Supporting Information for

O^{2}-(6-Oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolates: a new class of
nitric oxide donors activatable by GSH/GST π with both anti-proliferative and
anti-metastatic activities against melanoma

Chengfeng Bai, ${ }^{\dagger}$, \# Rongfang Xue, ${ }^{\dagger,}$, Jianbing Wu, ${ }^{\dagger}$ Tian Lv, ${ }^{\dagger}$ Xiaojun Luo, ${ }^{\dagger}$ Yun Huang, ${ }^{\dagger}$ Yan Gong, ${ }^{\dagger}$ Honghua Zhang, ${ }^{\ddagger}$ Yihua Zhang ${ }^{\dagger}, *$ and Zhangjian Huang ${ }^{\dagger}, *$
†State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, ${ }^{\ddagger}$ Foreign Languages Department, China Pharmaceutical University, Nanjing 210009, PR China

\#These authors contributed equally

Contents

1. General information. S2
2. Experimental procedure and characterization of compounds. S2-S7
3. MTT Assay S8
4. NO releasing and compound decomposition behaviors. S8-S9
5. Effects of compounds on B16-BL6 cells viability S10
6. Cells migration, invasion and lateral migration S11
7. Adhesion assay S11
8. The scanning copy of NMR and HPLC spectra for compounds. S12-S23
9. References S23

1. General Information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker Avance 300 MHz spectrometer at 303 K , using TMS as an internal standard. MS spectra were recorded on a Mariner mass spectrometer (ESI) and high resolution mass spectrometry (HRMS) spectra on an Agilent Technologies LC/MSD TOF instrument. Analytical and preparative TLC was performed on silica gel (200-300 mesh) GF/UV 254 plates, and the chromatograms were visualized under UV light at 254 and 365 nm . Flash chromatography was carried out on ISCO (Combiflash, Rf 200). HPLC was performed on a Shimadzu Series (LC-20AT) using a Phenomenex Luna $5 \mu \mathrm{~m} \mathrm{C}_{18}$ column ($250 \times 10.00 \mathrm{~mm}$). All solvents were reagent grade and, when necessary, were purified and dried by standard methods. Solutions after reactions and extractions were concentrated using a rotary evaporator operating at a reduced pressure of ~ 20 Torr. Individual compounds with a purity of $>97 \%$ were used for biological experiments.

2. Experimental procedure and characterization of compounds

2-(Hydroxymethyl)-2-cyclohexen-1-one (5) ${ }^{1}$

The title compound 5 was prepared via a Baylis-Hillman reaction starting from commercially available 2-cyclohexen-1-one 4. Briefly, to a solution of 4 ($48 \mathrm{~g}, 0.5$ $\mathrm{mol})$ in THF (100 mL), formaldehyde ($42 \mathrm{~g}, 0.6 \mathrm{~mol}$) and DMAP ($6.3 \mathrm{~g}, 0.05 \mathrm{~mol}$) were added. The obtained reaction mixture was stirred at room temperature for 2 days, and then was quenched by adding water 200 mL . Followed by extracted with ethyl acetate $(100 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The obtained crude product was purified by silica column chromatography to give compound 5 as a yellow oil ($50.7 \mathrm{~g}, 80.5 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\mathrm{DMSO}_{\mathrm{d} 6}, 300 \mathrm{MHz}$): $\delta 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.03(\mathrm{dd}, 2 \mathrm{H}, J=1.8$, $4.8 \mathrm{~Hz})$, 2.35-2.31 (m, 4H), 1.94-1.85 (m, 2H); ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 149.1. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ requires 126.1.

To a solution of compound $5(12.6 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dichloromethane $(50 \mathrm{~mL})$, acetic anhydride ($15.3 \mathrm{~g}, 0.15 \mathrm{~mol}$) and triethylamine ($15.2 \mathrm{~g}, 0.15 \mathrm{~mol}$) were added. The mixture was stirred at room temperature for 2 h , and was quenched by adding water 100 mL . Followed by extracted with dichloromethane ($100 \mathrm{~mL} \times 3$), the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude 7 was obtained as a yellow oil ($13.9 \mathrm{~g}, 83 \%$), which was used for the next reaction without further purification. $\mathrm{H}^{1}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 2.42-2.37(\mathrm{~m}$, $4 \mathrm{H})$, 2.04-1.94 (m, 5H). ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 191.1. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$ requires 168.1.

(6-Hydroxycyclohex-1-en-1-yl)methyl acetate (8) ${ }^{2}$

A solution of compound $7(16.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3.72 \mathrm{~g}, 0.01 \mathrm{~mol})$ in methanol (50 mL) was stirred at $-10{ }^{\circ} \mathrm{C}$, while $\mathrm{NaBH}_{4}(18.5 \mathrm{~g}, 0.5 \mathrm{~mol})$ was slowly added. The final solution was stirred for 2 h and then quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (100 mL). Followed by extracted with ethyl acetate $(100 \mathrm{~mL}$ $\times 3$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Compound $\mathbf{8}$ was obtained without further purified as a yellow oil $(12.1 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=3.0 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}$, $5 \mathrm{H})$, 1.76-1.56 (m, 4H); ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 193.1. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$ requires 170.1.

(6-((tert-Butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methyl acetate (9) ${ }^{2}$

A solution of compound $8(17 \mathrm{~g}, 0.1 \mathrm{~mol})$, $\operatorname{TBDMSCl}(22.5 \mathrm{~g}, 0.15 \mathrm{~mol})$ and triethylamine ($15.2 \mathrm{~g}, 0.15 \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$, and then refluxed for 8 h . Deionized water $(100 \mathrm{~mL})$ was added into the mixture to quench the reaction. Followed by separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Compound $\mathbf{9}$ was obtained
through purified with silica column chromatography, as a light brown oil $(17.6 \mathrm{~g}$, $62 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.83(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.25(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.63(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 307.2. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires 284.2.

(6-((tert-Butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methanol (10) ${ }^{2}$

To a stirred solution of compound 9 ($28.4 \mathrm{~g}, 0.1 \mathrm{~mol}$) in methanol (100 mL), potassium carbonate ($18 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , followed by extracted with ethyl acetate $(100 \mathrm{~mL} \times 3)$, the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to produce compound $\mathbf{1 0}$ as a yellow oil $(20 \mathrm{~g}, 83 \%)$ without further purified. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.65$ (m, 7H), 0.9 (s, 9H), 0.13 (s, 6H); ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 265.2. $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ requires 242.2.

((2-(Bromomethyl)cyclohex-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (11).

To a stirred solution of compound $\mathbf{1 0}(500 \mathrm{mg}, 2.07 \mathrm{mmol})$ and triphenylphosphine ($649 \mathrm{mg}, 2.47 \mathrm{mmol}$) in 5 ml dichloromethane was added carbon tetrabromide (817 $\mathrm{mg}, 2.47 \mathrm{mmol}$) dissolved in 3 ml dichloromethane slowly at $0^{\circ} \mathrm{C}$. The solution was stirred for 8 h , followed by extracted with $10 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated with saturated NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to a yellowish oil, which was purified by flash column chromatograph afford 11 as a colorless oil ($460 \mathrm{mg}, 1.51 \mathrm{mmol}$) in 73% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.58(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.14(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 127.28,126.55,71.14,36.67$, 32.48, 29.70, 25.89, 25.82, 25.24; ESI-MS: $[\mathrm{M}+\mathrm{H}]{ }^{+}$, found 305.3. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{BrOSi}$ requires 304.1.

Synthesis of compound 12a-c

Compounds 12a-c were synthesized using a similar method. A typical procedure can be described as follows using 12a as the example. To a solution of compound $\mathbf{1 1}$ (305mg, 1mmol) in anhydrous N , N-dimethylformamide (2 ml), diazeniumdiolate ($202 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added, the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h under N_{2} protected. After the reaction mixture was warmed to room temperature, ethyl acetate (10 ml) was added, followed by washed with deionized water several times, the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The obtained crude product was purified by silica column chromatography to yield compound 12a as a yellow oil ($70 \mathrm{mg}, 19.7 \%$), 12b (14%), 12c (16.2%).

Compound 12a was obtained in 19.7% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H})$, $3.50(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.76-1.53(\mathrm{~m}, 5 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.59,130.53,74.19,64.78,50.63,31.82,29.21$, 25.38, 24.86, 22.23, 17.85. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 378.3. $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$ Si requires 355.2.

Compound 12b was obtained in 14% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (s, $1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08$ (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.36,130.88,74.68,64.67,48.44,31.82$, $25.45,25.36,24.85,17.86,11.09$. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 380.2. $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$ requires 357.2.

Compound 12c was obtained in 16.2% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}$, 9H), $0.072(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.90,131.15,74.97$,
65.39, 52.89, 32.63, 25.96, 25.86, 25.65, 24.78, 23.39, 18.28. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 392.3. $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$ Si requires 369.2.

Synthesis of compound 13a-c

The solution of compound 12a ($357 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (3 ml) was added tetrabutylammonium fluoride (TBAF, $1 \mathrm{ml}, 1 \mathrm{M}$ dissolved in THF). The solution was stirred at rt for 12 h , followed by purified with flash chromatography to yield compound 13a ($170 \mathrm{mg}, 70.5 \%$). Synthesis of 13b-c were in the similar way with yield ($65.8 \%, 58.5 \%$).

Compound 13a was obtained in 70.5% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.91$ $(\mathrm{m}, 4 \mathrm{H}), 1.83-1.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.69,132.22,75.94$, 65.13, 50.96, 31.29, 25.41, 22.81, 17.80. ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+}$, found 242.3. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 241.1.

Compound 13b was obtained in 65.8% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl3) $\delta 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{q}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.13-2.05$ $(\mathrm{m}, 4 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=12.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $136.43,131.84,77.59,64.98,48.82,28.45,24.97,17.65,11.63$. ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+}$, found 244.3. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 243.2.

Compound 13c was obtained in 58.8% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.26$ $(\mathrm{s}, 1 \mathrm{H}), 2.16-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 6 \mathrm{H})$, 1.54-1.44 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CDCl} 3) \delta 134.22,131.72,77.09,64.96,52.75,28.26,25.00,24.80,23.40,17.58$. ESIMS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 278.1. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 255.2.

Synthesis of compound 3a-c.

A solution of compound 13a ($243 \mathrm{mg}, 1 \mathrm{mmol}$) and 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) ($295 \mathrm{mg}, 1.3 \mathrm{mmol}$) were dissolved in toluene (5 ml). The solution was refluxed at $110{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatograph of the residue afford the target compound 3a ($152 \mathrm{mg}, 59.3 \%$). Compounds $\mathbf{3} \mathbf{b}$ and $\mathbf{3 c}$ were synthesized using a similar method with 61.4% and 59.2% yield.

Compound 3a was obtained in 59.3% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.06-$ $1.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.00, 148.56, 134.40, 69.56, 50.97, 38.07, 25.78, 22.79, 22.63. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 262.1. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 239.1. HRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 262.1168$, found 262.1162, ppm error 4.2.

Compound 3b was obtained in 61.4% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{q}, J=3.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.47-2.42(\mathrm{~m}$, $4 \mathrm{H}), 2.01-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.90$, $148.75,134.30,69.94,52.71,38.04,24.73,23.39,22.61$. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 264.1. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 241.1. HRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 264.1324, found 264.1328, ppm error 1.5.

Compound 3c was obtained in 59.2% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.48-2.39(\mathrm{~m}$, $4 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl3) $\delta 197.01,155.81,148.27,69.45,52.22,37.55,25.29,24.24,22.89,22.11$. ESI-MS: $[\mathrm{M}+\mathrm{Na}]^{+}$, found 276.1. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 253.1. HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 276.1324$, found 276.1325, ppm error 0.4.

3. MTT Assays

Murine melanoma B16 cells, human colon HT-29 cells, human melanoma A375 cells, normal epithelial CRL-2007 cells, and metastatic melanoma B16-BL6 cells were purchased from American Tissue Culture Collection (ATCC, Rockville, MD, USA). Murine gliosarcoma 9L-2 cell line was from department of neurological surgery tissue bank at University of California, San Francisco.

Cells were planked in a 96 well plate with a concentration of 10^{4} cells/well and cultured in $37{ }^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$ for 24 h . Then cells were respectively treated with $\mathbf{3 a}, \mathbf{3 b}$, 3c, JS-K, or COMC-6 ($10 \mathrm{nM}, 50 \mathrm{nM}, 200 \mathrm{nM}, 1000 \mathrm{nM}, 5000 \mathrm{nM}$) containing EMEM. Each concentration was repeated 5 times in parallel. After incubation for 68 h , 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT, $20 \mu \mathrm{~L}, 5$ $\mathrm{mg} / \mathrm{mL}$) was added into each well, and the cells were incubated for additional 4 h . Then the medium was carefully removed. Dimethyl sulfoxide ($150 \mu \mathrm{~L} /$ well) was added and oscillated gently to make crystal dissolved. The absorbance at 570 nm was measured using a microplate reader. The cell viability was expressed as a percentage of OD570.

4. NO releasing and compound decomposition behaviors.

A PBS solution ($0.1 \mathrm{M}, \mathrm{pH} 7.4$) containing $1 \mathrm{mM} \mathrm{GSH}, 5 \mu \mathrm{~g} / \mathrm{mL}$ GST and $100 \mu \mathrm{M}$ 3c were incubated at $37{ }^{\circ} \mathrm{C}$. The concentrations of NO released from 3c in each sample at the indicated time were determined by using a NO-sensitive probe fluorophore $\quad 4$-amino-5-(methylamino)-2', 7^{\prime}-difluorofluorescein (DAF-FM). ${ }^{3}$ A saturated NO solution (at $20^{\circ} \mathrm{C}, \mathrm{NO} \approx 1.8 \mathrm{mM}$) was prepared by using previously reported method. ${ }^{4}$ It was observed that the amount of NO was rapidly increased and reached up to $85.4-89.8 \mu \mathrm{M}$ during 40-60 minutes. (Fig. S1A) In addition, at the same concentrations and incubation conditions, the reaction was monitored over 50 mins using an ultraviolet spectrophotometer with the wavelength ranging from 235 to 400 nm. As shown in Fig S1B, the maximal absorbance of 3c at 241 nm decreased over time, indicating the decomposition of diazeniumdiolate moiety. These data supported that $\mathbf{3 c}$ acts as a GSH/GST π promoted NO donor.

Figure S1. (A) Levels of NO produced by compound 3c. (B) Decomposition behaviors of $\mathbf{3 c}$ in the presence of GSH and GST π.

The NO released from 3c and JS-K in B16 and CRL-2007 cells were measured using an NO-sensitive reagent fluorophore DAF-FM DA. ${ }^{5}$ When cells grown in a 96well plate reached 80% confluence, they were washed with PBS. After being loaded with $5 \mu \mathrm{M}$ DAF-FM DA at $37{ }^{\circ} \mathrm{C}$ for 20 min , the cells were rinsed three times with PBS and incubated with test compounds for 8 h . NO production was measured with the flow cytometer with excitation and emission wavelengths of 495 and 515 nm , respectively.

Figure S2. B16 and CRL-2007 cells were treated with the indicated concentrations of 3c and JS-K for 8h, stained with DAF-FM DA, and analyzed by fluorescenceactivated cell sorting (FACS). Data shown here were representative of three different

```
experiments. Data are presented as means \(\pm \mathrm{SD}(\mathrm{n}=3) .{ }^{*} \mathrm{P}<0.05\), \({ }^{* *} \mathrm{P}<0.01\), *** \(\mathrm{P}<0.001\) vs. Control group, \# \(\mathrm{P}<0.05\), \#\#\# \(\mathrm{P}<0.001\).
```


5. Effects of compounds on B16-BL6 cells viability

Figure S3. Incubation with COMC-6 (5 nM) or 3c (5 nM) for 24,48 or 72 h did not affect B16-BL6 cells viability. Data were calculated as the mean \pm SD of each group of cells from three individual experiments. The results of MTT assay mentionedabove were described as $\%$ of Control.

6. Cells migration, invasion and lateral migration

Cells migration. B16-BL6 cells were treated with COMC-6 (5 nM) or 3c (5 nM) for 72 h . Cells that migrated through the chambers were stained with crystal violet. Representative images were captured, and the cells were counted from three independent experiments.

Invasion assay. B16-BL6 cells were seeded on matrigel-coated chambers. COMC$6(5 \mathrm{nM})$ or $\mathbf{3 c}(5 \mathrm{nM})$ was treated on the lower surface for 72 h . Cells that migrated through the matrigel-coated chambers were stained with crystal violet. Representative images were captured and the cells were counted from three independent experiments

Lateral migration assay. B16-BL6 cells were seeded on 48-well plates. After 24 or 48 h incubation with COMC-6 (5 nM) or 3c (5 nM), representative images of wound were captured, and the healed rate is presented. Experiment was confirmed for three independent times.

7. Adhesion assay

Fluorescence-based analysis was used to evaluate effects of $\mathbf{3 c}$ and COMC-6 on the hetero-adhesion. HUVECs grown to confluence in 24-well tissue culture plates were pretreated with IL-1 $\beta(1 \mathrm{ng} / \mathrm{ml})$ for 4 h . Rhodamine 123-labeled B16 cells were cocultured with the HUVECs monolayers in each well, followed by treatment with $\mathbf{3 c}$ or COMC-6 for 1 h . After incubation, non-adhered B16 cells were removed by washing three times (drop-to-drop) with 1 mL PBS. We randomly selected 20 visual fields for each well and took pictures under a fluorescence microscope. Expression of ICAM-1 and VCAM-1 in HUVECs was measured by flow cytometry.

Compound 11

11 C13-NMR CDCl3 303K AV-300

12a CDCl3 1HNMR AV300

12a C13-NMR CDCl3 303K AV-300

Compound 12b

12b CDCl3 1HNMR AV300

12b C13-NMR CDCl3 303K AV-300

Compound 12c

12c CDCl3 1HNMR AV300

12c C13-NMR CDCl3 303K AV-300

Compound 13a

13a CDCl3 1HNMR AV300

13a C13-NMR CDCl3 303K AV-300

$\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
Compound 13b

13b CDCl3 1HNMR AV300

13b C13-NMR CDCL3 303K AV-300

Compound 13c

13c CDCl3 1HNMR AV300

13c C13-NMR CDCl3 303K AV-300

Compound 3a

Compound 3b

3b CDCl3 1HNMR AV300

3b C13-NMR CDCl3 303K AV-300

Compound 3c

HPLC assessment of compound purities

All tested compounds (3a-c) with a purity of $>97 \%$ were used for subsequent biological assays.
We provided the spectra of HPLC assays as below.
Column: Venusil MP C18 ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm} \times 5 \mu \mathrm{~m}$) ;
Mobile phase: Acetonitrile -Water (78:22 to 60:40, v/v);
Wavelength: 254 nm ;
Rate: $1 \mathrm{~mL} / \mathrm{min}$;
Temperature: $25^{\circ} \mathrm{C}$;

3a, 97.4\%

mV

3b, 100\%

3c, purity of $\mathbf{9 9 . 9 \%}$
mV

9. References:

(1) Kotoku, N.; Sumii, Y.; Kobayashi, M. Org. Lett. 2011, 13, 3514.
(2) Yeh, M. C.; Liang, C.; Huang, T.; Hsu, H.; Tsau, Y. J. Org. Chem. 2013, 78, 5521.
(3) Yang, Y.; Seidlits, S. K.; Adams, M. M. J. Am. Chem. Soc. 2010, 132, 13114.
(4) Huang, K. J.; Wang, H.; Ma, M.; Zhang, X.; and Zhang, H. S. Nitric Oxide 2007, 16, 36.
(5) Kojima, H.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Hirata, Y.; Nagano, T. Angew. Chem., Int. Ed. 1999, 38, 3209.

