, 126.88, 122.34, 116.48, 114.54, 87.41, 85.51, 66.04, 55.55, 54.82, 40.75; HRMS (ESI) calcd for C₂₅H₂₄NO₄ [M+H]⁺: 402.1700, found 402.1696.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)-3-(4-methoxyphenyl)prop-2-yn-1yl methyl carbonate (1i): yellowish oil, 62% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.2 Hz, 1H), 7.40-7.19 (m, 10H), 6.83-6.74 (m, 3H), 6.70 (d, *J* = 9.2 Hz, 2H), 6.62 (d, *J* = 9.2 Hz, 2H), 4.83 (s, 2H), 3.79 (s, 3H), 3.69 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.25, 154.80, 153.20, 147.30, 143.51, 138.97, 135.47, 133.62, 130.84, 129.68, 128.66, 127.43, 126.98, 126.83, 117.93, 114.44, 113.92, 87.45, 84.09, 66.17, 57.33, 55.39, 55.14, 54.70; HRMS (ESI) calcd for C₃₂H₃₀NO₅ [M+H]⁺: 508.2118, found 508.2117.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)-3-(p-tolyl)prop-2-yn-1-yl methyl carbonate (1j): yellowish oil, 67% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 7.6 Hz, 1H), 7.40-7.33 (m, 3H), 7.33-7.27 (m, 3H), 7.25-7.15 (m, 4H), 7.07 (d, J = 7.6 Hz, 2H), 6.78 (s, 1H), 6.70 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 9.2 Hz, 2H), 4.83 (s, 2H), 3.70 (s, 3H), 3.66 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.80, 153.24, 147.32, 143.53, 139.12, 138.98, 135.43, 132.00, 130.87, 129.72, 129.14, 128.67, 127.46, 127.01, 126.85, 119.25, 117.95, 114.48, 87.60, 84.77, 66.12, 57.36, 55.41, 54.72, 21.22; HRMS (ESI) calcd for C₃₂H₃₀NO₄ [M+H]⁺: 492.2169, found 492.2168.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)-3-(4-chlorophenyl)prop-2-yn-1-yl methyl carbonate (1k): yellowish oil, 85% yield; ¹H NMR (400 MHz, CDCl₃): δ

7.81 (d, J = 7.2 Hz, 1H), 7.40-7.18 (m, 12H), 6.79 (s, 1H), 6.69 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 8.8 Hz, 2H), 4.90-4.75 (m, 2H), 3.69 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.76, 153.32, 147.36, 143.52, 138.89, 135.02, 133.30, 130.99, 129.54, 128.73, 128.68, 128.60, 127.44, 127.04, 126.84, 120.76, 118.14, 114.45, 86.42, 86.12, 65.88, 57.44, 55.38, 54.80; HRMS (ESI) calcd for C₃₁H₂₇CINO₄ [M+H]⁺: 512.1623, found 512.1620.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)-3-(naphthalen-2-yl)prop-2-yn-1-yl methyl carbonate (11): white solid, 65% yield, mp 41-43 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 7.5 Hz, 1H), 7.85-7.62 (m, 4H), 7.55-7.13 (m, 11H), 6.86 (s, 1H), 6.71 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 4.85 (s, 2H), 3.69 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.82, 153.27, 147.38, 143.54, 138.96, 135.28, 133.17, 132.97, 132.25, 130.93, 129.62, 128.70, 128.65, 128.53, 128.00, 127.93, 127.45, 127.03, 126.88, 126.73, 119.54, 118.09, 114.46, 87.67, 85.67, 66.10, 57.41, 55.36, 54.79; HRMS (ESI) calcd for C₃₅H₃₀NO₄ [M+H]⁺: 528.2169, found 528.2163.

1-(2-((4-bromobenzyl)(p-tolyl)amino)phenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1m): yellowish oil, 85% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.44-7.18 (m, 12H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 6.52 (d, *J* = 8.4 Hz, 2H), 4.79 (s, 2H), 3.67 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.74, 146.72, 146.59, 137.91, 135.63, 132.06, 131.77, 131.13, 129.77, 129.70, 129.15, 128.96, 128.39, 128.24, 127.43, 122.17, 120.75, 115.89, 87.55, 85.24, 65.96, 56.21, 54.80, 20.05; HRMS (ESI) calcd for C₃₁H₂₇BrNO₃ [M+H]⁺: 540.1169, found 540.1162.

1-(2-(benzyl(4-methoxyphenyl)amino)phenyl)oct-2-yn-1-yl methyl carbonate (1n): yellowish oil, 76% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 6.4 Hz, 1H), 7.40-7.16 (m, 8H), 6.69 (d, J = 9.2 Hz, 2H), 6.60-6.50 (m, 3H), 4.79 (s, 2H), 3.71 (s, 3H), 3.63 (s, 3H), 2.21-2.10 (m, 2H), 1.49-1.38 (m, 2H), 1.34-1.20 (m, 4H), 0.86 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.80, 153.09, 147.28,

143.50, 138.98, 135.84, 130.73, 129.66, 128.74, 128.63, 127.36, 126.95, 126.79, 117.70, 114.37, 88.95, 65.99, 57.26, 55.41, 54.60, 30.75, 27.72, 21.84 18.51, 13.63; HRMS (ESI) calcd for C₃₀H₃₄NO₄ [M+H]⁺: 472.2482, found 472.2481.

1-(2-(benzyl(4-methoxyphenyl)amino)-4-chlorophenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (10): yellow solid, 81% yield, mp 34-36 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 1H), 7.40-7.18 (m, 12H), 6.80-6.60 (m, 5H), 4.58-4.54 (m, 2H), 3.70 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.67, 154.01, 148.63, 142.90, 138.41, 136.10, 133.50, 132.08, 130.87, 129.03, 128.78, 128.41, 128.03, 127.48, 127.22, 126.73, 122.10, 119.33, 114.56, 87.48, 84.97, 65.45, 57.66, 55.34, 54.83.

1-(2-(benzyl(phenyl)amino)-5-methoxyphenyl)-3-phenylprop-2-yn-1-yl methyl carbonate (1p): yellow oil, 95% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.20 (m, 11H), 7.17-7.08 (m, 3H), 6.93 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.76-6.69 (m, 1H), 6.64 (s,

1H), 6.60 (d, *J* = 8.0 Hz, 2H), 4.87 (s, 2H), 3.85 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.85, 154.70, 149.39, 138.72, 138.54, 137.12, 132.06, 131.15, 129.06, 128.97, 128.69, 128.40, 127.46, 127.04, 122.21, 117.94, 116.87, 114.51, 114.21, 87.69, 85.19, 66.03, 56.36, 55.43, 54.83.

Synthesis and characterization of 3

To a solution of **1** (0.2 mmol) in 1,4-dioxane (4 mL) in Schlenk tube was added **2** (2.0 eq.) and Pd(Ph₃P)₄ (11.6 mg, 0.05 eq.) at room temperature under nitrogen and then stirred at 100 °C. After the corresponding reaction time (see Table 2 in the text), the solution was cooled to room temperature and concentrated under reduced pressure directly. The residue was purified by flash chromatography on silica gel with petroleum ether/DCM = 20/1-5/1 as the eluent afforded the 3-alkenyl indoline **3**.

(2S,3S)-3-(2,2-diphenylvinyl)-1-(4-methoxyphenyl)-2-phenylindoline (3a)

White solid, 92% yield (88 mg), mp 170-172 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.16 (m, 10H), 7.14-7.09 (m, 1H), 7.09-6.96 (m, 6H), 6.84-6.71 (m, 3H), 6.67 (d, J = 7.6 Hz, 1H), 6.59 (d, J = 7.2 Hz, 2H), 6.31 (d, J = 10.4 Hz, 1H), 4.99 (d, J = 10.0 Hz, 1H), 4.02 (dd, J = 10.0, 10.0 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.56, 150.76, 145.71, 142.10, 140.87, 139.43, 137.02, 131.72, 129.87, 128.73, 128.57, 128.36, 128.18, 127.82, 127.80, 127.62, 127.33, 127.21, 125.12, 124.57, 119.30, 114.67, 108.09, 76.68, 55.34, 53.03; HRMS (ESI) calcd for C₃₅H₂₉NNaO [M+Na]⁺: 502.2141, found 502.2154.

(2S,3S)-3-(2,2-diphenylvinyl)-2-phenyl-1-(p-tolyl)indoline (3b)

White solid, 89% yield (83 mg), mp 165-167 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.18 (m, 10H), 7.16-6.97 (m, 9H), 6.85 (d, *J* = 7.6 Hz, 1H), 6.81-6.72 (m, 1H), 6.62 (d, *J* = 7.2 Hz, 2H), 6.31 (d, *J* = 10.0 Hz, 1H), 5.07 (d, *J* = 9.6 Hz, 1H), 4.01 (dd, *J* = 10.0, 10.0 Hz, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.77, 145.53, 142.09, 141.06, 141.01, 139.46, 133.05, 131.92, 129.98, 129.89, 128.80, 128.57, 128.40, 128.31, 127.91, 127.80, 127.76, 127.63, 127.49, 127.24, 124.73, 122.54, 119.50, 108.14, 75.62, 53.05, 20.70; HRMS (ESI) calcd for C₃₅H₃₀N [M+H]⁺: 464.2373, found 464.2353.

(2S,3S)-3-(2,2-diphenylvinyl)-1,2-diphenylindoline (3c)

White solid, 71% yield (64 mg), mp 166-168 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.18 (m, 12H), 7.17-7.03 (m, 7H), 7.00-6.90 (m, 2H), 6.87-6.75 (m, 1H), 6.66 (d, J = 7.2 Hz, 2H), 6.31 (d, J = 10.4 Hz, 1H), 5.11 (d, J = 9.2 Hz, 1H), 4.01 (dd, J = 9.6, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.09, 145.43, 143.51, 142.05, 140.98, 139.46, 132.10, 129.90, 129.34, 128.86, 128.59, 128.44, 128.30, 127.83, 127.78, 127.75, 127.64, 127.57, 127.28, 124.90, 123.17, 121.99, 119.82, 108.25, 75.24, 53.02; HRMS (ESI) calcd for C₃₄H₂₈N [M+H]⁺: 450.2216, found 450.2221.

(2S,3S)-1-(4-chlorophenyl)-3-(2,2-diphenylvinyl)-2-phenylindoline (3d)

White solid, 54% yield (52 mg), mp 182-184 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.20 (m, 10H), 7.20-7.00 (m, 9H), 6.91 (d, J = 8.0 Hz, 1H), 6.86-6.79 (m, 1H), 6.63 (d, J = 7.2 Hz, 2H), 6.28 (d, J = 10.0 Hz, 1H), 5.06 (d, J = 9.2 Hz, 1H), 4.02 (dd, J =10.0, 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.65, 145.75, 142.05, 141.96, 140.46, 139.37, 132.14, 129.85, 129.43, 128.97, 128.60, 128.45, 128.36, 128.04, 128.00, 127.90, 127.76, 127.63, 127.32, 127.20, 125.00, 123.22, 120.22, 108.10, 75.33, 52.99; HRMS (ESI) calcd for C₃₄H₂₇ClN [M+H]⁺: 484.1827, found 484.1830.

(2S,3S)-1-benzyl-3-(2,2-diphenylvinyl)-2-phenylindoline (3e)

White solid, 74% yield (96.9 mg), mp 149-151 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.35 (m, 2H), 7.35-7.29 (m, 3H), 7.28-7.19 (m, 10H), 7.16-7.10 (m, 1H), 7.09-6.94 (m, 4H), 6.77-6.68 (m, 1H), 6.54 (d, *J* = 7.2 Hz, 2H), 6.40 (d, *J* = 7.6 Hz, 1H), 6.19 (d, *J* = 10.4 Hz, 1H), 4.43 (d, *J* = 11.2 Hz, 1H), 4.35 (d, *J* = 15.6 Hz, 1H), 4.10-3.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.06, 145.51, 141.99, 140.43, 139.30, 138.37, 131.88, 129.74, 128.73, 128.59, 128.47, 128.37, 128.28, 128.17, 128.04, 127.84, 127.57, 127.44, 127.19, 127.09, 127.00, 124.04, 118.60, 108.38, 76.84, 52.55, 51.36; HRMS (ESI) calcd for $C_{35}H_{30}N$ [M+H]⁺: 464.2373, found 464.2381.

(2S,3S)-3-(2,2-diphenylvinyl)-1-(4-methoxyphenyl)-2-(p-tolyl)indoline (3f)

White solid, 94% yield (93 mg), mp 168-170 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.21 (m, 5H), 7.20-7.11 (m, 3H), 7.10-6.96 (m, 8H), 6.81-6.71 (m, 3H), 6.66 (d, J =7.6 Hz, 1H), 6.60 (d, J = 7.2 Hz, 2H), 6.30 (d, J = 10.4 Hz, 1H), 4.96 (d, J = 10.0 Hz, 1H), 4.01 (dd, J = 10.0, 10.0 Hz, 1H), 3.71 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.49, 150.74, 145.60, 142.20, 139.49, 137.78, 137.40, 137.06, 131.81, 129.96, 129.39, 128.55, 128.31, 128.08, 127.76, 127.64, 127.50, 127.19, 125.07, 124.56, 119.21, 114.64, 108.01, 76.41, 55.34, 52.99, 21.06; HRMS (ESI) calcd for C₃₆H₃₂NO [M+H]⁺: 494.2478, found 494.2491.

(3g): white solid, 84% yield (94 mg), mp 206-208 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.4 Hz, 2H), 7.31-7.21 (m, 5H), 7.20-7.00 (m, 9H), 6.86-6.71 (m, 3H), 6.70-6.52 (m, 3H), 6.29 (d, J = 10.0 Hz, 1H), 4.92 (d, J = 10.0 Hz, 1H), 3.99 (dd, J = 10.0, 10.0 Hz, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.82, 150.73, 146.17, 141.86, 140.11, 139.32, 136.75, 131.85, 131.49, 129.87, 129.76, 128.62, 128.46, 127.93, 127.58, 127.36, 126.77, 125.28, 124.52, 121.58, 119.54, 114.79, 108.23, 76.20, 55.38, 52.99; HRMS (ESI) calcd for C₃₅H₂₉BrNO [M+H]⁺: 558.1427, found 558.1423.

(2S,3S)-2-(4-bromophenyl)-3-(2,2-diphenylvinyl)-1-(4-methoxyphenyl)indoline

(2S,3S)-3-(2,2-bis(4-methoxyphenyl)vinyl)-1-(4-methoxyphenyl)-2-phenylindoline (3i): white solid, 76% yield (82 mg), mp 84-86 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.15 (m, 7H), 7.12-6.96 (m, 4H), 6.89-6.70 (m, 5H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 2H), 6.49 (d, *J* = 7.6 Hz, 2H), 6.17 (d, *J* = 10.4 Hz, 1H), 4.97 (d, *J* = 10.4 Hz, 1H), 4.03 (dd, *J* = 10.0, 10.0 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.61, 158.91, 156.52, 150.73, 144.72, 141.05, 137.10, 135.19, 132.04, 132.01, 130.99, 128.81, 128.71, 128.26, 128.21, 125.49, 125.11, 124.55, 119.26, 114.65, 113.82, 113.65, 108.02, 76.77, 55.36, 55.20, 53.05; HRMS (ESI) calcd for C₃₇H₃₃NNaO₃ [M+Na]⁺: 562.2353, found 562.2358.

(2S,3S)-3-(2,2-di-p-tolylvinyl)-1-(4-methoxyphenyl)-2-phenylindoline (3j)

White solid, 89% yield (90 mg), mp 152-154 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.14 (m, 7H), 7.11-6.97 (m, 6H), 6.86 (d, *J* = 7.2 Hz, 2H), 6.81-6.71 (m, 3H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.46 (d, *J* = 7.2 Hz, 2H), 6.24 (d, *J* = 10.0 Hz, 1H), 4.98 (d, *J* = 10.4 Hz, 1H), 4.03 (dd, *J* = 10.0, 10.0 Hz, 1H), 3.71 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.52, 150.71, 145.45, 140.99, 139.62, 137.62, 137.13, 136.76, 136.62, 131.93, 129.77, 129.24, 129.02, 128.70, 128.26, 128.20, 127.76, 127.56, 126.41, 125.08, 124.61, 119.28, 114.66, 108.04, 76.73, 55.35, 52.98, 20.98, 20.95; HRMS (ESI) calcd for C₃₇H₃₄NO [M+H]⁺: 508.2635, found 508.2635.

(2S,3S)-3-(2,2-bis(4-chlorophenyl)vinyl)-1-(4-methoxyphenyl)-2-phenylindoline

(**3k**): white solid, 99% yield (109 mg), mp 163-165 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.19 (m, 7H), 7.19-7.10 (m, 2H), 7.10-6.92 (m, 6H), 6.85-6.71 (m, 3H), 6.66 (d, *J* = 7.2 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 2H), 6.30 (d, *J* = 10.0 Hz, 1H), 4.96 (d, *J* = 10.0 Hz, 1H), 3.98 (dd, *J* = 10.0, 10.0 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.74, 150.86, 143.58, 140.73, 140.17, 137.36, 136.87, 133.96, 133.54, 131.19, 128.83, 128.73, 128.60, 128.32, 128.18, 128.03, 125.29, 124.36, 119.37, 114.73, 108.29, 76.64, 55.35, 53.16; HRMS (ESI) calcd for C₃₅H₂₈Cl₂NO [M+H]⁺: 548.1542, found 548.1542.

(31): white solid, 85% yield (99 mg), mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.70 (m, 3H), 7.69-7.52 (m, 4H), 7.49-7.37 (m, 5H), 7.37-7.24 (m, 5H), 7.15-7.01 (m, 4H), 6.97 (s, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.84-6.71 (m, 3H), 6.66 (d, J = 7.6 Hz, 1H), 6.54 (d, J = 10.4 Hz, 1H), 5.09 (d, J = 10.0 Hz, 1H), 4.19 (dd, J = 10.0, 10.0 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.61, 150.78, 145.58, 141.05, 139.42, 137.02, 136.85, 133.68, 133.38, 133.20, 132.79, 131.60, 128.93, 128.80, 128.59, 128.52, 128.42, 128.35, 128.28, 128.16, 128.12, 127.97, 127.87, 127.24, 126.58, 126.37, 126.21, 126.18, 125.53, 125.20, 124.62, 119.34, 114.69, 108.15, 76.72, 55.34, 53.17; HRMS (ESI) calcd for C₄₃H₃₃NNaO [M+Na]⁺: 602.2454, found 602.2460.

(2S,3S)-3-(2,2-di(naphthalen-2-yl)vinyl)-1-(4-methoxyphenyl)-2-phenylindoline

(2S,3S)-2-(4-bromophenyl)-3-(2,2-diphenylvinyl)-1-(p-tolyl)indoline (3m)

White solid, 75% yield (81 mg), mp 210-212 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.30-7.22 (m, 5H), 7.19-6.95 (m, 11H), 6.85-6.75 (m, 2H), 6.66 (d, *J* = 6.8 Hz, 2H), 6.29 (d, *J* = 10.4 Hz, 1H), 5.01 (d, *J* = 10.0 Hz, 1H), 3.98 (dd, *J* = 10.0, 10.0 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.76, 146.03,

141.84, 140.80, 140.22, 139.34, 133.49, 131.92, 131.67, 130.11, 129.77, 129.63, 128.62, 128.49, 128.42, 127.94, 127.59, 127.38, 126.91, 124.67, 122.71, 121.52, 119.72, 108.22, 75.11, 53.02, 20.72; HRMS (ESI) calcd for C₃₅H₂₉BrN [M+H]⁺: 542.1478, found 542.1473.

(2S,3S)-1-(4-methoxyphenyl)-3-(2-(4-methoxyphenyl)-2-phenylvinyl)-2-

phenylindoline (3n): white solid, 91% yield (1.2/1.0, 93 mg), mp 65-68 °C; ¹H NMR (400 MHz, CDCl₃): major isomer: δ 7.35-7.15 (m, 9H), 7.14-7.00 (m, 5H), 6.84-6.72 (m, 4H), 6.66 (d, J = 8.0 Hz, 2H), 6.62-6.54 (m, 2H), 6.21 (d, J = 10.4 Hz, 1H), 4.97 (d, J = 10.4 Hz, 1H), 3.98 (dd, J = 10.0, 10.0 Hz, 1H), 3.79 (s, 3H), 3.72 (s, 3H); minor isomer: 6.50 (d, J = 8.4 Hz, 2H), 6.27 (d, J = 10.4 Hz, 1H), 4.98 (d, J = 10.0 Hz, 1H), 4.07 (dd, J = 10.0, 10.0 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H) other peaks are overlapped with the signals of the major isomer; ¹³C NMR (100 MHz, CDCl₃): δ 159.65, 158.99, 156.58, 156.56, 150.78, 150.74, 145.32, 145.13, 142.56, 141.01, 140.96, 139.70, 137.09, 134.79, 131.94, 131.85, 131.04, 129.86, 128.75, 128.71, 128.54, 128.33, 128.30, 128.22, 128.20, 127.82, 127.78, 127.75, 127.71, 127.31, 127.13, 125.55, 125.16, 125.12, 124.58, 119.28, 114.68, 113.88, 113.71, 108.09,

108.06, 76.78, 76.74, 55.36, 55.20, 53.06, 53.02; HRMS (ESI) calcd for C₃₆H₃₂NO₂ [M+H]⁺: 510.2428, found 510.2439.

(2S,3S)-3-(2-(4-chlorophenyl)-2-phenylvinyl)-1-(4-methoxyphenyl)-2-

phenylindoline (30): white solid, 82% yield (1.2/1.0, 84 mg), mp 96-99 °C; ¹H NMR (400 MHz, CDCl₃): major isomer: δ 7.35-7.12 (m, 10H), 7.11-6.95 (m, 6H), 6.83-6.70 (m, 3H), 6.66 (d, J = 7.6 Hz, 1H), 6.56 (d, J = 7.2 Hz, 2H), 6.28 (d, J = 10.4 Hz, 1H), 4.98 (d, J = 10.4 Hz, 1H), 4.20-3.80 (m, 1H), 3.72 (s, 3H); minor isomer: 6.66 (d, J = 7.6 Hz, 1H), 6.48 (d, J = 8.4 Hz, 2H), 6.32 (d, J = 10.0 Hz, 1H) other peaks are overlapped with the signals of the major isomer; ¹³C NMR (100 MHz, CDCl₃): δ 156.69, 156.63, 150.87, 150.76, 144.68, 144.62, 141.70, 140.82, 140.79, 140.60, 138.95, 137.87, 136.97, 136.93, 133.69, 133.27, 131.48, 131.39, 131.27, 129.80, 128.88, 128.84, 128.78, 128.71, 128.68, 128.59, 128.51, 128.46, 128.22, 128.15, 128.04, 127.97, 127.89, 127.86, 127.78, 127.61, 127.46, 125.29, 125.14, 124.53, 124.41, 119.32, 114.70, 108.20, 76.68, 76.56, 55.36, 53.17, 53.03; HRMS (ESI) calcd for C₃₅H₂₉CINO [M+H]⁺: 514.1932, found 514.1934.

(2S,3S)-1-(4-methoxyphenyl)-2-phenyl-3-(2-phenylhept-1-en-1-yl)indoline (3p)

Yellow oil, 86% yield (1.6/1.0, 81 mg); ¹H NMR (400 MHz, CDCl₃): major isomer: δ 7.50-7.35 (m, 2H), 7.35-7.15 (m, 7H), 7.12-6.95 (m, 5H), 6.82-6.70 (m, 3H), 6.50 (d, J = 7.2 Hz, 1H), 5.88 (d, J = 10.0 Hz, 1H), 4.90 (d, J = 9.6 Hz, 1H), 4.29 (dd, J = 9.6, 9.6 Hz, 1H), 3.71 (s, 3H), 2.50-2.20 (m, 2H), 1.35-1.20 (m, 2H), 1.20-0.90 (m, 2H), 0.90-0.80 (m, 2H), 0.72 (t, J = 6.8 Hz, 3H); minor isomer: 6.64 (d, J = 8.0 Hz, 1H), 5.60 (d, J = 10.0 Hz, 1H), 4.85 (d, J = 10.4 Hz, 1H), 3.83 (dd, J = 10.4, 10.4 Hz, 1H), 3.70 (s, 3H), 2.90-2.50 (m, 2H) other peaks are overlapped with the signals of the major isomer; ¹³C NMR (100 MHz, CDCl₃): δ 156.53, 156.46, 150.98, 150.68, 146.34, 144.35, 143.18, 141.59, 141.09, 140.85, 137.20, 132.22, 131.90, 128.76, 128.60, 128.37, 128.30, 128.14, 128.12, 127.79, 127.70, 127.35, 126.88, 126.63, 125.30, 125.01, 124.53, 124.39, 119.36, 119.17, 114.69, 114.62, 108.17, 107.92, 76.84, 76.76, 55.35, 55.34, 52.19, 52.10, 39.36, 31.58, 31.10, 29.82, 28.64, 27.21, 22.36, 22.19, 14.00, 13.82; HRMS (ESI) calcd for C₃₄H₃₆NO [M+H]⁺: 474.2791, found 474.2798.

(2S,3S)-6-chloro-3-(2,2-diphenylvinyl)-1-(4-methoxyphenyl)-2-phenylindoline (3q) White solid, 96% yield (99 mg), mp 75-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.20 (m, 10H), 7.16-7.11 (m, 1H), 7.10-6.98 (m, 4H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.63-6.50 (m, 3H), 6.25 (d, *J* = 10.0 Hz, 1H), 5.00 (d, *J* = 10.0 Hz, 1H), 3.97 (dd, *J* = 10.0, 10.0 Hz, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.86, 151.85, 145.89, 141.77, 140.19, 139.10, 135.94, 134.04, 130.11, 129.65, 128.66, 128.45, 128.27, 127.97, 127.87, 127.78, 127.47, 127.17, 126.59, 125.22, 125.05, 118.75, 114.71, 108.13, 77.0, 55.22, 52.27; HRMS (ESI) calcd for C₃₅H₂₉CINO [M+H]⁺: 514.1932, found 514.1930.

(2S,3S)-3-(2,2-diphenylvinyl)-5-methoxy-1,2-diphenylindoline (3r)

White solid, 48% yield (65 mg), mp 203-205 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.02 (m, 18H), 6.98-6.85 (m, 2H), 6.70-6.60 (m, 3H), 6.29 (d, *J* = 10.0 Hz, 1H), 5.05 (d, *J* = 8.8 Hz, 1H), 3.96 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.22, 145.23, 144.06, 142.79, 141.81, 140.97, 139.28, 133.59, 129.73, 129.16, 128.71, 128.43, 128.33, 127.71, 127.59, 127.47, 127.44, 127.17, 122.36, 120.98, 112.12, 112.03, 108.57, 75.27, 55.89, 52.81; HRMS (ESI) calcd for C₃₅H₃₀NO [M+H]⁺: 480.2322, found 480.2320.

Synthesis and characterization of 4a.

To a solution of **1a** (382.0 mg, 0.8 mmol) in 1,4-dioxane (15 mL; THF also worked well) in Schlenk tube was added **2a** (195.0 mg, 2.0 eq.) and Pd(Ph₃P)₄ (46.2 mg, 0.05 eq.) at room temperature under nitrogen. 2.5 h latter, the solution was concentrated under reduced pressure directly. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate/Et₃N = 120/3/1 as the eluent afforded the allene **4a**. Yellow solid, 91% yield, mp 58-60 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.48 (d, *J* = 7.2 Hz, 1H), 7.40-7.25 (m, 12H), 7.25-7.16 (m, 6H), 6.87 (s, 1H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 4.85 (s, 2H), 3.64 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 208.72, 152.89, 145.67, 143.76, 139.51, 135.81, 131.26, 129.48, 129.13, 128.80, 128.61, 128.38, 128.14, 127.69, 127.21,

126.42, 117.42, 114.86, 112.82, 94.31, 56.63, 55.29; HRMS (ESI) calcd for C₃₅H₃₀NO [M+H]⁺: 480.2322, found 480.2320.

Synthesis and characterization of 5a.

A mixture of **3e** (74.2 mg, 0.16 mmol), EtOAc/AcOH (0.55 mL; 10/1) and Pd/C (15.0 mg, 20%) in Schlenk tube was purged three times with hydrogen gas and stirred at 65 °C under an atmosphere of hydrogen (balloon). After 24 hours, the reaction was cooled to room temperature and filtered to remove Pd/C. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate = 20/1 as the eluent afforded **5a**. Colorless oil, 52% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.05 (m, 15H), 6.97 (d, *J* = 7.2 Hz, 2H), 6.80-6.70 (m, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 4.56 (d, *J* = 7.6 Hz, 1H), 4.26-3.90 (m, 2H), 3.24-3.05 (m, 1H), 2.70-2.55 (m, 1H), 2.50-2.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.59, 144.69, 144.51, 144.30, 132.03, 128.78, 128.69, 128.63, 128.13, 128.01, 127.96, 127.89, 127.29, 126.36, 124.04, 118.92, 108.88, 70.84, 48.68, 48.46, 40.67; HRMS (ESI) calcd for C₂₈H₂₆N [M+H]⁺: 376.2060, found 376.2064.

References

- 1. X. Pang, Z. Lou, M. Li, L. Wen, C. Chen, Eur. J. Org. Chem., 2015, 3361-3369.
- 2. L. Munoz, M. E. Kavanagh, A. F. Phoa, B. Heng, N. Dzamko, E.-J. Chen, M. R. Doddareddy,
- G. J. Guillemin, M. Kassiou, Eur. J. Med. Chem., 2015, 95, 29-34.

NMR spectra of new compounds (1)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

NMR spectra of new compounds (3)

2 337 2 331 2 331 2 331 2 331 2 151 2 151 2 151 1 510

71, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 17, 403 18,

NMR spectra of new compounds (4a)

NMR spectra of new compounds (5a)

X-ray crystal structure of 3a

X-ray ORTEP illustration of 5-chloro-1-methyl-3-(2-oxo-2-phenylethyl)indolin-2-one (**3a**) (50% probability ellipsoids)

Identification code	cd16159	
Empirical formula	C35 H29 N O	
Formula weight	479.59	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 6.3044(9) Å	α= 77.669(4)°.
	b = 10.7952(15) Å	$\beta = 88.541(3)^{\circ}.$
	c = 20.613(3) Å	$\gamma = 75.011(3)^{\circ}.$
Volume	1323.2(3) Å ³	
Ζ	2	
Density (calculated)	1.204 Mg/m ³	
Absorption coefficient	0.071 mm ⁻¹	
F(000)	508	
Crystal size	0.220 x 0.170 x 0.120 mm ³	
Theta range for data collection	1.012 to 25.500°.	
Index ranges	-7<=h<=7, -13<=k<=12, -	
	18<=1<=24	
Reflections collected	7650	
Independent reflections	4912 [R(int) = 0.0220]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from	
	equivalents	
Max. and min. transmission	0.7456 and 0.6383	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4912 / 0 / 335	
Goodness-of-fit on F ²	1.018	
Final R indices [I>2sigma(I)]	R1 = 0.0476, wR2 = 0.1170	
R indices (all data)	R1 = 0.0717, wR2 = 0.1316	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.178 and -0.166 e.Å ⁻³	

Table 1. Crystal data and structure refinement for cd16159 (**3a**).