Regioselective Synthsis of Difluoroalkyl/Perfluoroalkyl Enones via Pd-Catalyzed Four-component Carbonylative Coupling Reactions

Qiang Wang, Lan Zheng, Yu-Tao He, and Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China *E-mail: liangym@lzu.edu.cn.

Table of Contents

1	General Remarks	S2
2	General Experimental Procedure	S2
3	Optimization of Difluoroalkylation Reaction Conditions	S2-S7
4	Optimization of Perfluoroalkylation Reaction Conditions	S7-S10
5	Characterization Data of 4a-4q, 5a-5s and 6a-6j	S11-S29
6	¹ H NMR ¹³ C NMR ¹⁹ F NMR Spectra for Substrates 4a-4q, 5a-5s, 6a-6j	S29-S85
	and 1D-NOESY for Product 4k	

1. General Remarks

All commercially available organic compounds were purchased from adamas-beta, Alfa Asar, and accelachem in China. Unless otherwise noted, reactions were carried out under an carbon monoxide atmosphere. DMF was distilled from Mg_2SO_4 under reduced pressure before used.

For Column chromatography, 200-300 mesh silica gel was employed. Analytical TLC was performed with silica gel GF254 plates. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) were recorded in CDCl₃ using TMS as internal standard. IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm⁻¹. All new products were further characterized by high resolution mass spectra (HRMS); copies of their ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra are provided. All solvents were dried under standard method.

2. General experimental procedure

An oven-dried tube was charged with K_2CO_3 (0.30 mmol, 1.5 equiv), DtBPF (10 mol %), PdCl₂(PPh₃)₂ (10 mol %), arylboronic acid (0.22 mmol, 1.1 equiv), alkynes (0.20 mmol, 1.0equiv) and CsF (0.20 mmol, 1.0equiv). The tube was evacuated and backfilled with CO (repeated six times per 10 seconds). Then, DCE (1.5 mL) was injected after ethyl difluoroiodoacetate (0.38 mmol, 1.9 equiv) were added into the tube. The reaction mixture was stirring at rt for 48 h. The balloon was then removed. Water (3 mL) was added, and the product was extracted with DCM (3×10 mL). The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuum and purified by flash column chromatography (silica gel) to afford the product.

An oven-dried tube was charged with DtBPF (10 mol %), $Pd(TFA)_2$ (10 mol %), arylboronic acid (0.22 mmol, 1.1 equiv), alkynes (0.20 mmol, 1.0 equiv) and CsF (0.40 mmol, 2.0 equiv). The tube was evacuated and backfilled with CO (repeated six times per 10 seconds). Then, DCE (1.5 mL) was injected after ethyl difluoroiodoacetate (0.40 mmol, 2.0 equiv) were added into the tube. The reaction mixture was stirring at rt for 24 h. The balloon was then removed. Water (3 mL) was added, and the product was extracted with DCM (3×10 mL). The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuum and purified by flash column chromatography (silica gel) to afford the product.

3. Optimization of Difluoroalkylation Reaction Conditions

A: Optimization with Phenylacetylene as Substrate

A.1. Solvent Effect

Solvent Effect				
Entry ^a	Solvent	Yield (%) ^b 4a/x/y/z		
1	toluene	12/12/30/3		
2	DMF	trace		
3	DCE	17/6/40/7		
4	THF	trace		
5	NMP	trace		
6	1,4-dioxane	10/5/20/0		
8	MeCN	trace		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.15 mmol, 1.5 equiv),				
PhB(OH) ₂ (1.5 mmol, 1.5 equiv), Cs_2CO_3 (0.1 mmol, 1.0 equiv), $Pd(OAc)_2$ (5 mol %), DPEPhos				

(10 mol%), solvent (1.5 mL), 60 °C, 6 h, CO (1 atm).

^bDetermined by GC (phenylate was used as internal standard).

A.2. Catalyst Effect at 60 °C

	ICF ₂ COOEt + PhB(OH) ₂ -	CO (1 atm) [Pd] / DPEPho	os 📔 O	
Ph-=== +		Cs ₂ CO ₃ , 18h DCE, 60 °C	Ph Ph F F	
1a	2a	3a		4a
	(Catalyst E	ffect at 60 °	С
Entry ^a	0	Catalyst		Yield (%) ^b 4a/x/y/z
1	P	$d(TFA)_2$		trace
2	PdC	$Cl_2(PPh_3)_2$		20/26/3/7
3	PdQ	$Cl_2(dppp)_2$		trace
4	Pd	$Cl_2(dppf)_2$		16/12/2/0
5	PdC	$Cl_2(PCy_3)_2$		trace
6	K	C ₂ PdCl ₄		trace
7	PdC	l ₂ (MeCN) ₂		18/14/8/0
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.15 mmol, 1.5 equiv),				
PhB(OH) ₂ (0.15 mmol, 1.5 equiv), Cs_2CO_3 (0.10 mmol, 1.0 equiv), Pd-catalyst (5				
mol %), DPE	mol %), DPEPhos (10 mol %), DCE (1.5 mL), 60 °C, 18 h, CO (1 atm).			
^b Determined by GC (phenylate was used as internal standard).				

A.3. Ligand Effect

.PPh₂

Ph

PPh₂

P٢

Ph

^tBu

Fe

dppf

DtBPF

X-Phos

P(Cy)₂

Phen

S-Phos

^{*a*} Reaction conditions: **1a** (0.10 mmol, 1.0 equive), ICF₂COOEt (0.15 mmol, 1.5 equiv), PhB(OH)₂ (0.15 mmol, 1.5 equiv), Cs₂CO₃ (0.10 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (5 mol %), Ligand (5 mol %), DCE (1.5 mL), 60 °C, 18 h, under CO (1 atm). ^{*b*} Determined by GC (phenylate was used as internal standard). ^{*c*} The reaction was performed 1a/2a/3a=1.0/1.9/1.1, K₂CO₃ (1.5 equiv), rt, 48 h, under CO (1 atm).

A.4. Temperature Effect

Temperature Effect				
Entry ^a	Temperature (°C)	Yield $(\%)^b$ 4a/x/y/z		
1	100	0/0/76/0		
2	80	20/0/45/0		
3	60	25/0/20/0		
4	40	29/0/15/0		
5	RT	31/0/8/0		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.15 mmol, 1.5 equiv),				
PhB(OH) ₂ (0.15 mmol, 1.5 equiv), Cs ₂ CO ₃ (0.10 mmol, 1.0 equiv), PdCl ₂ (PPh ₃) ₂ (5 mol %),				
Ligand (5 mol %), DCE (1.5 mL), 18 h, under CO (1 atm).				
^b Determined by GC (phenylate was used as internal standard).				

A.5. Base Effect

Base Effect				
Entry ^{<i>a</i>} Base (equiv)		Yield (%) ^b 4a/x/y/z		
1	Cs_2CO_3 (1.5)	43/0/20/10		
2	K_2CO_3 (1.5)	47/0/13/6		
3	K ₃ PO ₄ (1.5)	45/0/11/8		
4	KOAc (1.5)	21/15/12/0		
5	$\mathrm{KO}^{t}\mathrm{Bu}$ (1.5)	19/21/13/0		
6	CsOAc (1.5)	trace		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.15 mmol, 1.5 equiv),				
PhB(OH) ₂ (0.15 mmol, 1.5 equiv), base (x equiv), PdCl ₂ (PPh ₃) ₂ (5 mol %), dppf (5 mol %), CsF				
(0.1 mmol, 1.0 equiv), DCE (1.5 mL), 18 h, under CO (1 atm).				
^b Determined by GC (phenylate was used as internal standard).				
^c CsF was no used.				

A.6. Catalyst Effect at Room Temperature

1^c	$PdCl_2(PPh_3)_2$	51/0/18/6		
2	$PdCl_2(PPh_3)_2$	59/0/16/9		
3	PdCl ₂	38/3/15/6		
4	$PdCl_2(dppf)_2$	40/2/12/3		
5 $Pd(PPh_3)_4$		47/5/12/3		
6	Pd(TFA) ₂	20/25/10/3		
7	PdCl ₂ (MeCN) ₂	23/10/17/6		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.15 mmol, 1.5 equiv),				
$PhB(OH)_2 \ (0.15 \ mmol, \ 1.5 \ equiv), \ base \ (0.15 \ mmol, \ 1.5 \ equiv), \ Pd-catalyst \ (x \ mol \ \%), \ dppf \ (10 \ mmol), \$				
mol %), CsF (0.1 mmol, 1.0 equiv), DCE (1.5 mL), 18 h, under CO (1 atm).				

^b Determined by GC (phenylate was used as internal standard).

^c without CsF.

A.7. The Ratio of 1a/2a/3a Effect

The ratio of 1a/2a/3a effects.				
Entry ^a	1a/2a/3a (equiv)	Yield (%) ^b 4a/x/y/z		
1	1/1.1/1.9	54/0/12/3		
2	1/1.1/1.5	53/0/10/4		
3	1/1.1/1.1	55/0/13/6		
4	1/1.5/1.5	59/0/12/3		
5	1/1.5/1.1	63/0/17/6		
6	1/1.9/1.1	70/0/13/5		
7^c	1/1.9/1.1	79 (75) ^d /0/10/6		
^a Reaction conditions: 1a (x equive), ICF ₂ COOEt (y equiv), PhB(OH) ₂ (z equiv), K ₂ CO ₃ (0.15				
mmol, 1.5 equiv), PdCl ₂ (PPh ₃) ₂ (10 mol %), dppf (10 mol %), CsF (0.1 mmol, 1.0 equiv), DCE				
(1.5 mL), rt, 48 h, under CO (1 atm).				
b Determined by OO (above determined as intermediated and)				

^b Determined by GC (phenylate was used as internal standard).

^c DtBPFwas used instead of dppf.

^d Isolated yield.

A.8. The effects of CsF

CsF effects			
Entry ^a	CsF (equiv)	Yield $(\%)^b$	
1	0	13	
2^c	0	69	
3	0.5	62	
4	1.0	79	
5	2.0	60	

^{*a*} Reaction conditions: **1a** (0.10 mmol, 1.0 equive), ICF₂COOEt (0.19 mmol, 1.9 equiv), PhB(OH)₂ (0.11 mmol, 1.1 equiv), K_2CO_3 (0.15 mmol, 1.5 equiv), PdCl₂(PPh₃)₂ (10 mol %), DtBPF (10 mol %), DCE (1.5 mL), 48 h, under CO (1 atm).

^b Determined by GC (phenylate was used as internal standard).

^c The reaction was carred out for 6 days.

CsF effects					
Entry ^{<i>a</i>} CsF (equiv) Time (h) Yield (%) ^{<i>b</i>}					
1	1.0	48	47		
2	0	48	30		
3	0	72	45		

^a Reaction conditions: **1a** (0.10 mmol, 1.0 equive), ICF₂COOEt (0.19 mmol, 1.9 equiv), PhB(OH)₂ (0.11 mmol, 1.1 equiv), K₂CO₃ (0.15 mmol, 1.5 equiv), PdCl₂(PPh₃)₂ (10 mol %), DtBPF (10 mol %), DCE (1.5 mL), under CO (1 atm). ^b Isolated yield.

A.9. Control reactions

Control reactions				
Entry ^a	remarks	Yield (%) ^b 4a/x/y/z		
1	No Pd-catalyst	NR		
2	No base	<10/40/12/0		
3	No base and no CsF	NR		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), ICF ₂ COOEt (0.19 mmol, 1.9 equiv),				
PhB(OH) ₂ (0.11 mmol, 1.1 equiv), K ₂ CO ₃ (0.15 mmol, 1.5 equiv), PdCl ₂ (PPh ₃) ₂ (10 mol %),				
DtBPF (10 mol %), CsF (0.1 mmol, 1.0 equiv), DCE (1.5 mL), 48 h, under CO (1 atm).				
^b Determined by GC (phenylate was used as internal standard).				

4. Optimization of Perfluoroalkylation Reaction Conditions

A: Optimization with Phenylacetylene as Substrate

A.1. Pd-catalyst Effect

Pd-catalyst Effect				
Entry ^a	Solvent	Yield $(\%)^b$		
1	$Pd(TFA)_2$	15		
2	PdCl ₂ (PPh ₃) ₂	<10		
3	$PdCl_2(dppf)_2$	trace		
4	PdCl ₂ (MeCN) ₂	trace		
5	$Pd(OAc)_2$	0		
6	Pd(PPh ₃) ₄	trace		
7	$PdCl_2(PCy_3)_2$	trace		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), 2a (0.13 mmol, 1.3 equiv), PhB(OH) ₂ (1.1				
mmol, 1.1 equiv), Cs ₂ CO ₃ (0.15mmol, 1.5 equiv), Pd-catalyst (10 mol %), dppf (10 mol%),CsF				
(0.10mmol, 1.0 equiv), DCE (1.5 mL), rt, 24 h, CO (1 atm).				

^bDetermined by GC (phenylate was used as internal standard).

A.2. Solvent Effect

Ph────── + IC ₄ F ₉	CO (1 atm) Pd(TFA)₂ (10 mol + PhB(OH)₂ Cs₂CO₃, 24 h solvent, CsF, rt	$\stackrel{()}{\rightarrow} Ph \stackrel{()}{\leftarrow} C_4F_9$	
	Solvent Effect		
Entry ^a	Solvent	Yield $(\%)^b$	
1	1,4-dioxane	<10	
2	THF	<10	
3	toluence	<10	
4	MeCN	0	
5	DCE	15	
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), 2a (0.13 mmol, 1.3 equiv), PhB(OH) ₂ (1.1 mmol, 1.1 equiv), Cs ₂ CO ₃ (0.15mmol, 1.5 equiv), Pd(TFA) ₂ (10 mol %), dppf (10 mol%),CsF (0.10mmol, 1.0 equiv), solvent (1.5 mL), rt, 24 h, CO (1 atm).			
^b Determined by GC (phenylate was used as internal standard).			

A.3. Ligand Effect

Ph───── + IC ₄ F ₉ +	CO (1 at Pd(TFA)₂ (10 · PhB(OH)₂ Ligand (10 n Cs₂CO₃, 2 DCE, Csł	m) mol %) 24 h F, rt Ph C_4F_9		
Ligand Effect				
Entry ^a	Ligand	Yield $(\%)^b$		
1	DPEPhos	trace		
2	XantPhos	trace		
3	X-Phos	<10		
4	dppe	trace		
5	dppb	trace		
6	dppp	trace		
7	dppf	15		
8	DtBPF	20		
9	IMes HCl	trace		
10	SPhos	trace		
11	tBuXPhos	<10		
12	RuPhos	trace		

A.4. Base Effect

		CO (1 atm)			
		Pd(TFA) ₂ (10 mol	%) O		
Ph────────── +	$ C_{4}F_{0} + PhB(OH)_{2}$				
	4 3 (72	base, 24 h			
			Pn		
	Base Effect				
Entry ^a	Base (ee	quiv)	Yield $(\%)^b$		
1	Cs_2CO_3 (1.5)	CsF (1.0)	20		
2	CsOAc (1.5)	CsF (1.0)	13		
3	K ₂ CO ₃ (2.0)	CsF (1.0)	23		
4	KOAc (1.5)	CsF (1.0)	<10		
5	K ₃ PO ₄ (1.5)	CsF (1.0)	25		
6	NaHCO ₃ (1.5)	CsF (1.0)	trace		
7	CsOAc (1.5)	CsF (1.0)	17		
8	KO ^t Bu (1.5)	CsF (1.0)	27		
9	$NaO^{t}Bu$ (1.5)	CsF (1.0)	27		
10	$LiO^{t}Bu$ (1.5)	CsF (1.0)	17		
11	KO ^t Bu (1.9)	CsF (1.0)	21		
12	KO ^t Bu (1.1)	CsF (1.0)	33		
13	$\mathrm{KO}^{t}\mathrm{Bu}$ (0.5)	CsF (1.0)	40		
14	KO ^t Bu (1.1)	-	<10		
15	-	CsF (1.0)	43		
16	-	CsF (1.5)	50		
17	-	CsF (2.0)	58		
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), 2a (0.13 mmol, 1.3 equiv), PhB(OH) ₂ (1.1					

mmol, 1.1 equiv), base (x equiv), Pd(TFA)₂ (10 mol %), DtBPF (10 mol%), CsF (y equiv), DCE (1.5 mL), rt, 24 h, CO (1 atm). ^b Determined by GC (phenylate was used as internal standard).

A.5. The Amount of Pd-Catalyst Effect

Ph-=== + IC ₄ F ₉ +	PhB(OH) ₂ PhB(OH) ₂ CO (1 atr Pd(TFA) ₂ (x n DtBPF (10 m base, 24 DCE, CsF	$ \begin{array}{c} n \\ nol \ \% \end{pmatrix} \qquad \bigcirc \\ \hline ol \ \% \end{pmatrix} \qquad \bigcirc \\ h \qquad Ph \qquad \bigcirc \\ C_4 F_9 \\ C_7 \ rt \qquad Ph \end{array} $	
The effects of the amount of Pd(PPh ₃) ₄			
Entry ^a	Catalyst (mol %)	Yield $(\%)^b$	
1	Pd(TFA) ₂ (2.5)	23	
2	$Pd(TFA)_2$ (5.0)	45	
3	Pd(TFA) ₂ (10.0)	58	
^a Reaction conditions: 1a (0.10 mmol, 1.0 equive), 2a (0.13 mmol, 1.3 equiv), PhB(OH) ₂ (1.1			
mmol, 1.1 equiv), Pd(TFA) ₂ (x mol %), DtBPF (10 mol%), CsF (0.20 mmol, 2.0 equiv), DCE (1.5			
mL), rt, 24 h, CO (1 atm).			
^b Determined by GC (phenylate was used as internal standard).			

A.6. The Amount of IC₄F₉ Effect

Ph-=== + IC ₄ F ₉	CO (1 atm) Pd(TFA) ₂ (10 mol %) + PhB(OH) ₂ <u>DtBPF (10 mol %)</u> base, 24 h DCE, CsF, rt	Ph C ₄ F ₉ Ph
---	--	--

The ratio of 1a/2a/3a effects.			
Entry ^a	IC ₄ F ₉ (equiv)	Yield $(\%)^b$	
1	1.1	58	
2	1.5	62	
3	2.0	$70(65)^{c}$	

^a Reaction conditions: **1a** (0.10 mmol, 1.0 equive), **2a** (x, equiv), PhB(OH)₂ (1.1 mmol, 1.1 equiv), Pd(TFA)₂ (10 mol %), DtBPF (10 mol%), CsF (0.20 mmol, 2.0 equiv), DCE (1.5 mL), rt, 24 h, CO (1 atm).

^bDetermined by GC (phenylate was used as internal standard).

^c Isolated yield.

5. Characterization Data of 4a-4q, 5a-5s and 6a-6j.

ethyl (E)-2,2-difluoro-5-oxo-4,5-diphenylpent-3-enoate (4a)

Yellow oil, 75% yield (49.5 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.61 – 7.57 (m, 1H), 7.49 – 7.45 (m, 2H), 7.36 (s, 5H), 6.25 (t, *J* = 11.2 Hz, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.7 , 162.6 (t, J = 33.2 Hz), 148.7 (t, J = 8.4 Hz), 135.6 , 133.7 , 133.0 , 130.1 , 129.1 , 128.9 , 128.7 , 128.3 , 126.5 (t, J = 28.6 Hz), 111.8 (t, J = 247.5 Hz), 63.1 , 13.6 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -93.4.

HRMS: m/z (ESI) calculated $[M+H]^+$: 331.1140, measured: 331.1141.

ethyl (E)-2,2-difluoro-5-oxo-4-(4-(pentyloxy)phenyl)-5-phenylpent-3-enoate (4b)

Brown oil, 73% yield (60.7 mg), E/Z=17:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.16 (t, J = 11.2 Hz, 1H), 4.00 (q, J = 7.2 Hz, 2H), 3.93 (t, J = 6.4 Hz, 2H), 1.78 – 1.73 (m, 2H), 1.44 – 1.34 (m, 4H),1.18 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.2 , 162.8 (t, J = 33.4 Hz), 160.0 , 148.7 (t, J = 8.5 Hz), 135.8 , 133.5 , 130.4 , 130.1 , 128.6 , 125.2 (t, J = 28.6 Hz), 125.0 , 114.3 , 112.0 (t, J = 246.9 Hz), 68.0 , 63.1 , 28.8 , 28.1 , 22.4 , 13.9 , 13.6 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -92.8.

HRMS: m/z (ESI) calculated $[M+NH_4]^+$: 434.2137, measured: 434.2136.

ethyl (E)-2,2-difluoro-5-oxo-5-phenyl-4-(m-tolyl)pent-3-enoate (4c)

Yellow oil, 65% yield (44.7 mg), E/Z=10:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.60 – 7.53 (m, 1H), 7.49 – 7.45 (m, 2H), 7.25 – 7.22 (m, 1H), 7.16 (s, 3H), 6.21 (t, *J* = 11.2 Hz, 1H), 3.96 (q, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 2H), 3.96 (q, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 2H), 3.96 (q, J = 7.2 Hz, 3H), 3.96 (q, J = 7.2 Hz), 3.96 (q, J =

3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.8 , 162.6 (t, J = 33.2 Hz), 148.8 (t, J = 8.5 Hz), 138.0 , 135.6 , 133.6 , 132.9 , 130.1 , 129.9 , 129.4 , 128.7 , 128.2 , 126.2 (t, J = 28.8 Hz), 126.0 , 111.9 (t, J = 247.2 Hz), 63.0 , 21.3 , 13.6 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -93.2.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 362.1562, measured: 362.1564.

ethyl (E)-4-([1,1'-biphenyl]-4-yl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (4d)

Colourless oil, 65% yield (52.8 mg), E/Z=7:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60 – 7.55 (m, 5H), 7.48 (d, J = 7.8 Hz, 2H), 7.45 – 7.40 (m, 4H), 7.36 – 7.34 (m, 1H), 6.27 (t, J = 11.2 Hz, 1H), 4.00 (q, J = 7.2 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 195.5 , 163.4 (t, J = 32.8 Hz), 149.1 (t, J = 8.3 Hz), 142.7 , 140.8 , 136.4 , 134.4 , 132.6 , 130.9 , 130.1 , 129.5 , 129.4 , 128.4 , 127.7 , 127.6 , 119.8 (t, J = 25.4 Hz), 112.6 (t, J = 247.8 Hz), 63.9 , 14.4 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -93.4.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 424.1719, measured: 424.1717.

ethyl (E)-2,2-difluoro-4-(4-fluorophenyl)-5-oxo-5-phenylpent-3-enoate (4e)

Yellow oil, 72% yield (50.1 mg), E/Z=15:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.61 – 7.58 (m, 1H), 7.50 – 7.46 (m, 2H), 7.38 – 7.34 (m, 2H), 7.05 (t, *J* = 8.4 Hz, 2H), 6.27 (t, *J* = 11.6 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5 , 163.1 (d, J = 248.1 Hz), 162.6 (t, J = 33.2 Hz), 147.5 (t, J = 8.0 Hz), 135.4 , 133.7 , 130.9 (d, J = 8.3 Hz), 130.0 , 129.2 (d, J = 51.1 Hz), 128.7 , 127.0 (t, J = 28.2 Hz), 115.3 (d, J = 21.7 Hz), 111.8 (t, J = 248.3 Hz), 63.2 , 13.6 .

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -94.1, -111.5.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 366.1312, measured: 366.1311.

ethyl (E)-4-(4-chlorophenyl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (4f)

Brown oil, 51% yield (37.1 mg), E/Z=4:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.90 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.47 (m, 2H), 7.36 – 7.32 (m, 4H), 6.27 (t, *J* = 11.4 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H).

 ^{13}C NMR (100 MHz, Chloroform-d) δ 194.4 , 162.6 (t, J = 33.2 Hz), 147.4 (t, J = 7.7 Hz), 135.4 , 135.4 ,

133.8 , 131.4 , 130.3 , 130.1 , 128.8 , 128.5 , 127.3 (t, $J=28.2\,$ Hz), 111.7 (t, $J=248.8\,$ Hz), 63.3 , 13.7 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -94.4.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 382.1006, measured: 382.1005.

ethyl (E)-4-(4-bromophenyl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (4g)

Yellow oil, 47% yield (38.4 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.90 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.47 (m, 4H), 7.26 – 7.23 (m, 2H), 6.27 (t, *J* = 11.6 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-d) δ 194.3 , 162.6 (t, J = 33.1 Hz), 147.4 (t, J = 7.7 Hz), 135.4 , 133.8 , 131.9 , 131.5 , 130.5 , 130.1 , 128.8 , 127.2 (t, J = 28.1 Hz), 123.6 , 111.7 (t, J = 248.9 Hz), 63.4 , 13.7 .

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -94.5.

HRMS: m/z (ESI) calculated [M+H]⁺: 409.0245, measured: 409.0246.

ethyl (E)-4-(4-benzoylphenyl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (4h)

Brown oil, 45% yield (39.1 mg), E/Z=10:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.81 (m, 4H), 7.63 – 7.59 (m, 1H), 7.52 – 7.49 (m, 2H), 7.36 – 7.33 (m, 5H), 7.28 – 7.26 (m, 2H), 6.33 (t, *J* = 12.4 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.1 , 163.4 (t, *J* = 33.8 Hz), 150.0 (t, *J* = 8.5 Hz), 141.4 , 139.8 , 137.4 , 137.3 , 132.6 , 130.0 , 129.6 , 129.4 , 128.5 , 128.3 (d, *J* = 3.5 Hz), 128.3 , 127.8 , 119.8 (t, *J* = 27.4 Hz), 115.3 , 112.3 (t, *J* = 247.1 Hz), 63.0 , 13.8 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -92.5.

HRMS: m/z (ESI) calculated [M+NH₄]⁺:452.1668, measured: 452.1664.

ethyl (E)-2,2-difluoro-4-(3-fluorophenyl)-5-oxo-5-phenylpent-3-enoate (4i)

Colourless oil, 40% yield (27.8 mg), E/Z=12:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.47 (m, 2H), 7.36 – 7.31 (m, 1H), 7.16 – 7.04 (m, 3H), 6.28 (t, *J* = 11.6 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.2 , 162.6 (t, *J* = 32.9 Hz), 162.3 (d, *J* = 247.5 Hz), 147.2 (t, *J* = 7.9 Hz), 135.4 , 134.9 (d, *J* = 8.2 Hz), 133.9 , 130.1 , 129.9 (d, *J* = 8.3 Hz), 128.8 , 127.4 (t, *J* = 28.3 Hz), 124.8 , 116.1 (d, *J* = 21.0 Hz), 116.1 (d, *J* = 22.7 Hz), 111.7 (t, *J* = 247.2 Hz), 63.3 , 13.7 .

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -94.5, -112.3.

HRMS: m/z (ESI) calculated $[M+NH_4]^+$: 366.1312, measured: 366.1311.

ethyl (E)-4-(2-chlorophenyl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (4j)

Colourless oil, 32% yield (23.3 mg), E/Z=3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.96 (m, 2H), 7.63 – 7.59 (m, 1H), 7.52 – 7.48 (m, 2H), 7.38 – 7.34 (m, 4H), 6.53 (t, *J* = 11.2 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 1.27 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.9 , 162.3 (t, J = 33.2 Hz), 145.7 (t, J = 7.7 Hz), 136.1 , 133.2 , 132.6 , 132.1 (t, J = 28.2 Hz), 130.6 , 130.2 , 129.5 , 129.1 , 128.5 , 128.5 , 126.5 , 111.5 (t, J = 248.8 Hz), 63.4 , 13.7 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -98.5.

HRMS: m/z (ESI) calculated [M+H]⁺: 365.0751, measured: 365.0752.

ethyl (E)-4-benzoyl-2,2-difluoronon-3-enoate (4k)

Yellow oil, 47% yield (30.5 mg), E/Z=13:1.

¹H NM R (400 M Hz, Chloroform-*d*) δ 7.83 – 7.81 (m, 1H), 7.62 – 7.58 (m, 0H), 7.50 – 7.46 (m, 1H), 5.98 (t, *J* = 13.2 Hz, 0H), 4.36 (q, *J* = 7.2 Hz, 1H), 2.68 – 2.64 (m, 1H), 1.44 – 1.41 (m, 1H), 1.37 (t, *J* = 7.2 Hz, 2H), 1.33 – 1.28 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.9 , 163.4 (t, J = 34.0 Hz), 150.7 (t, J = 6.1 Hz), 136.3 , 133.3 , 129.8 , 128.5 , 126.8 (t, J = 27.2 Hz), 112.3 (t, J = 248.3 Hz), 63.3 , 31.8 , 28.8 , 27.9 , 22.2 , 13.9 , 13.8 . ¹⁹FNMR (376 MHz, Chloroform-*d*) δ -99.0.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 342.1875, measured: 342.1874.

(E)-3-benzoyl-6-ethoxy-5,5-difluoro-6-oxohex-3-en-1-yl 4-chlorobenzoate (41)

Brown oil, 40% yield (34.9 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.78 (m, 2H), 7.74 – 7.72 (m, 2H), 7.58 – 7.54 (m, 1H), 7.43 – 7.40 (m, 2H), 7.28 – 7.25 (m, 2H), 6.17 (t, *J* = 13.6 Hz, 1H), 4.48 (t, *J* = 6.0 Hz, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.24 – 3.21 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.0 , 165.2 , 163.0 (t, J = 33.7 Hz), 146.4 (t, J = 5.6 Hz), 139.3 , 135.7 , 133.4 , 130.8 , 129.9 , 129.3 (t, J = 27.0 Hz), 128.6 , 128.5 , 128.1 , 112.2 (t, J = 249.4 Hz), 63.6 , 63.4 , 28.1 , 13.8 .

 $^{19}\text{FNMR}$ (376 MHz, Chloroform-d) δ -99.15.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 454.1227, measured: 454.1230.

ethyl (E)-2,2-difluoro-5-oxo-5-phenyl-4-(thiophen-3-yl)pent-3-enoate (4m)

Yellow oil, 68% yield (45.7 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.61 – 7.57 (m, 1H), 7.51 – 7.45 (m, 3H), 7.31 – 7.29 (m, 1H), 7.12 – 7.11 (m, 1H), 6.16 (t, J = 11.4 Hz, 1H), 4.07 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.4 , 162.6 (t, J = 33.3 Hz), 143.9 (t, J = 8.7 Hz), 135.5 , 133.8 , 132.7 , 130.1 , 128.7 , 127.9 , 127.3 , 126.0 , 125.4 (t, J = 29.1 Hz), 112.0 (t, J = 247.0 Hz), 63.2 , 13.6 . ¹⁹FNMR (376 MHz, Chloroform-*d*) δ -93.0.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 354.0970, measured: 354.0972.

ethyl (Z)-2,2-difluoro-5-oxo-5-phenyl-4-(thiophen-2-yl)pent-3-enoate (4n)

Brown oil, 43% yield (28.9 mg), E/Z=6:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.64 – 7.60 (m, 1H), 7.51 – 7.44 (m, 3H), 7.30 – 7.29 (m, 1H), 7.05 – 7.02 (m, 1H), 6.17 (t, *J* = 11.4 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1 , 162.4 (t, *J* = 33.0 Hz), 142.1 (t, *J* = 8.9 Hz), 135.1 , 134.0 , 132.9 , 131.0 , 130.3 , 129.9 , 128.7 , 127.1 , 125.5 (t, *J* = 29.5 Hz), 111.9 (t, *J* = 244.7 Hz), 63.3 , 13.7 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.8. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 354.0970, measured: 354.0974.

diethyl 4,4'-(1,4-phenylene)(3E,3'E)-bis(2,2-difluoro-5-oxo-5-phenylpent-3-enoate) (40)

Brown oil, 29% yield (33.8 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.90 (m, 4H), 7.61 – 7.58 (m, 2H), 7.49 – 7.46 (m, 4H), 7.38 (s, 4H), 6.25 (t, *J* = 11.6 Hz, 2H), 3.96 (q, *J* = 7.2 Hz, 4H), 1.16 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (100 MHz, Chloroform-d) δ 194.3, 162.5 (t, J = 32.8 Hz), 147.7 (t, J = 7.9 Hz), 135.4 , 133.9 ,

133.8 , 130.1 , 128.8 , 128.7 , 126.9 (t, $J=28.2~{\rm Hz}),~111.7$ (t, $J=246.6~{\rm Hz}),~63.3$, 13.6 .

¹⁹FNMR (376 MHz, Chloroform-d) δ -94.1.

HRMS: m/z (ESI) calculated [M+H]⁺: 600.2004, measured: 600.1989.

ethyl (E)-4-(4-ethynylphenyl)-2,2-difluoro-5-oxo-5-phenylpent-3-enoate (400)

Brown oil, 37% yield (26.2 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.90 (m, 2H) , 7.61 – 7.58 (m, 1H), 7.49 – 7.48 (m, 4H), 7.33 (d, J = 8.0 Hz, 2H), 6.27 (t, J = 11.6 Hz, 1H), 4.05 (q, J = 7.2 Hz, 2H), 3.12 (s, 1H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3 , 162.6 (t, J = 33.1 Hz), 147.8 (t, J = 8.0 Hz), 135.4 , 133.8 , 133.4 , 131.9 , 130.1 , 128.9 , 128.7 , 127.0 (t, J = 28.1 Hz), 123.1 , 111.7 (t, J = 247.0 Hz), 82.9 , 78.6 , 63.3 , 13.6

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -94.2.

HRMS: m/z (ESI) calculated [M+H]⁺: 355.1140, measured: 355.1131.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.16 (s, 1H), 3.82 – 3.75 (m, 1H), 1.99 – 1.95 (m, 2H), 1.79 – 1.74 (m, 3H), 1.68 – 1.63 (m, 2H), 1.45 – 1.34 (m, 3H), 1.30 – 1.19 (m, 5H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 160.4 (t, J = 24.2 Hz), 91.6 (t, J = 322.1 Hz), 49.3 , 32.2 , 25.2 , 24.6 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -56.6.

(E)-N-cyclohexyl-2,2-difluoro-5-oxo-4,5-diphenylpent-3-enamide (4p)

Brown oil, 42% yield (32.2 mg), E/Z=10:1.

¹H NMR (400 MHz, Chloro form-*d*) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.49 – 7.45 (m, 2H), 7.39 – 7.37 (m, 2H), 7.35 – 7.33 (m, 3H), 6.31 (t, *J* = 12.6 Hz, 1H), 5.96 (s, 1H), 3.61 – 3.56 (m, 1H), 1.78 – 1.75 (m, 2H), 1.69 – 1.65 (m, 2H), 1.61 – 1.58 (m, 1H), 1.33 – 1.30 (m, 2H), 1.17 – 1.11 (m, 1H), 1.08 – 1.00 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.8 , 162.2 (t, J = 28.6 Hz), 148.2 (t, J = 7.2 Hz), 135.6 , 133.5 , 130.2 , 128.8 , 128.7 , 128.6 , 128.1 , 127.3 (t, J = 27.1 Hz), 121.2 , 113.4 (t, J = 250.8 Hz), 48.6 , 32.3 , 25.2 , 24.5 .

 19 FNMR (376 MHz, Chloroform-d) δ -95.5.

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 401.2035, measured: 401.2034.

ethyl (E)-1-(2,2-difluoro-5-oxo-4,5-diphenylpent-3-enoyl)piperidine-4-carboxylate (4q)

Brown oil, 50% yield (33.8 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.40 (m, 4H), 7.35 – 7.33 (m, 3H), 6.32 (t, *J* = 12.0 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.05 (d, *J* = 13.6 Hz, 1H), 3.91 (d, *J* = 14.0 Hz, 1H), 3.12 – 3.05 (m, 1H), 2.76 – 2.70 (m, 1H), 2.54 – 2.46 (m, 1H), 1.91 – 1.81 (m, 2H), 1.73 – 1.67 (m, 1H), 1.58 – 1.48 (m, 1H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.9 , 173.7 , 160.6 (t, J = 29.1 Hz), 147.3 (t, J = 7.6 Hz), 135.4 , 133.6 , 132.9 , 130.2 , 129.0 , 128.7 , 128.6 , 128.1 , 126.6 (t, J = 27.2 Hz), 114.4 (t, J = 248.4 Hz), 60.6 , 45.1 , 42.3 , 40.6 , 28.0 , 27.4 , 14.1 .

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -89.6 (d, *J* = 22.6 Hz).

ethyl 1-(2,2-difluoro-2-iodoacetyl)piperidine-4-carboxylate

¹H NMR (400 MHz, Chloroform-*d*) δ 4.27 (d, J = 13.2 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 4.10 (d, J = 16.0 Hz, 1H), 3.30 – 3.23 (m, 1H), 3.11 – 3.04 (m, 1H), 2.67 – 2.60 (m, 1H), 2.03 – 2.00 (m, 2H), 1.90 – 1.70 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 173.3, 158.2 (t, J = 23.5 Hz), 89.4 (t, J = 319.7 Hz), 60.5 , 45.9 , 42.9 , 40.0 , 27.3 , 27.2 , 13.9 .

¹⁹FNMR (376 MHz, Chloroform-*d*) δ -50.39 (d, *J* = 14.3 Hz).

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1,2-diphenylhept-2-en-1-one (5a)

Brown oil, 63% yield (53.7 mg), E/Z=8:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.92 (m, 2H), 7.62 – 7.56 (m, 1H), 7.50 – 7.44 (m, 2H), 7.40 – 7.36 (m, 5H), 6.05 (t, J = 14.4 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-d) δ 194.1, 152.4 (t, J = 4.6 Hz), 134.9 , 134.0 , 132.8 , 130.1 , 129.5 , 129.1 , 128.8 , 128.2 , 118.8 (t, J = 21.9 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.99 – -81.05 (m), -105.78 – -107.88 (m), -123.61 – -123.68 (m), -125.69 – -125.77 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 427.0739, measured: 427.0740.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenyl-2-(p-tolyl)hept-2-en-1-one (5b)

Brown oil, 47% yield (41.4 mg), E/Z=9:1.

¹H NM R (400 M Hz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.60 – 7.57 (m, 1H), 7.49 – 7.45 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.00 (t, *J* = 14.4 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, Chloroform-d) δ 194.3 , 152.6 (t, J = 4.5 Hz), 139.2 , 135.0 , 133.9 , 130.1 , 129.9 , 129.0 , 128.8 , 128.2 , 118.2 (t, J = 21.7 Hz), 21.3 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.99 - -81.04 (m), -105.62 - -105.69 (m), -123.62 - -123.69 (m), -125.65 - -125.73 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 441.0895, measured: 441.0893.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenyl-2-(4-propylphenyl)hept-2-en-1-one (5c) Yellow oil, 61% yield (57.1 mg), E/Z=6:1. ¹H NM R (400 M Hz, Chloroform-*d*) δ 7.94 – 7.91 (m, 2H), 7.60 – 7.56 (m, 1H), 7.48 – 7.45 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.99 (t, *J* = 14.4 Hz, 1H), 2.57 (t, *J* = 7.2 Hz, 2H), 1.65 – 1.58 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3 , 152.7 (t, J = 4.0 Hz), 143.9 , 135.0 , 133.9 , 130.1 , 128.8 , 128.3 , 128.2 , 126.6 , 118.0 (t, J = 21.6 Hz), 37.8 , 24.2 , 13.7

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.01 – -81.06 (m), -105.61 – -105.67 (m), -123.64 – -123.71 (m), -125.66 – -125.74 (m).

HRMS: m/z (ESI) calculated $[M+NH_4]^+$: 469.1208, measured: 469.1193.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (5d)

Yellow oil, 70% yield (67.5 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.60 – 7.56 (m, 1H), 7.48 – 7.44 (m, 2H), 7.39 – 7.33 (m, 4H), 5.98 (t, *J* = 14.0 Hz, 1H), 1.30 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3 , 152.7 (t, J = 4.3 Hz), 152.3 , 135.0 , 134.0 , 130.1 , 129.7 , 128.8 , 128.0 , 125.2 , 117.8 (t, J = 21.9 Hz), 34.7 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.03 - -81.08 (m), -105.58 - -105.67 (m), -123.66 - -123.74 (m), -125.63 - -125.75 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 483.1365, measured: 483.1363.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-(pentyloxy)phenyl)-1-phenylhept-2-en-1-one~(5e)

Yellow oil, 69% yield (70.7 mg), E/Z=7:1.

¹H NM R (400 M Hz, Chloroform-*d*) δ 7.92 – 7.90 (m, 2H), 7.59 – 7.55 (m, 1H), 7.47 – 7.43 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 6.88 – 6.86 (m, 2H), 5.96 (t, *J* = 14.4 Hz, 1H), 3.93 (t, *J* = 6.8 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.44 – 1.34 (m, 4H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5 , 160.0 , 152.5 (t, J = 4.4 Hz), 135.1 , 133.9 , 130.1 , 129.9 , 128.7 , 124.7 , 117.3 (t, J = 21.5 Hz), 114.3 , 68.0 , 28.9 , 28.2 , 22.4 , 13.9 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.03 - -81.09 (m), -105.37 - -105.39 (m), -123.66 - -123.74 (m), -125.65 - -125.74 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 530.1736, measured: 530.1732.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenyl-2-(m-tolyl)hept-2-en-1-one (5f)

Yellow oil, 49% yield (43.2 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloro form-*d*) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.62 – 7.58 (m, 1H), 7.50 – 7.47 (m, 2H), 7.24 (s, 1H), 7.20 – 7.16 (m, 3H), 6.00 (t, *J* = 14.2 Hz, 1H), 2.34 (s, 3H).

¹H NMR (400 MHz, Chloro form-*d*) δ 7.94 (d, *J* = 7.5 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.51 – 7.46 (m, 1H), 7.25 (s, 1H), 7.21 – 7.16 (m, 2H), 6.00 (t, *J* = 14.2 Hz, 0H), 2.34 (s, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.2 , 152.6 (t, J = 4.3 Hz), 137.9 , 135.0 , 134.0 , 132.7 , 130.1 , 129.9 , 128.8 , 128.1 , 125.4 , 118.4 (t, J = 22.0 Hz), 29.7 , 21.4 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 – -81.03 (m), -105.76 – -105.83 (m), -123.60 – -123.67 (m), -125.66 – -125.73 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 458.1161, measured: 458.1160.

 $(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(3-methoxyphenyl)-1-phenylhept-2-en-1-one \ (5g) \\$

Brown oil, 33% yield (30.1 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 8.0 Hz, 1H), 6.98 – 6.89 (m, 3H), 6.03 (t, J = 14.0 Hz, 1H), 3.79 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.9 , 159.3 , 152.3 (t, J = 4.0 Hz), 134.9 , 134.0 , 133.9 , 130.1 , 129.3 , 128.8 , 120.6 , 118.7 (t, J = 22.1 Hz), 114.7 , 113.9 , 55.3 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.97 – -81.03 (m), -105.87 – -105.96 (m), -123.57 – -123.65 (m), -125.65 – -125.73 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 474.1110, measured: 474.1107.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenyl-2-(2,4,5-trimethylphenyl)hept-2-en-1-one (5h)

Yellow oil, 47% yield (44.0 mg), E/Z=7:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.89 (m, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 6.96 (d, J = 3.6 Hz, 2H), 6.25 (t, J = 14.0 Hz, 1H), 2.22 (s, 6H), 2.21 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3 , 151.6 (t, J = 4.6 Hz), 137.3 , 135.7 , 133.5 , 133.4 , 132.7 , 131.4 , 130.3 , 130.0 , 129.9 , 128.7 , 122.8 (t, J = 21.1 Hz), 19.5 , 19.5 , 19.2 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 – -81.04 (m), -108.22, -123.71 – -123.78 (m), -125.65 – -125.73 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 469.1208, measured: 469.1204.

(E) - 2 - ([1,1'-biphenyl] - 4 - yl) - 4, 4, 5, 5, 6, 6, 7, 7, 7 - nonafluoro - 1 - phenylhept - 2 - en - 1 - one (5i)

Yellow oil, 65% yield (65.3 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.60 – 7.56 (m, 5H), 7.49 – 7.45 (m, 4H), 7.43 – 7.39 (m, 2H), 7.34 – 7.31 (m, 1H), 6.07 (t, *J* = 14.0 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1 , 152.2 (t, J = 4.6 Hz), 142.0 , 140.1 , 134.93 134.0 , 131.7 , 130.1 , 128.8 , 128.8 , 128.8 , 128.7 , 127.7 , 127.1 , 126.9 , 118.7 (t, J = 22.1 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.97 – -81.02 (m), -105.57 – -105.67 (m), -123.53 – -123.60 (m), -125.60 – -125.68 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 520.1317, measured: 520.1315.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-fluorophenyl)-1-phenylhept-2-en-1-one (5j)

Brown oil, 47% yield (41.7 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.90 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.47 (m, 3H), 7.40 – 7.37 (m, 3H), 7.08 – 7.04 (m, 2H), 6.07 (t, *J* = 14.0 Hz, 1H).

¹³C NMR (100 M Hz, Chloroform-*d*) δ 193.9, 164.4, 161.9, 151.3, 134.8, 134.1, 130.3 (d, J = 8.3 Hz), 129.5 (d, J = 115.4 Hz), 128.8 (d, J = 3.5 Hz),119.5 (t, J = 21.9 Hz), 115.4 (d, J = 21.8 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.05 - -81.10 (m), -105.82 - -105.91 (m), -111.82, -123.63 - -123.70 (m), -125.71 - -125.79 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 445.0645, measured: 445.0630.

(E)-2-(4-chlorophenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (5k)

Yellow oil, 57% yield (52.4 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.35 (s, 4H), 6.08 (t, *J* = 14.0 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.7 , 151.1 , 135.4 , 134.7 , 134.2 , 131.2 , 130.0 , 129.6 , 128.9 , 128.5 , 119.8 (t, J = 22.3 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.01 – -81.06 (m), -105.87 – -105.98 (m), -123.59 – -124.67 (m), -125.70 – -125.79 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 461.0349, measured: 461.0335.

(E)-2-(4-bromophenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (51)

Brown oil, 52% yield (52.4 mg), E/Z=8:1.

¹H NM R (400 M Hz, Chloroform-*d*) δ 7.91 – 7.89 (m, 2H), 7.64 – 7.60 (m, 1H), 7.52 – 7.50 (m, 4H), 7.27 (d, *J* = 8.8 Hz, 2H), 6.08 (t, *J* = 14.4 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-d) δ 193.6, 151.1 (t, J = 4.2 Hz), 134.7 , 134.2 , 132.6 , 131.7 , 131.5 , 129.8 , 128.9 , 123.6 , 119.8 (t, J = 22.1 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 - -81.04 (m), -105.85 - -105.95 (m), -123.56 - -123.64 (m), -125.66 - -125.74 (m).

HRMS: m/z (ESI) calculated [M+H]⁺:506.9824, measured: 506.9809.

(E)-4-(4,4,5,5,6,6,7,7,7-nonafluoro-1-oxo-1-phenylhept-2-en-2-yl)benzonitrile (5m) Yellow oil, 33% yield (29.8 mg), E/Z>20:1. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 3H), 7.70 – 7.65 (m, 3H), 7.55 – 7.50 (m, 5H), 6.17 (t, *J* = 13.6 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9 , 150.0 (t, J = 4.6 Hz), 137.5 , 134.5 , 133.0 , 131.9 , 130.0 , 129.1 , 129.0 , 121.3 (t, J = 22.5 Hz), 118.1 , 113.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.94 – -80.99 (m), -106.18 – -106.24 (m), -123.49 – -123.56 (m), -125.68 – -125.76(m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 469.0954, measured: 469.0959.

(E)-2-(4-benzoylphenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (5n)

Brown oil, 39% yield (41.3 mg), E/Z=8:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.84 – 7.78 (m, 4H), 7.66 – 7.62 (m, 1H), 7.61 – 7.57 (m, 2H), 7.54 – 7.48 (m, 5H), 6.15 (t, *J* = 14.0 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 195.9 , 193.4 , 151.2 , 137.9 , 137.2 , 136.8 , 134.7 , 134.3 , 132.6 , 130.1 , 130.0 , 129.8 , 129.0 , 128.3 , 128.2 , 126.7 , 120.2 (t, J = 22.3 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.95 - -81.00 (m), -105.96 - -106.06 (m), -123.51 - -123.59(m), -125.66 - -125.75 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 531.1001, measured: 531.0999.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(3-fluorophenyl)-1-phenylhept-2-en-1-one (50)

Brown oil, 51% yield (45.3 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.49 (m, 2H), 7.37 – 7.32 (m, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 9.2 Hz, 1H), 7.09 – 7.04 (m, 1H), 6.08 (t, J = 14.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.5, 163.5, 161.0, 150.9, 134.7, 134.7 (d, J = 8.5 Hz), 134.2, 129.9 (d, J = 8.2 Hz), 129.5 (d, J = 110.9 Hz), 124.1 (d, J = 3.2 Hz), 119.9 (t, J = 22.2 Hz), 116.1 (d, J = 20.9 Hz), 115.5 (d, J = 23.0 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.00 – -81.05 (m), -106.05 – -106.14 (m), -112.44, -123.58 – -123.66 (m), -125.68 – -125.76 (m).

HRMS: m/z (ESI) calculated [M+H]⁺:445.0645, measured:445.0628.

(E)-2-(2-chlorophenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (5p)

Yellow oil, 35% yield (32.2 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.96 (m, 2H), 7.64 – 7.60 (m, 1H), 7.53 – 7.49 (m, 3H), 7.40 – 7.33 (m, 4H), 6.37 (t, *J* = 13.6 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.4 , 148.7 (t, J = 3.8 Hz), 135.7 , 133.5 , 132.7 , 131.6 , 130.4 , 130.2 , 129.2 , 128.7 , 128.3 , 126.3 , 125.0 (t, J = 21.9 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 – -81.03 (m), -107.32 – -108.93 (m), -123.65, -125.70 – -125.77 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 478.0615, measured: 478.0611.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-pentyl-1-phenylhept-2-en-1-one (5q)

Brown oil, 29% yield (24.4 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.81 (m, 2H), 7.64 – 7.60 (m, 1H), 7.52 – 7.48 (m, 2H), 5.80 (t, *J* = 14.8 Hz, 1H), 2.73 – 2.67 (m, 2H), 1.47 – 1.41 (m, 2H), 1.35 – 1.28 (m, 4H), 0.86 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.5 , 154.4 (t, J = 3.9 Hz), 135.8 , 133.7 , 129.8 , 128.7 , 120.2 (t, J = 23.8 Hz), 31.8 , 29.3 , 28.0 , 22.2 , 13.8 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 – -81.03 (m), -107.08 – -107.18 (m), -124.00 – -124.08 (m), -125.68 – -125.76 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 421.1208, measured: 421.1194.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenethyl-1-phenylhept-2-en-1-one (5r)

Yellow oil, 27% yield (24.5 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.73 (m, 2H), 7.63 – 7.60 (m, 1H), 7.50 – 7.46 (m, 2H), 7.26 – 7.24 (m, 2H), 7.18 – 7.15 (m, 3H), 5.88 (t, *J* = 15.2 Hz, 1H), 3.06 – 3.02 (m, 2H), 2.81 – 2.77 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.2 , 153.0 (t, J = 4.2 Hz), 140.2 , 135.7 , 133.7 , 129.8 , 128.7 , 128.5 , 128.4 , 126.4 , 121.6 (t, J = 23.6 Hz), 34.5 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.94 – -80.99 (m), -107.35 – -107.46 (m), -123.93 – -124.00 (m), -125.64 – -125.71 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 455.1052, measured: 455.1049.

(E)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenyl-2-(thiophen-3-yl)hept-2-en-1-one (5s)

Yellow oil, 35% yield (30.2 mg), E/Z=7:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.89 (m, 2H), 7.62 – 7.58 (m, 1H), 7.49 – 7.45 (m, 3H), 7.33 – 7.31 (m, 1H), 7.18 (d, J = 4.0 Hz, 1H), 5.94 (t, J = 14.8 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-d) δ 193.8, 147.7 (t, J = 4.4 Hz), 134.8 , 134.1 , 132.1 , 130.1 , 128.8 , 127.9 , 126.9 , 125.9 , 117.1 (t, J = 22.4 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.97 – -81.03 (m), -105.93 – -106.03 (m), -123.68 – -123.76 (m), -125.62 – -125.71 (m).

HRMS: m/z (ESI) calculated [M+NH₄]⁺: 450.0569, measured: 450.0567.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(p-tolyl)hept-2-en-1-one (6a)

Brown oil, 60% yield (59.8 mg), E/Z=11:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.0 Hz, 2H), 7.38 – 7.32 (m, 4H), 7.27 (d, J = 8.0 Hz, 2H), 5.94 (t, J = 14.3 Hz, 1H), 2.40 (s, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.0 , 152.9 (t, J = 4.0 Hz), 152.2 , 145.2 , 132.4 , 130.3 , 129.9 , 129.5 , 128.0 , 125.1 , 117.2 (t, J = 22.0 Hz), 34.6 , 31.1 , 21.7 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.02 - -81.08 (m), -105.53 - -105.62 (m), -123.68 - -123.76 (m), -125.64 - -125.72 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 497.1521, measured: 497.1519.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(4-methoxyphenyl)hept-2-en-1-one (6b) Brown oil, 65% yield (66.6 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 3.6 Hz, 4H), 6.94 (d, J = 8.8 Hz, 2H), 5.92 (t, J = 14.4 Hz, 1H), 3.85 (s, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9 , 164.4 , 153.0 (t, J = 4.2 Hz), 152.2 , 132.6 , 130.0 , 127.9 , 127.7 , 125.2 , 116.6 (t, J = 21.6 Hz), 114.1 , 55.5 , 34.6 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.02 - -81.07 (m), -105.44 - -105.54 (m), -123.67 - -123.74 (m), -125.64 - -125.72 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 513.1471, measured: 513.1469.

(E)-1,2-bis(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-one (6c)

Yellow oil, 49% yield (52.7 mg), E/Z>20:1.

¹H NM R (400 M Hz, Chloroform-*d*) δ 7.91 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.39 – 7.33 (m, 4H), 5.93 (t, J = 14.4 Hz, 1H), 1.34 (s, 9H), 1.30 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.9 , 158.1 , 152.8 (t, J = 4.4 Hz), 152.2 , 132.2 , 130.2 , 129.9 , 127.9 , 125.8 , 125.2 , 117.0 (t, J = 21.8 Hz), 35.3 , 34.7 , 31.2 , 31.0 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.98 – -81.05 (m), -105.51 – -105.61 (m), -123.60 – -123.68 (m), -125.62 – -125.73 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 539.1991, measured: 539.1988.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(m-tolyl)hept-2-en-1-one (6d) Brown oil, 67% yield (66.5 mg), E/Z>20:1. ¹H NMR (400 MHz, Ch loroform-*d*) δ 7.76 – 7.62 (m, 2H), 7.41 – 7.32 (m, 6H), 5.97 (t, *J* = 14.4 Hz, 1H), 2.39 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5 , 152.7 (t, J = 4.5 Hz), 152.2 , 138.8 , 135.1 , 134.8 , 130.5 , 129.9 , 128.6 , 128.0 , 127.5 , 125.2 , 117.7 (t, J = 21.8 Hz), 34.7 , 31.1 , 21.2 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.01 – -81.08 (m), -105.59 – -105.69 (m), -123.73 – -123.80 (m), -125.62 – -125.73 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 497.1521, measured: 497.1519.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(4-fluorophenyl)hept-2-en-1-one (6e) Yellow oil, 71% yield (71.0 mg), E/Z=11:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.95 (m, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.13 (t, J = 8.4 Hz, 2H), 5.98 (t, J = 14.4 Hz, 1H), 1.30 (s, 9H).

 13 C NMR (100 MHz, Chloroform-*d*) δ 192.7, 166.2 (d, J = 255.5 Hz), 152.6 (t, J = 4.0 Hz), 152.5 , 132.8 (d, J = 9.5 Hz), 131.4 (d, J = 2.9 Hz), 129.6 , 128.0 , 125.3 , 117.6 (t, J = 22.0 Hz), 116.1 (d, J = 22.0 Hz), 34.7 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.06 - -81.11 (m), -103.00, -105.60 - -105.70 (m), -123.69 - -123.77 (m), -125.68 - -125.76 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 501.1271, measured: 501.1259.

(E)-2-(4-(tert-butyl)phenyl)-1-(4-chlorophenyl)-4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-one (6f) Yellow oil, 63% yield (65.0 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.99 (t, J = 14.4 Hz, 1H), 1.30 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1 , 152.6 , 152.4 (t, J = 3.9 Hz), 140.6 , 133.3 , 131.4 , 129.5 , 129.2 , 128.0 , 125.3 , 118.0 (t, J = 22.1 Hz), 34.7 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.03 - -81.08 (m), -105.63 - -105.70 (m), -123.67 - -123.74 (m), -125.64 - -125.75 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 517.0975, measured: 517.0961.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(4-(trifluoromethyl)phenyl)hept-2-en-1-o ne (6g)

Yellow oil, 50% yield (55.0 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 12H), 6.08 (t, *J* = 14.4 Hz, 1H), 1.34 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.25, 77 , 152.10 (t, J = 4.5 Hz), 137.91 , 135.09 (q, J = 32.7 Hz), 130.30 , 129.17 , 128.08 , 125.82 (q, J = 3.7 Hz), 125.41 , 123.39 (q, J = 271.2 Hz), 118.99 (q, J = 22.1 Hz), 34.73 , 31.12 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.39 -81.02 - -81.09 (m), -105.76 - -105.84 (m), -123.64 - -123.72 (m), -125.67 - -125.75 (m).

HRMS: m/z (ESI) calculated [M+Na]⁺: 573.1058, measured: 573.1034.

(E)-2-(4-(tert-butyl)phenyl)-1-(3-chlorophenyl)-4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-one (6h) Yellow oil, 58% yield (59.9 mg), E/Z=8:1.

¹H NM R (400 M Hz, Ch loroform-*d*) δ 7.89 (t, J = 2.0 Hz, 1H), 7.77 – 7.75 (m, 1H), 7.56 – 7.53 (m, 1H), 7.39 (d, J = 8.4 Hz, 3H), 7.31 (d, J = 8.4 Hz, 2H), 6.01 (t, J = 14.0 Hz, 1H), 1.30 (s, 9H)

¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0 , 152.6 , 152.1 (t, J = 4.1 Hz), 136.7 , 135.2 , 133.8 , 130.0 , 129.9 , 129.3 , 128.2 , 128.1 , 125.3 , 118.5 (t, J = 21.8 Hz), 34.7 , 31.1 ..

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.99 – -81.05 (m), -105.67 – -105.77 (m), -123.69 – -123.76 (m), -125.63 – -125.71 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 517.0975, measured: 517.0961.

(E)-2-(4-(tert-butyl)phenyl)-1-(3,5-dibromophenyl)-4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-one (6i) Yellow oil, 61% yield (77.8 mg), E/Z>20:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 2.0 Hz, 2H), 7.84 (t, J = 1.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.06 (t, J = 14.0 Hz, 1H), 1.31 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.5 , 152.9 , 151.4 (t, J = 3.7 Hz), 138.9 , 138.0 , 131.6 , 129.0 , 128.1 , 125.5 , 123.5 , 119.4 (t, J = 21.8 Hz), 34.8 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.97 - -81.03 (m), -105.77 - -105.86 (m), -123.74 - -123.81 (m), -125.59 - -125.70 (m).

HRMS: m/z (ESI) calculated [M+H]⁺:638.9575, measured:638.9557.

(E)-2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(naphthalen-2-yl)hept-2-en-1-one (6j) Brown oil, 63% yield (67.0 mg), E/Z=9:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.02 – 7.99 (m, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.63 – 7.56 (m, 2H), 7.44 – 7.42 (m, 1H), 7.39 (m, 3H), 6.06 (t, J = 14.4 Hz, 1H), 1.29 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3 , 152.8 (t, J = 4.1 Hz), 152.3 , 135.9 , 133.0 , 132.3 , 129.9 , 129.8 , 129.2 , 128.8 , 128.1 , 127.8 , 127.1 , 125.2 , 124.8 , 117.7 (t, J = 21.9 Hz), 34.7 , 31.1 .

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.96 - -81.01 (m), -105.49 - -105.55 (m), -123.63 - -123.71 (m), -125.56 - -125.63 (m).

HRMS: m/z (ESI) calculated [M+H]⁺: 533.1521, measured: 533.1518.

6. ¹H NMR, ¹³C NMR, ¹⁹F NMR Spectra for Substrates 4a-4q, 5a-5s, 6a-6j. and 1D-NOESY for Product 4k.

---94.46

---92.54

--99.15

S49

---91.79

$\begin{array}{c} 7.972\\ 7.972\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.952\\ 7.467\\ 7.467\\ 7.467\\ 7.427\\ 7.427\\ 7.407\\ 7.$

---0.000

-2.340

-81.03 -81.06 -81.06 -81.06 -81.08 -105.61 -105.64 -105.64 -105.64 -105.64 -105.64 -123.66 -123.66 -123.66 -125.64 -125.63 -125.68 -125.68 -125.68

-0.000

$\begin{array}{c} 7.915\\ 7.897\\ 7.894\\ 7.894\\ 7.604\\ 7.585\\ 7.604\\ 7.510\\ 7.490\\ 7.490\\ 7.472\\ 86.961\\ 6.288\\ 6.288\\ 6.219\\ 6.219\end{array}$

 $\begin{pmatrix} 2.222 \\ 2.206 \end{pmatrix}$

$\begin{array}{c} 7.929\\ 7.908\\ 7.908\\ 7.504\\ 7.504\\ 7.501\\ 7.501\\ 7.512\\ 7.509\\ 7.538\\ 7.538\\ 7.538\\ 7.567\\ 7.762\\ 7.786\\ 7.788\\ 7.$

-0.000

 $\begin{array}{c} 7.921\\ 7.636\\ 7.636\\ 7.636\\ 7.539\\ 7.539\\ 7.539\\ 7.532\\ 7.347\\ 7.347\\ 7.347\\ 7.347\\ 7.321\\ 7.321\\ 7.252\\ 7.347\\ 7.252\\ 7.252\\ 7.252\\ 6.047\end{array}$

S75

---0.000

3.063 (3.043 (3.043 (2.814 (2.814 (2.793 (2.773) (2.773) (2.773) -0.000

