Supporting Information

Metal-free benzannulation of 1,7-diynes toward unexpected 1-aroyl-2-naphthaldehydes and their application in fused azaheterocyclic synthesis

Ai-Fang Wang,^a Peng Zhou,^a Yi-Long Zhu,^a Wen-Juan Hao,^{*,a} Guigen Li,^b Shu-Jiang Tu,^{*,a} and Bo Jiang^{*,a}

^aSchool of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University, Xuzhou 221116, P. R. China; email:; wjhao@jsnu.edu.cn(W.J.H.); laotu@jsnu.edu.cn (S.J.T.); jiangchem@jsnu.edu.cn (B.J.)

^b Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.

Context

General Information	
Optimization of Reaction Conditions	
X-Ray Structure of 2a , 4h and 4l	S3-S4
Plausible mechanisms for forming 4 and 6	
Copy of LC-MS Spectra of Intermediate B	
General Procedure for the Synthesis of Products 1	
General Procedure for the Synthesis of Products 2	
Characterization Data of Compounds 2a-2n	
General Procedure for the Synthesis of Products 4	
Characterization Data of Compounds 4a-4l	S11-S13
General Procedure for the Synthesis of Products 6	
Characterization Data of Compounds 6a-6e	
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 2a-2n	
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 4a-41	S30-S42
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 6a-6e	S43-S47

General Information

¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ (DMSO- d_6) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Condition optimization

	<i>p</i> -Tolyl		<i>p</i> -Tolyl O	
	l-c	or Br-source, H ₂ O		
		solvent, t) O
	1a OMe		Cl 🗸 🗸	
Entry	I- or Br-source (equiv)	Solvent	<i>t</i> (°C)	Yield $(\%)^b$
1	$I_2(2.0)$	CH ₃ CN	50	27% ^c
2	$I_2(2.0)$	CH ₃ CN	50	47%
3	$I_2(3.0)$	CH ₃ CN	50	40%
4	$I_2(1.0)$	CH ₃ CN	50	66%
5	$I_2(0.5)$	CH ₃ CN	50	48%
6	$I_2(1.0)$	EtOH	50	ND^d
7	$I_2(1.0)$	DMSO	50	trace
8	$I_2(1.0)$	1,4-dioxane	50	21%
9	$I_2(1.0)$	DCE	50	24%
10	$I_2(1.0)$	EA	50	trace
11	TBAI (1.0)	CH ₃ CN	50	NR ^e
12	NIS (1.0)	CH ₃ CN	50	37%
13	$PhI(OAc)_2(1.0)$	CH ₃ CN	80	NR ^e
14	NBS (1.0)	CH ₃ CN	80	NR ^e
15	$I_2(1.0)$	CH ₃ CN	60	72%
16	$I_2(1.0)$	CH ₃ CN	70	62%
17	$I_2(1.0)$	CH ₃ CN	80	50%
18	$I_2(1.0)$	CH ₃ CN	60	31% ^f
19	$I_2(1.0)$	CH ₃ CN	60	trace ^g

Table 1. Optimization of Reaction Conditions^a

^aReaction conditions: **1a** (0.5 mmol), I-source (X equiv) H₂O (2.0 equiv), solvent (3.0 mL), under O₂ conditions, ^bIsolated yield. ^cUnder air conditions. ^dNot detected (ND).^eNot reaction (NR). ^fUse of TBHP (2.0 equiv) under Ar conditions. ^gUnder Ar conditions

Our initial investigation was started with the treatment of benzene-tethered 1,7-diyne **1a** by water and 2.0 equivalents of I_2 under air conditions in acetonitrile at 50 °C, and the unexpected 2-naphthaldehyde **2a** was generated in a low 27% yield (Table 1, entry 1). To our delight, the reaction under O₂ conditions could work more efficiently, leading to the formation of 2-naphthaldehyde product **2a** in 47% yield (entry 2). We next optimized conditions by changing the amount of I_2 . Increasing the loading of I_2 (3.0 equiv) was harmful to the yield of product **2a** (entry 3) whereas lowering the loading of I_2 to 1.0 equivalent

remarkably facilitated this reaction process and afforded a higher 66% yield (entry 4). Further decrease of the loading of I₂ did not improve the reaction efficiency (entry 5). Subsequently, we investigated the solvent effect for this transformation with use of various solvents such as EtOH, dimethylsulfoxide (DMSO), 1,4-dioxane, 1,2-dichloroethane (DCE), and ethyl acetate (EA). All these attempted solvents were inferior to acetonitrile in terms of reaction yields (entries 6-10). Screening other I- sources, such as tetrabutylammonium iodide (TBAI), *N*-iodosuccinimide (NIS) and PhI(OAc)₂, did not show any improvements (entries 11-13). The reaction did not proceed by using *N*-bromosuccinimide (NBS, entry 14). It was also found that the reaction temperature affected the reaction efficiency. Elevating reaction temperature to 60 °C facilitated this transformation, delivering the product **2a** in a higher 72% yield (entry 15). The lower conversion was detected with reaction temperature being at either higher 70 or 80°C (entries 16-17). Using *tert*-Butyl hydroperoxide (TBHP) as an oxidant, the reaction under Ar conditions gave the desired product **2a** in 31% yield whereas only trace amount of product **2a** was detected when the reaction was carried out under Ar conditions without any oxidant.

Figure 1 The ORTEP Drawing of 2a (Thermal ellipsoids are set at 30% probability level)

Figure 2 The ORTEP Drawing of 4h (Thermal ellipsoids are set at 30% probability level)

Figure 3 The ORTEP Drawing of 4I (Thermal ellipsoids are set at 30% probability level)

Scheme 1. Plausible mechanisms for forming 4 and 6

The formation of products 4 involved *in situ* formation of imines (2 to E), 5-*exo-trig* cyclization (E to F), nucleophilic addition of H_2O (F to G), dehydration and tautomerization (G to 4) sequence (Scheme 1, route *i*). Similar to the above, the synthesis of products 6 is expected to consist of nucleophilic additions-dehydration (2 to I), intramolecular cyclization (I to K), second dehydration and tautomerization (K to 6) sequence (Scheme 1, route *ii*).

Overlay of Samples and Spectra from Integration View

LC-MS Spectra of Intermediate **B**

General Procedure for the Synthesis of Compounds 1

Under Ar conditions, a mixture of 2-bromobenzaldehyde (10.0 mmol), CuI (2 mol%), PdCl₂(PPh₃)₂ (2 mol%) and Et₃N (60 mL) as solvent were stirred at 50 °C, then ethynylbenzene (1.05 equiv) was added into the reaction system by dropwise. The resulting mixture was stirred until TLC indicated complete consumption of the starting material. Subsequent filtration through a pad of Celite® rinsing with Et₂O, The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford compound I (90%-100% yield).

Under Ar atmosphere, a mixture of compound I (5.0 mmol, 1.0 equiv), 3-bromoprop-1-yne (1.5 equiv) and zinc powder (4 equiv) in 60 mL of THF/DMF (1/1) was stirred at room temperature and the reaction system was detected by TLC. After completion of the reaction, the residue was quenched with saturated NH₄Cl solution, extracted with ethyl acetate and dried on MgSO₄. After removal of the solvent, the crude product was purified by column chromatography (EtOAc/hexanes, 1:10) to give compound II as white solid (80%-90% yield).

To a solution of compound II (4.0 mmol, 1.0 equiv) in anhydrous THF (20 mL), NaH (2.0 equiv) was added by dropwise at 0 °C. After stirring for 0.5 hours, CH_3I (1.2 equiv) was added and then the reaction mixture was stirred at room temperature. After the mixture was stirred overnight. The reaction mixture was quenched with saturated NH₄Cl solution, extracted with ethyl acetate and dried on MgSO₄. After removal of the solvent, the crude product was purified by column chromatography (EtOAc/hexanes, 1:100) to give compound **1** (oil, 80%-95% yield).

General Procedure for the Synthesis of Products 2

Example for the synthesis of 2a: 6-chloro-1-(4-methylbenzoyl)-2-naphthaldehyde

To a 10-mL Schlenk tube under O₂ conditions, 4-chloro-2-(1-methoxybut-3-yn-1-yl)-1- (*p*-tolylethynyl)benzene (1a, 0.5 mmol, 155 mg, 1.0 equiv), I₂ (0.5 mmol, 127 mg, 1.0 equiv.) and H₂O (1.0 mmol, 18 mg, 2.0 equiv) as well as acetonitrile (3.0 mL) were successively added. Then the tube was stirred at 60 °C for 8.0 hours until complete consumption of 1a as monitored by TLC analysis. After the reaction was finished, the reaction mixture was concentrated in vacuum, and the resulting residue was purified by column chromatography on silica gel (eluent, petroleum ether/ethyl acetate = 50:1) to afford the desired product 2a as a white solid.

6-Chloro-1-(4-methylbenzoyl)-2-naphthaldehyde (2a)

111 mg, 72%; white solid, mp 146-147 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.06 (s, 1H), 8.33-8.28 (m, 2H), 8.21 (d, *J* = 8.8 Hz, 1H), 7.63-7.59 (m, 2H), 7.58 (d, *J* = 2.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 196.8, 192.2, 145.4, 140.5, 136.8, 135.1, 134.6, 131.2, 130.1, 129.7, 129.5, 129.3, 128.9, 128.2, 127.8(4), 127.8(1), 21.7. IR (film, v, cm⁻¹) 2916, 1689, 1663, 1603, 1562, 1457, 1374, 921, 815. HRMS (ESI) m/z calcd for C₁₉H₁₃ClO₂Na [M+Na]⁺ 331.0502, found 331.0493.

6-Chloro-1-(4-ethylbenzoyl)-2-naphthaldehyde (2b)

113 mg, 70%; white solid, mp 147-148 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.07 (s, 1H), 8.37- 8.28 (m, 2H), 8.21 (d, *J* = 8.4Hz, 1H), 7.66-7.54 (m, 4H), 7.35 (d, *J* = 7.6 Hz, 2H), 2.71-2.62 (m, 2H), 1.18 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 196.8, 192.3, 151.3, 140.5, 136.8, 135.3, 134.6, 131.2, 129.7, 129.6, 129.3, 129.0, 128.9, 128.2, 127.8, 28.7, 15.5. IR(film,v,cm⁻¹) 2975, 2940, 1693, 1660, 1603, 1566, 1463, 1415, 1375, 812. HR-MS (ESI) m/z calcd for C₂₀H₁₅ClO₂Na [M+Na]⁺ 345.0658, found 345.0667.

1-(4-(tert-Butyl)benzoyl)-6-chloro-2-naphthaldehyde (2c)

124 mg, 71%; white solid, mp 137-138 °C; ¹H NMR (400 MHz, DMSO- d_6 ; δ , ppm) 10.07 (s, 1H), 8.34 (d, J = 1.6 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.65-7.58 (m, 4H), 7.53 (d, J = 8.4 Hz, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6 ; δ , ppm) 196.8, 192.3, 157.8, 140.5, 136.8, 135.0, 134.6, 131.1, 129.7, 129.3, 129.3, 128.9, 128.2, 127.9, 127.8, 126.4, 35.5, 31.2. IR (film, v, cm⁻¹) 2964, 1700, 1660, 1605, 1458, 1375, 1361, 922, 778. HR-MS (ESI) m/z calcd for C₂₂H₁₉ClO₂Na [M+Na]⁺ 373.0971, found 373.0979.

1-Benzoyl-6-chloro-2-naphthaldehyde (2d)

90 mg, 61%; white solid, mp 154-155 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.08 (s, 1H), 8.32 (d, *J* = 9.2Hz, 2H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.71-7.66 (m, 3H), 7.64-7.57 (m, 2H), 7.53-7.49 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.4, 192.4, 140.0, 137.4, 136.8, 134.6, 131.3, 129.8, 129.6, 129.4, 129.3, 128.8, 128.2(0), 128.2(6), 127.9. IR (film, v, cm⁻¹) 3057, 2970, 1697, 1659, 1601, 1564, 1459, 913,852, 748. HR-MS (ESI) m/z calcd for C₁₈H₁₁ClO₂Na [M+Na]⁺317.0345, found 317.0350.

6-Fluoro-1-(4-methylbenzoyl)-2-naphthaldehyde (2f)

96 mg, 66%; white solid, mp 123-124 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.06 (s, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 8.02-7.98 (m, 1H), 7.66-7.62 (m, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.55-7.49 (m, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 196.9, 192.1, 162.1 (¹*J*_{CF} = 248.3 Hz), 145.3, 140.7, 137.5 (⁴*J*_{CF} = 10.2 Hz), 135.1, 130.5 (⁶*J*_{CF} = 2.5 Hz), 130.1, 130.0 (⁵*J*_{CF} = 9.7 Hz), 129.8, 129.8, 129.4, 127.6, 127.0, 119.1 (²*J*_{CF} = 25.7 Hz), 112.5 (³*J*_{CF} = 20.9 Hz), 21.7. ¹F NMR (377 MHz, DMSO-*d*₆; δ , ppm) -108.9. IR (film, v,

cm⁻¹) 3021, 1690, 1654, 1602, 1466, 1373, 958, 870. HR-MS (ESI) m/z calcd for $C_{19}H_{13}FO_2Na$ [M+Na]⁺ 315.0797, found 315.0798.

6-Fluoro-1-(4-methoxybenzoyl)-2-naphthaldehyde (2g)

68 mg, 44%; Colorless oil ; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 10.09 (s, 1H), 8.38 (d, J = 8.4 Hz, 1H), 8.31-8.13 (m, 4H), 7.72-7.68 (m, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.25 (d, J = 10.8 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 195.4, 192.2, 164.4, 161.3 (¹*J*_{CF} = 246.1 Hz), 140.3, 140.20, 133.24, 132.4 (⁴*J*_{CF} = 9.3 Hz), 131.91, 131.6, 130.6 (⁵*J*_{CF} = 7.6 Hz), 130.5, 127.8, 125.7 (⁶*J*_{CF} = 2.2 Hz), 120.2 (²*J*_{CF} = 25.2 Hz), 114.9, 114.5, 109.7 (³*J*_{CF} = 21.8 Hz), 56.1. ¹F NMR (377 MHz, DMSO-*d*₆; δ, ppm) -109.9. IR (film, ν, cm⁻¹) 3062, 1694, 1658, 1604, 1502, 1461, 1375, 914, 835. HR-MS (ESI) m/z calcd for C₁₉H₁₃FO₃Na [M+Na]⁺ 331.0746, found 331.0744.

1-Benzoyl-6-fluoro-2-naphthaldehyde (2h)

90 mg, 65%; white solid, mp 82-83 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.07 (s, 1H), 8.33 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.03-7.99 (m, 1H), 7.70-7.63 (m, 4H), 7.56-7.49 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.5, 192.4, 162.1 (¹*J*_{CF} = 248.3 Hz), 140.2, 137.5 (⁴*J*_{CF} = 10.3 Hz), 137.4, 134.6, 130.6 (⁶*J*_{CF} = 2.5Hz), 130.0 (⁵*J*_{CF} = 9.9 Hz), 130.0, 129.6, 129.2, 128.0, 126.9, 119.2 (²*J*_{CF} = 25.8 Hz), 112.5 (³*J*_{CF} = 20.9 Hz). ¹F NMR (377 MHz, DMSO-*d*₆; δ , ppm) -108.9. IR (film, v, cm⁻¹) 3065, 1697, 1661, 1623, 1470, 887, 792. R-MS (ESI) m/z calcd for C₁₈H₁₁FO₂Na [M+Na]⁺ 301.0641, found 301.0649.

1-(4-Methylbenzoyl)-2-naphthaldehyde (2i)

84 mg, 61%; white solid, mp 140-141 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.07 (s, 1H), 8.31 (d, *J* = 8.8 Hz, 1H), 8.18-8.12 (m, 2H), 7.77-7.72 (m, 1H), 7.62-7.54 (m, 4H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.3, 192.3, 145.2, 140.7, 136.0, 135.3, 130.8, 130.4, 130.1, 129.9, 129.8, 129.4, 129.1, 128.7, 126.7, 126.3, 21.7. IR (film, v, cm⁻¹) 3061, 1693, 1662, 1601, 1462, 1375, 815, 742. HR-MS (ESI) m/z calcd for C₁₉H₁₄O₂Na [M+Na]⁺297.0891, found 297.0895.

1-(4-Ethylbenzoyl)-2-naphthaldehyde (2j)

0 n

91 mg, 63%; white solid, mp 85-86 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.08 (s, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.19-8.13 (m, 2H), 7.78-7.72 (m, 1H), 7.64 - 7.55 (m, 4H), 7.34 (d, *J* = 8.0 Hz, 2H), 2.70-2.63 (m, 2H), 1.18 (t, *J* = 7.6Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.3, 192.4, 151.1, 140.7, 136.0, 135.5, 130.8, 130.4, 129.9, 129.8, 129.5, 129.1, 128.9, 128.7, 126.7, 126.4, 28.7, 15.5. IR(film,v,cm⁻¹) 3057, 2970, 1697, 1659, 1601, 1564, 1459, 1376, 913, 852, 748. HR-MS (ESI) m/z calcd for C₂₀H₁₆O₂Na [M+Na]⁺ 311.1048, found 311.1041.

1-(4-(tert-Butyl)benzoyl)-2-naphthaldehyde (2k)

112 mg, 71%; white solid, mp 162-163 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.08 (s, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.18-8.14 (m, 2H), 7.77-7.73 (m, 1H), 7.64-7.57 (m, 4H), 7.53 (d, *J* = 8.4 Hz, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.3, 192.4, 157.6, 140.7, 136.0, 135.2, 130.8, 130.4, 129.9, 129.8, 129.2, 129.1, 128.7, 126.8, 126.4, 35.4, 31.2. IR (film, v, cm⁻¹) 2961, 1694, 1664, 1603, 1465, 1407, 1376, 825,761. HR-MS (ESI) m/z calcd for C₂₂H₂₀O₂Na [M+Na]⁺ 339.1361, found 339.1369.

1-(4-Methoxybenzoyl)-2-naphthaldehyde (21)

61 mg, 42%; Colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.07 (s, 1H), 8.29 (d, *J* = 8.4Hz, 1H), 8.16-8.11 (m, 2H), 7.76-7.71 (m, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 4.0 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 196.0, 192.1, 164.3, 141.3, 136.0, 131.8, 130.9, 130.7, 130.3, 129.9, 129.8, 129.1, 128.6, 126.8, 125.8, 114.8, 56.1. IR (film, v, cm⁻¹) 3052, 1693, 1655, 1602, 1547, 1451, 1382, 914, 832. HR-MS (ESI) m/z calcd for C₁₉H₁₄O₃Na [M+Na]⁺ 313.0841, found 313.0843.

1-Benzoyl-2-naphthaldehyde (2m)

75 mg, 58%; white solid, mp 96-97 °C; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.09 (s, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 2H), 7.78-7.73 (m, 1H), 7.72-7.64 (m, 3H), 7.63-7.55 (m, 2H), 7.54-7.46 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 197.9, 192.6, 140.2, 137.5, 136.0, 134.5, 130.9, 130.5, 129.9, 129.7, 129.5, 129.2(1), 129.2(6), 128.8, 126.7(2), 126.7(0). IR (film, v, cm⁻¹) 2981, 1692, 1661, 1602, 1553, 1457, 824, 738. HR-MS (ESI) m/z calcd for C₁₈H₁₂O₂Na [M+Na]⁺ 283.0735, found 283.0731.

1-Benzoyl-7-methyl-2-naphthaldehyde (2n)

0 n

85 mg, 62%; white solid, mp 94-95 °C; ¹H NMR (400 MHz, DMSO- d_6 ; δ , ppm) 10.06 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 8.12-8.06 (m, 2H), 7.72-7.64 (m, 3H), 7.60 (d, J = 8.4 Hz, 1H), 7.53-7.48 (m, 2H), 7.33 (s, 1H), 2.38 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6 ; δ , ppm) 198.0, 192.6, 139.4, 138.4, 137.6, 134.5, 134.4, 132.1, 131.0, 130.2, 130.0, 129.5, 129.2, 129.0, 126.0, 125.1, 21.9. IR (film, v, cm⁻¹) 3061, 1697, 1664, 1603, 1465, 1375, 913, 809, 748. HR-MS (ESI) m/z calcd for C₁₉H₁₄O₂Na [M+Na]⁺ 297.0891, found 297.0887.

General procedure for the synthesis of Products 4

Example for the synthesis of 4a: 2-phenyl-1-(p-tolyl)-1H-benzo[e]isoindol-3(2H)-one

Microwave Heating: 1-(4-methylbenzoyl)-2-naphthaldehyde (**2i**, 0.2 mmol, 55 mg, 1.0 equiv) and aniline (**3a**, 0.3 mmol, 28 mg, 1.5 equiv) were introduced in a 10-mL InitiatorTM reaction vial. Then *p*-toluenesulfonic acid (0.2 mmol, 35 mg, 1.0 equiv) and ethanol (2.0 mL) were successively added into the reaction system. Subsequently, the reaction vial was capped and then pre-stirring for 20 second. The mixture was irradiated (Time: 20 min, Temperature: 120 °C; Absorption Level: High; Fixed Hold Time: 30 min) until TLC (petroleum ether: ethyl acetate 5:1) revealed that conversion of the starting material **2i** was completed. The reaction mixture was then cooled to room temperature and then diluted with cold water (8.0 mL). The solid product was collected by Büchner filtration and was purified by recrystallization from 95% ethanol afford the desired pure **4a**

2-Phenyl-1-(p-tolyl)-1H-benzo[e]isoindol-3(2H)-one (4a)

53 mg, 76%; white solid, mp 167-168 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.04-7.98 (m, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.58-7.51 (m, 3H), 7.44-7.39 (m, 1H), 7.35-7.29 (m, 2H), 7.13 (d, *J* = 7.6 Hz, 3H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.39 (s, 1H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.1, 143.6, 138.3, 137.3, 135.8, 130.0, 129.7, 129.3, 128.8, 128.0, 127.7, 127.6, 127.2, 125.4, 123.8(1), 123.8(6), 120.1, 65.7, 21.2. IR (film, v, cm⁻¹) 3064, 1694, m1596, 1500, 1457, 1382, 1358, 770. HR-MS (ESI) m/z calcd for C₂₅H₁₉NONa [M+Na]⁺ 372.1364, found 372.1362.

1-(4-Ethylphenyl)-2-phenyl-1*H*-benzo[*e*]isoindol-3(2*H*)-one (4b)

50 mg, 69%; white solid, mp 174-175 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.04 (d, J = 6.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.47-7.42 (m, 1H), 7.37-7.33 (m, 2H), 7.26 (s, 1H), 7.19-7.13 (m, 3H), 7.08 (d, J = 8.0 Hz, 2H), 6.42 (s, 1H), 2.61-2.52 (m, 2H), 1.16 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.0, 144.5, 143.7, 137.3, 135.8, 134.4, 130.0, 129.5, 129.2, 129.1, 128.8, 128.4, 128.1, 127.6, 127.2, 125.3, 123.8, 123.7, 121.3, 120.0, 65.7, 28.4, 15.0. IR (film, v, cm⁻¹) 3063, 2964, 1682, 1596, 1500, 1456, 1371, 850, 761. HR-MS (ESI) m/z calcd for C₂₆H₂₁NONa [M+Na]⁺ 386.1521, found 386.1515.

1-(4-(tert-Butyl)phenyl)-2-phenyl-1H-benzo[e]isoindol-3(2H)-one (4c)

65 mg, 83%; white solid, mp 222-223 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) δ 8.07-8.00 (m, 2H), 7.97 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.58-7.53 (m, 1H), 7.47-7.42 (m, 1H), 7.38-7.33 (m, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21-7.13 (m, 3H), 6.42 (s, 1H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 168.1, 151.4, 143.7, 137.4, 135.8, 134.1, 129.9, 129.5, 129.2, 128.8, 127.8, 127.6(2), 127.6(8), 127.1, 125.9, 125.2, 123.9, 123.5, 120.1, 65.5, 34.5, 31.2. IR (film, v, cm⁻¹) 3057, 2958, 1686, 1597, 1500, 1367, 837, 783, 756. HR-MS (ESI) m/z calcd for C₂₈H₂₅NONa [M+Na]⁺414.1834, found 414.1826.

1,2-Diphenyl-1*H*-benzo[e]isoindol-3(2*H*)-one (4d)

48 mg, 72%; white solid, mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.08-8.02 (m, 2H), 7.98 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.59-7.54 (m, 3H), 7.46 -7.42 (m, 1H), 7.37-7.32 (m, 2H), 7.28-7.24 (m, 5H), 7.17-7.13 (m, 1H), 6.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.0, 143.5, 137.4, 137.2, 135.8, 130.1, 129.6, 129.3, 129.0, 128.9, 128.6, 128.2, 127.7, 127.5, 127.2, 125.5, 123.8, 123.7, 120.1, 65.9. IR (film, v, cm⁻¹) 3063, 3027, 1693, 1596, 1494, 1376, 1357, 759, 694. HR-MS (ESI) m/z calcd for C₂₄H₁₇NONa [M+Na]⁺ 358.1208, found 358.1207.

7-Fluoro-2-phenyl-1-(p-tolyl)-1H-benzo[e]isoindol-3(2H)-one (4e)

57 mg, 77%; white solid, mp 162-163 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) δ 8.07 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.77-7.72 (m, 1H), 7.61-7.57 (m, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.38-7.31 (m, 2H), 7.24 - 7.19 (m, 1H), 7.18-7.11 (m, 3H), 7.06 (d, J = 7.6 Hz, 2H), 6.39 (s, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) δ 167.8, 161.5(¹ J_{CF} = 248.0 Hz), 143.8, 138.6, 137.2, 137.1 (⁴ J_{CF} = 9.2Hz), 134.0, 129.8, 129.3, 129.3, 129.0 (⁶ J_{CF} = 2.4 Hz), 128.9, 128.0, 126.3 (⁵ J_{CF} = 9.1 Hz), 125.5, 124.6, 123.8, 121.2, 117.5 (² J_{CF} = 25.1 Hz), 112.6 (³ J_{CF} = 20.5 Hz), 65.7, 21.2. ¹F NMR (377 MHz, DMSO- d_6 ; δ , ppm) -111.2. IR (film, v, cm⁻¹) 3044, 2920, 1685, 1598, 1499, 1365, 876, 762. HR-MS (ESI) m/z calcd for C₂₅H₁₈FNONa [M+Na]⁺ 390.1270, found 390.1277.

7-Chloro-2-(4-chlorophenyl)-1-(p-tolyl)-1H-benzo[e]isoindol-3(2H)-one (4f)

63 mg, 76%; white solid, mp 201-202 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) δ 8.02 (d, J = 8.4 Hz, 1H), 7.93-7.88 (m, 2H), 7.65 (d, J = 9.2 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.8 Hz, 1H), 7.28 (s, 1H), 7.16-7.02 (m, 5H), 6.31 (s, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 143.5, 138.8, 136.6, 135.7, 133.9, 133.6, 130.7, 130.0, 129.5, 129.3, 129.0, 128.3, 128.2, 128.1, 127.9, 125.7, 125.3, 124.6, 121.2, 65.5, 21.2. IR (film, v, cm⁻¹) 3028, 2920, 1696, 1495, 1355, m882, 823, 793. HR-MS (ESI) m/z calcd for C₂₅H₁₇Cl₂NONa [M+Na]⁺ 440.0585, found 440.0587.

2-(4-Bromophenyl)-7-chloro-1-(4-ethylphenyl)-1H-benzo[e]isoindol-3(2H)-one (4g)

73 mg, 77%; white solid, mp 189-190 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.05 (d, J = 8.0 Hz, 1H), 7.98-7.90 (m, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.52-7.37 (m, 5H), 7.19-7.06 (m, 4H), 6.35 (s, 1H), 2.63-2.51 (m, 2H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 145.0, 143.6, 136.6, 136.3, 133.9, 133.8, 131.9, 129.5, 129.3, 128.7, 128.3, 128.0, 127.9, 125.7, 125.3, 124.8, 121.2, 118.5, 65.4, 28.4, 15.0. IR (film, v, cm⁻¹) 2967, 2930, 1695, 1492, 1459, 1355, 853, 821. HR-MS (ESI) m/z calcd for C₂₆H₁₉BrClNONa [M+Na]⁺ 498.0236, found 498.0228.

1-(4-(tert-Butyl)phenyl)-7-chloro-2-phenyl-1H-benzo[e]isoindol-3(2H)-one(4h)

71 mg, 83%; white solid, mp 244-245 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.06 (d, J = 8.4 Hz, 1H), 7.95-7.89 (m, 2H), 7.69 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.39-7.32 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.19 -7.13 (m, 3H), 6.38 (s, 1H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 151.7, 143.7, 137.2, 136.5, 133.8, 133.7, 129.8, 129.1, 128.9, 128.1, 128.0, 127.7, 126.0, 125.8, 125.4(2), 125.4(8), 123.6, 121.3, 65.4, 34.5, 31.2. IR (film, v, cm⁻¹) 3058, 2953, 1685, 1596, 1499, 1367, 855, 749. HR-MS (ESI) m/z calcd for C₂₈H₂₄ClNONa [M+Na]⁺ 448.1444, found 448.1448.

1-(4-(tert-Butyl)phenyl)-7-chloro-2-(4-chlorophenyl)-1H-benzo[e]isoindol-3(2H)-one(4i)

76 mg, 81%; white solid, mp 170-171 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) δ 8.05 (d, J = 8.4 Hz, 1H), 7.96- 7.90 (m, 2H), 7.69 (d, J = 8.8Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 9.2Hz, 1H), 7.33-7.27 (m, 4H), 7.15 (d, J = 7.6 Hz, 2H), 6.36 (s, 1H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 151.9, 143.6, 136.6, 135.8, 133.8, 133.4, 130.6, 129.4, 129.2, 129.0, 128.2, 128.0, 127.6, 126.2, 125.8, 125.4, 124.5, 121.2, 65.4, 34.6, 31.2. IR (film, v, cm⁻¹) 2963, 1698, 1495, 1363, 855, 830. HR-MS (ESI) m/z calcd for C₂₈H₂₃Cl₂NONa [M+Na]⁺ 482.1054, found 482.1050.

2-(4-Chlorophenyl)-8-methyl-1-phenyl-1H-benzo[e]isoindol-3(2H)-one(4j)

61 mg, 80%; white solid, mp 160-161 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) δ 7.97 (s, 2H), 7.87 (d, J = 8.4 Hz, 1H), 7.57 - 7.48 (m, 3H), 7.39 (d, J = 8.0 Hz, 1H), 7.33-7.23 (m, 7H), 6.36 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 168.1, 142.6, 137.2(5), 137.2(6), 135.9, 134.1, 130.6, 130.1, 129.9, 129.2, 129.1, 129.0, 128.7, 128.1, 127.6, 124.6, 122.7, 119.1, 65.8, 22.0. IR (film, v, cm⁻¹) 3058, 2921, 1690, 1595, 1494, 1456, 1369, 850, 836. HR-MS (ESI) m/z calcd for C₂₅H₁₈ClNONa [M+Na]⁺406.0975, found 406.0971.

8-Methyl-1-phenyl-2-(p-tolyl)-1H-benzo[e]isoindol-3(2H)-one (4k)

54 mg, 74%; white solid, mp 219-220 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.98 (s, 2H), 7.87 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.43-7.35 (m, 4H), 7.27-7.25 (m, 4H), 7.14 (d, J = 8.0 Hz, 2H), 6.35 (s, 1H), 2.40 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.1, 142.7, 137.6, 137.0, 135.2, 134.6, 134.0, 129.9, 129.7, 129.5, 129.0, 128.9, 128.5, 128.2, 127.7, 123.9, 122.8, 119.2, 66.1, 21.9, 21.0. IR (film, v, cm⁻¹) 3061, 2972, 1694, 1597, 1500, 1376. 836, 783. HR-MS (ESI) m/z calcd for C₂₆H₂₁NONa [M+Na]⁺ 386.1521, found 386.1517.

1-(4-(tert-Butyl)phenyl)-2-(3-methyl-1-(p-tolyl)-1H-pyrazol-5-yl)-1H-benzo[e]isoindol-3(2H)-one (4l)

64 mg, 66%; white solid, mp 229-230 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.02 (s, 2H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.57-7.52 (m, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.40-7.35 (m, 1H), 7.19-7.12 (m, 4H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 8.0 Hz, 2H), 5.99 (s, 1H), 5.78 (s, 1H), 2.30 (s, 6H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.9, 151.8, 148.8, 144.2, 137.3, 136.3, 135.9, 135.1, 132.7, 130.0, 129.6, 129.1, 128.6, 128.0, 127.8, 127.6, 127.2, 125.7, 124.3, 124.1, 120.1, 105.2, 67.1, 34.6, 31.2, 21.1, 14.1. IR (film, v, cm⁻¹) 2960, 1698, 1561, 1517, 1382, 1365, 1352, 818, 783, 765. HR-MS (ESI) m/z calcd for C₃₃H₃₁N₃ONa [M+Na]⁺ 508.2365, found 508.2362.

General procedure for the synthesis of 6

Example for the synthesis of 6a: 13-(p-tolyl)-13H-benzo[e]benzo[4,5]imidazo[2,1-a]isoindole

Microwave Heating: 1-(4-methylbenzoyl)-2-naphthaldehyde (**2i**, 0.2 mmol, 55 mg, 1.0 equiv) was introduced in a 10mL InitiatorTM reaction vial, acetic acid (2.0 mL), benzene-1,2-diamine (**5**, 0.24 mmol, 26 mg, 1.2 equiv) and trifluoroacetic acid (0.4 mmol, 46 mg, 2.0 equiv) were then successively added into this reaction system. Subsequently, the reaction vial was capped and then pre-stirring for 20 second. The mixture was irradiated (Time: 30 min, Temperature: 120 ° C; Absorption Level: High; Fixed Hold Time: 25 min) until TLC (petroleum ether: acetone 2:1) revealed that conversion of the starting material 2i was completed. The reaction mixture was then cooled to room temperature and then diluted with cold water (8.0 mL). The solid product was collected by Büchner filtration and was purified by recrystallization from 95 % ethanol afford the desired pure 6a.

13-(p-Tolyl)-13H-benzo[e]benzo[4,5]imidazo[2,1-a]isoindole(6a)

60 mg, 87%; white solid, mp 152-153 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.27 (s, 1H), 8.11-7.82 (m, 3H), 7.68 (s, 1H), 7.48 (d, *J* = 36.8 Hz, 2H), 7.33 -6.89 (m, 7H), 6.53 (s, 1H), 2.34 (s, 3H).¹³C NMR (100 MHz, CDCl₃; δ , ppm) 154.2, 146.8, 140.4, 135.4, 131.6, 130.8, 130.6, 129.6, 129.4, 128.6, 128.2, 128.1, 128.0, 125.5, 125.3, 123.7, 119.5, 117.4, 110.9, 65.9, 21.3. IR (film, v, cm⁻¹) 3058, 1609, 1496, 1457, 1390, 846, 742, 700. HR-MS (ESI) m/z calcd for C₂₅H₁₈N₂Na [M+Na]⁺ 369.1368, found 369.1365.

13-(4-(tert-Butyl)phenyl)-13H-benzo[e]benzo[4,5]imidazo[2,1-a]isoindole (6b)

71 mg, 92%; white solid, mp 259-260 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.25 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.54-7.49 (m, 1H), 7.47-7.41 (m, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 3H), 7.21-7.12 (m, 2H), 6.53 (s, 1H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.2, 145.3, 134.5, 130.5, 129.3, 128.8, 127.8, 127.4, 126.9, 126.4, 123.5, 122.7, 122.2, 120.4, 118.9, 109.7, 63.5, 34.7, 31.2. IR (film, v, cm⁻¹) 3050, 2960, 1620, 1547, 1519, 1452, 1360, 1321, 827, 748. HR-MS (ESI) m/z calcd for C₂₈H₂₄N₂Na [M+Na]⁺411.1837, found 411.1844.

3-Chloro-13-(p-tolyl)-13H-benzo[e]benzo[4,5]imidazo[2,1-a]isoindole (6c)

67 mg, 88%; white solid, mp 160-161 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) δ 8.41 (d, J = 8.4 Hz, 1H), 7.89-7.79 (m, 3H), 7.63 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 9.2 Hz, 1H), 7.30-7.19 (m, 7H), 6.86 (s, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 146.8, 140.5, 135.9, 134.7, 130.7, 130.5, 129.5, 129.2, 128.3, 128.0, 126.2, 125.4, 125.2(5), 125.2(6), 120.6, 117.5, 110.9, 65.6, 21.3. IR (film, v, cm⁻¹) 3057, 2924, 1623, 1514, 1452, 1380, 807, 741. HR-MS (ESI) m/z calcd for C₂₅H₁₇ClN₂Na [M+Na]⁺403.0978, found 403.0980.

3-Chloro-13-(4-ethylphenyl)-9,10-dimethyl-13*H*-benzo[*e*]benzo[4,5]imidazo[2,1-*a*]isoindole (6d)

61 mg, 72%; white solid, mp 161-162 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.33 (d, J = 8.0 Hz, 1H), 7.78 (s, 1H), 7.74-7.62 (m, 2H), 7.47 -7.38 (m, 2H), 7.20 (s, 4H), 6.97 (s, 1H), 6.96 (s, 1H), 2.70-2.60 (m, 2H), 2.28 (s, 3H), 2.19 (s, 3H), 1.25-1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 146.8, 146.6, 135.8, 130.6, 130.4, 129.5, 129.3, 128.1, 128.0, 127.4, 126.1, 125.4, 120.6, 116.3, 111.2, 65.8, 28.5, 20.6, 20.2, 15.0. IR (film, v, cm⁻¹) 2966, 1616, 1515, 1457, 1375, 1352, 852, 795, 718. HR-MS (ESI) m/z calcd for C₂₈H₂₃ClN₂Na [M+Na]⁺445.1447, found 445.1439.

15-(4-(tert-Butyl)phenyl)-15H-benzo[4,5]isoindolo[2,1-a]perimidine (6e)

80 mg, 91%; white solid, mp 306-307 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.33 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.70-7.61 (m, 2H), 7.54-7.48 (m, 2H), 7.39-7.29 (m, 4H), 7.20-7.01 (m, 5H), 6.90 (s, 1H), 6.57 (d, J = 4.0 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 156.5, 152.5, 136.0, 134.6, 130.9, 129.1, 128.5, 128.0, 127.6(3), 127.6(0), 126.6, 125.9, 125.8, 124.6, 122.2, 119.1, 68.1, 34.6, 31.1. IR (film, v, cm⁻¹) 3058, 2958, 1615, 1500, 1460, 1434, 1382, 819, 755. HR-MS (ESI) m/z calcd for C₃₂H₂₆N₂Na [M+Na]⁺ 461.1994, found 416.1997.

¹³C NMR Spectrum of Compound 2a

¹³C NMR Spectrum of Compound 2b

¹³C NMR Spectrum of Compound 2c

¹³C NMR Spectrum of Compound 2d

¹³C NMR Spectrum of Compound 2f

¹⁹F NMR Spectrum of Compound 2g

¹³C NMR Spectrum of Compound 2h

¹H NMR Spectrum of Compound 21

¹H NMR Spectrum of Compound 2n

¹H NMR Spectrum of Compound 4d

¹H NMR Spectrum of Compound 4e

¹⁹F NMR Spectrum of Compound 4e

¹³C NMR Spectrum of Compound 4f

¹³C NMR Spectrum of Compound 4g

¹³C NMR Spectrum of Compound 4h

¹³C NMR Spectrum of Compound 41

¹³C NMR Spectrum of Compound 6a

¹³C NMR Spectrum of Compound 6c

¹³C NMR Spectrum of Compound 6d

¹³C NMR Spectrum of Compound 6e