Supporting Information

Controlled Formation of Uniform Nanoshells of Manganese Oxide and their Potential in Lithium Ion Batteries Xiao-Chan Liu,^{1,2} Jun-Yu Piao,^{1,2} De-Shan Bin,^{1,2} Tian-Qi Zhang,^{1,2} Shu-Yi Duan,^{1,2} Zi-Xiao Wu,^{1,2} An-Min Cao,^{1,2*} Li-Jun Wan^{1,2*}

1 CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China.

2 University of Chinese Academy of Sciences (UCAS), Beijing 100049, China. Correspondence to: <u>anmin_cao@iccas.ac.cn</u>, <u>wanlijun@iccas.ac.cn</u>

Experimental section

Materials. Manganese Acetate Tetrahydrate, urea, ethyl alcohol were of analytical pure and purchased from Sinopharm Chemical Reagent Co. Ltd. Mili-Q water(resistance > 18 M Ω) was used for all experiments.

Preparation of 3-AF@Mn₃O₄. 0.1494g Mn(Ac)₂H₂O, 0.108g urea were slowly dissolved in 30 mL ethyl alcohol under mechanical magnetic stirring. Subsequently, 1mL(100 mg/mL) the obtained 3-AF nanospheres solution were added to the coating solution. Finally, the resultant solution was incubated at 80°C for 5h under vigorously stirring. The obtained product was centrifuged at 10800 rpm for 3min, which was followed by washing with water and ethanol and drying at 80°C for 10h, respectively. The reaction time was varied to control the thickness of Mn₃O₄ coating layer.

Preparation of Mn_2O_3 hollow spheres. The obtained powder was annealed at 400°C for 2h in air to remove the core and obtain manganese oxide hollow spheres.

Preparation of SiO₂@Mn₃O₄, 0.1494g Mn(Ac)₂H₂O, 0.108g urea were slowly dissolved in 30 mL ethyl alcohol under mechanical magnetic stirring. Subsequently, 0.02g SiO₂ powder were added to the coating solution. Finally, the resultant solution was incubated at 80° C for 5h under vigorously stirring. The obtained product was centrifuged at 10800 rpm for 3min, which was followed by washing with water and ethanol and drying at 80°C for 10h, respectively.

Electrochemical measurement. Charge-discharge tests were performed with CR2032 coin cells assembled in an argon-filled glove box, which consisted of a lithium metal as the counter and reference electrode, a anode as the working electrode, 1M LiPF6 in ethylene carbonate (EC)/ethyl methyl carbonate (EMC)/4-fluoroethylene carbonate (FEC) (1:4:2, in wt %) as the electrolyte, and polypropylene membrane (Celgard) as a separator. The anode was prepared as a mixed slurry of 70 wt % active materials, 15 wt% of Super P carbon black, 7.5 wt % of Polymerized Styrene Butadiene Rubber (SBR, Aldrich) , and 7.5 wt % of Carboxymethylcellulose sodium (CMC, Aldrich) binder in a water solvent, casting onto Cu foil (99%, Goodfellow) and cutting into circular electrodes of 1.13 cm² area after drying under a vacuum at 80 °C for 10h. Galvanostatic tests of the assembled cells were performed with a Land CT2001A battery test system with a voltage window of 0.01-3V at room temperature.

Electrochemical impedance spectral (EIS) measurements are acquired on an Autolab PGSTAT 302N electrochemical workstation by applying a sine wave with amplitude of 10.0 mV over the frequency range from 100 kHz to 100 mHz at room temperature. The EIS test is before cycling.

Characterization. Scanning electron microscopy (SEM) was collected on Filed Emission Scanning Microscopy (FE-SEM, Hitachi S-4800). Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) images were recorded on a JEOL-2100F and FEI Tecnai F20 operated at 200kV. X-ray

diffraction (XRD) data was collected on a Rigaku D/MAX-2500 with Cu Ka radiation at 50 kV and 250 mA. X-ray photoelectron spectroscopy (XPS) was performed on the Thermo Scientific ESCALab250Xi using 200 W monochromated Al Ka radiation.

Fig. S1 XPS of surface coated samples: (a) Mn; (b) O.

Fig. S2 TEM images (a-c) and experimental photos (d-f) of samples prepared at different precipitation conditions: a,d) urea is replaced by NaOH, under Air; b,e) urea as the precipitate, Ar protection; c,f) urea as the precipitate, under air.

Fig. S3 TEM images of the a) surface coated SiO₂ samples; b) hollow samples after removing SiO₂.

Fig. S4 Hollow nanospheres characterized by different methods: a) TEM, b) XRD, c) XPS, (d) HRTEM, e-f) elemental mappings

Figure S1a and Figure S4c showed the XPS patterns for Mn_2O_3 and Mn_3O_4 , respectively. The distance between two Mn3s peaks are different for Mn at different oxidation states, which is in good agreement with the observed values for Mn_3O_4 and Mn_2O_3 reported in the references.¹

Fig. S5 TEM images of the solid samples

Fig. S6 TEM images of the Mn_2O_3 hollow nanospheres after 50 cycles at 0.1C.

References

1. M. Toupin, T. Brousse and D. Bélanger, *Chem. Mater.*, 2004, **16**, 3184.