PtCl₄-catalyzed Skeleton Rearrangement-Cyclization of Tertiary Indolyl-3-alkynols

Jing Zhou,[†] Youai Qiu,[†] Junzhao Li,[†] Chunling Fu,[†]

Xue Zhang,[‡] and Shengming Ma^{*,†,‡}

[†] Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China

[‡] Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032,

Shanghai, People's Republic of China

Fax: (+86) 21-64167510; E-mail: masm@sioc.ac.cn

Supporting information	
General information	S2
Experimental details and analytical data for all the products listed in the text	S3-32
Computational details	S33-39
References	S40-41
¹ H and ¹³ C NMR spectra of all compounds	S42-107

Supporting Information

General Information

¹H and ¹³C nuclear magnetic resonance spectra were recorded with an instrument operated at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR spectra. CDCl₃ was used as solvent in all NMR experiments. Chemical shifts (δ) are given in parts per million (ppm). Infrared spectra were recorded on a FT-IR spectrometer. Mass spectra were carried out in EI mode. HRMS spectra were carried out in EI mode. Flash column chromatography was performed on silica gel. Et₂O and toluene was refluxed over sodium wire using diphenyl ketone as indicator and distilled right before use. PtCl₄ was purchased from Alfa Aesar. Other reagents were used as received without further treatment.

1. Synthesis of starting materials 2a~2n.

The starting materials $2a \sim 2n$ were prepared according to the literatures.¹

(1) 2-(1-Ethyl-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2a) (zj-1-032, 1-036)

Typical Procedure I: To a solution of $5a^2$ (2.9879 g, 10.0 mmol) and DCM (80 mL) was added DMP (4.6596 g, 11.0 mmol)/DCM (20 mL) at 0 °C within 10 min. Then the mixture was allowed to warm up to room temperature. After 3.8 h, the reaction was complete as monitored by TLC, and the resulting mixture was concentrated in vacuo. Column chromatography on silica gel (eluent: petroleum ether /ethyl acetate = 50/1 ~ 30/1) afforded **1a** (2.8271 g, 95%) as a liquid, which was then submitted to next step.

To a solution of **1a** (2.0717 g, 7.0 mmol, prepared above) in diethyl ether (50 mL) was added MeLi (10.5 mL, 1.6 M in Et₂O, 16.8 mmol) at -78 °C with stirring under nitrogen atmosphere within 15 min. Then the mixture was allowed to warm up to -40 °C. After 3 h, the reaction was complete as monitored by TLC, the resulting mixture was quenched with a saturated aqueous solution of NH₄Cl (10 mL), extracted with diethyl ether (20 mL×3), and washed with water and brine. The combined ether layer was dried over anhydrous Na₂SO₄, filtration, evaporation, and column chromatography on silica gel to give **2a** (2.0793 g, 95%) (eluent: petroleum ether/ethyl acetate = 50/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.50 (m, 1H,

ArH), 7.38-7.27 (m, 1H, ArH), 7.23-7.12 (m, 1H, ArH), 7.11-7.03 (m, 1H, ArH), 6.34 (s, 1H, ArH), 5.01-4.86 (m, 1H, one proton of NCH₂), 4.34-4.16 (m, 1H, one proton of NCH₂), 2.50 (s, 1H, OH), 2.22 (t, J = 7.1 Hz, 2H, CH₂), 1.81 (s, 3H, CH₃), 1.57-1.33 (m, 7H, 2 × CH₂ + CH₃), 1.24 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 0.93 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.5, 136.9, 127.2, 121.0, 120.1, 119.2, 109.6, 102.5, 85.0, 83.6, 78.5, 42.9, 41.4, 31.1, 28.7, 25.9, 25.5, 22.0, 18.4, 15.7, 13.6; IR (neat) v (cm⁻¹) 3540, 3047, 2961, 2933, 2872, 2231, 1463, 1371, 1344, 1311, 1225, 1181, 1133, 1108, ; MS (70 ev, EI) *m/z* (%) 312 (M⁺+1, 7.88), 311 (M⁺, 21.69), 188 (100), 146 (100); HRMS Calcd for C₂₁H₂₉NO (M⁺): 311.2249, Found: 311.2248.

The following compounds **2b~2l** were prepared according to **Typical Procedure** I.

The reaction of **5b** (3.0077 g, 11.0 mmol), DMP (4.8925 g, 11.5 mmol)/DCM (20 mL), and DCM (80 mL) afforded **1b** (1.9562 g) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of 1b (1.9518 g, 7 mmol, prepared above)/diethyl ether (30 mL) and

MeLi (10.5 mL, 1.6 M in Et₂O, 16.8 mmol) afforded **2b** (1.4647 g, 46%, two steps) (eluent: petroleum ether/ethyl acetate = 100/1~50/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, *J* = 7.5 Hz, 1H, ArH), 7.28 (d, *J* = 8.1 Hz, 1H, ArH), 7.18 (t, *J* = 7.7 Hz, 1H, ArH), 7.07 (t, *J* = 7.4 Hz, 1H, ArH), 6.38 (s, 1H, ArH), 4.04 (s, 3H, NCH₃), 2.54 (s, 1H, OH), 2.21 (t, *J* = 6.8 Hz, 2H, CH₂), 1.80 (s, 3H, CH₃), 1.57-1.33 (m, 4H, 2 × CH₂), 1.24 (s, 3H, CH₃), 1.19 (s, 3H, CH₃), 0.92 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 138.3, 126.8, 121.1, 120.0, 119.3, 109.3, 102.7, 85.0, 83.7, 78.5, 43.0, 33.4, 31.1, 28.4, 26.0, 25.6, 22.0, 18.4, 13.6; IR (neat) v (cm⁻¹) 3539, 2957, 2933, 2872, 2230, 1469, 1371, 1358, 1316, 1236, 1176, 1143, 1104, 1055, 1010; MS (70 ev, EI) *m/z* (%) 298 (M⁺+1, 4.60), 297 (M⁺, 11.30), 174 (100), 132 (100); HRMS Calcd for C₂₀H₂₇NO (M⁺): 297.2093, Found: 297.2098.

(3) 2-(1-Benzyl-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2c) (qya-9-062, 9-068)

The reaction of **5c** (2.1567 g, 6 mmol), DMP (2.8027 g, 6.6 mmol)/DCM (20 mL), and DCM (80 mL) afforded **1c** (1.6708 g, 78%) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/l$) as a liquid.

The reaction of **1c** (1.4280 g, 4 mmol, prepared above)/diethyl ether (25 mL) and MeLi (6.0 mL, 1.6 M in Et₂O, 9.6 mmol) afforded **2c** (0.7915 g, 53%) (eluent: petroleum ether/ethyl acetate = 20/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.63-7.51 (m, 1H, ArH), 7.27-7.00 (m, 6H, ArH), 6.98-6.86 (m, 2H, ArH), 6.49 (s, 1H,

ArH), 6.33 (d, J = 16.5 Hz, 1H, one proton of NCH₂), 5.38 (d, J = 17.1 Hz, 1H, one proton of NCH₂), 2.36 (s, 1H, OH), 2.19 (t, J = 6.9 Hz, 2H, CH₂), 1.82 (s, 3H, CH₃), 1.54-1.33 (m, 4H, 2 × CH₂), 1.29 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 0.91 (t, J = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 139.8, 137.7, 128.4, 127.1, 126.5, 125.6, 121.4, 120.0, 119.6, 110.3, 103.0, 85.1, 83.4, 78.5, 49.9, 42.6, 31.1, 28.7, 25.8, 25.6, 22.0, 18.4, 13.6; IR (neat) v (cm⁻¹) 3540, 3057, 3030, 2957, 2931, 2872, 2242, 1496, 1463, 1453, 1371, 1347, 1313, 1252, 1212, 1171, 1142, 1111, 1093, 1066, 1029, 1016; MS (70 ev, EI) m/z (%) 373 (M⁺, 5.03), 91 (100); HRMS Calcd for C₂₆H₃₁NO (M⁺): 373.2406, Found: 373.2404.

(4) 2-(1-Ethyl-1*H*-indol-2-yl)-3,3-dimethyloct-4-yn-2-ol (2d) (zj-1-069, 1-087)

The reaction of **5d** (3.5406 g, 12.5 mmol), DMP (5.8378 g, 13.8 mmol)/DCM (25 mL), and DCM (75 mL) afforded crude **1d** (2.4774 g) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of **1d** (2.4046 g, 8.6 mmol, prepared above)/diethyl ether (50 mL) and MeLi (13.0 mL, 1.6 M in Et₂O, 20.6 mmol) afforded **2d** (2.0387 g, 57%, two steps) (eluent: petroleum ether ~ petroleum ether/ethyl acetate = 100/1 for the first round afforded 0.5413 g of pure **2d** and 1.5478 g of impure **2d**, which was further purified by chromatography on silica gel (eluent: petroleum ether ~ ether/ethyl acetate = 100/1) to afford **2d** 1.4974 g, combined weight 2.0387 g as a liquid: ¹H NMR (300

MHz, CDCl₃) δ 7.54 (d, J = 8.1 Hz, 1H, ArH), 7.32 (d, J = 7.5 Hz, 1H, ArH), 7.17 (t, J = 7.7 Hz, 1H, ArH), 7.07 (t, J = 7.4 Hz, 1H, ArH), 6.34 (s, 1H, ArH), 5.02-4.86 (m, 1H, one proton of NCH₂), 4.36-4.18 (m, 1H, one proton of NCH₂), 2.49 (s, 1H, OH), 2.20 (t, J = 7.1 Hz, 2H, CH₂), 1.81 (s, 3H, CH₃), 1.63-1.47 (m, 2H, CH₂), 1.38 (t, J = 6.9 Hz, 3H, CH₃), 1.25 (s, 3H, CH₃), 1.18 (s, 3H, CH₃), 1.00 (t, J = 7.4 Hz, 3H, CH₃); 1³C NMR (75 MHz, CDCl₃) δ 139.6, 136.9, 127.2, 121.0, 120.1, 119.2, 109.6, 102.6, 85.3, 83.5, 78.5, 42.9, 41.4, 28.7, 25.9, 25.6, 22.4, 20.7, 15.6, 13.5; IR (neat) v (cm⁻¹) 3546, 3046, 2967, 2933, 2872, 2186, 1461, 1371, 1344, 1310, 1275, 1225, 1180, 1133, 1108, 1096; MS (70 ev, EI) *m/z* (%) 298 (M⁺+1, 5.82), 297 (M⁺, 15.90), 188 (100), 188 (100), 146 (100); HRMS Calcd for C₂₀H₂₇NO (M⁺): 297.2093, Found: 297.2095.

- (5) **2-(1-Ethyl-5-methyl-1***H***-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol** (2e)
- (zj-1-010,1-012)

The reaction of **5e** (2.1125 g, 7.1 mmol), DMP (3.3165 g, 7.8 mmol)/DCM (20 mL), and DCM (80 mL) afforded **1e** (1.7911 g, 86%) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of **1e** (1.5293 g, 5.2 mmol, prerared above)/diethyl ether (50 mL) and MeLi (4.2 mL, 3.0 M in Et₂O, 12.6 mmol) afforded **2e** (1.4814 g, 92%,) (eluent: petroleum ether/ethyl acetate = 30/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.33 (s, 1H, ArH), 7.20 (d, *J* = 8.4 Hz, 1H, ArH), 6.99 (d, *J* = 8.4 Hz, 1H, ArH), 6.24 (s, 1H,

ArH), 4.98-4.82 (m, 1H, one proton of NCH₂), 4.30-4.13 (m, 1H, one proton of NCH₂), 2.49 (s, 1H, OH), 2.43 (s, 3H, CH₃), 2.18 (t, J = 7.1 Hz, 2H, CH₂), 1.79 (s, 3H, CH₃), 1.61-1.42 (m, 2H, CH₂), 1.35 (t, J = 7.1 Hz, 3H, CH₃), 1.23 (s, 3H, CH₃), 1.16 (s, 3H, CH₃), 0.99 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 135.3, 128.3, 127.4, 122.5, 119.7, 109.3, 102.0, 85.3, 83.4, 78.4, 42.9, 41.4, 28.6, 25.8, 25.5, 22.4, 21.3, 20.7, 15.7, 13.5; IR (neat) v (cm⁻¹) 3543, 2967, 2933, 2871, 2221, 1478, 1463, 1370, 1336, 1320, 1298, 1275, 1190, 1229, 1159, 1139, 1112, 1096, 1079, 1056, 1004; MS (70 ev, EI) m/z (%) 312 (M⁺+1, 6.02), 311 (M⁺, 16.56), 202 (100), 160 (100); HRMS Calcd for C₂₁H₂₉NO (M⁺): 311.2249, Found: 311.2247.

(6) 2-(1-Ethyl-5-methyl-1*H*-indol-2-yl)-3,3-dimethyl-5-phenylpent-4-yn-2-ol (2f) (qva-9-127, 9-132)

The reaction of **5f** (1.2916 g, 3.9 mmol), DMP (1.8213 g, 4.3 mmol)/DCM (10 mL), and DCM (50 mL) afforded crude **1f** (1.0625 g,) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of **1f** (1.0513 g, 3.2 mmol, prerared above)/diethyl ether (20 mL) and MeLi (4.8 mL, 1.6 M in Et₂O, 7.7 mmol) afforded **2f** (0.8625 g, 65%, two steps) (eluent: petroleum ether/ethyl acetate = 50/l) as a solid; m.p. 104.9~106.2 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.15 (m, 7H, ArH), 7.07-6.96 (m, 1H, ArH), 6.32 (d, J = 1.8 Hz, 1H, ArH), 5.04-4.82 (m, 1H, one proton

of NCH₂), 4.35-4.16 (m, 1H, one proton of NCH₂), 2.44 (s, 3H, CH₃), 2.34 (s, 1H, OH), 1.89 (d, J = 1.8 Hz, 3H, CH₃), 1.44-1.19 (m, 9H, 3 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 135.5, 131.6, 128.5, 128.3, 128.0, 127.5, 123.4, 122.8, 119.9, 109.4, 102.2, 95.0, 83.4, 78.7, 43.3, 41.4, 28.7, 25.7, 25.3, 21.3, 15.7; IR (KBr) v (cm⁻¹) 3554, 2977, 2935, 2866, 2218, 1597, 1477, 1459, 1371, 1335, 1298, 1269, 1229, 1191, 1136, 1107; MS (70 ev, EI) m/z (%) 346 (M⁺+1, 6.61), 345 (M⁺, 15.62), 202 (100), 160 (100); Elemental analysis calcd (%) for C₂₄H₂₇NO: C, 83.44; H, 7.88; N, 4.05; Found: C, 83.46, H, 8.06; N, 3.80.

(7) 2-(1-Ethyl-5-methyl-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2g) (zj-1-023,

1-024)

The reaction of **5g** (1.2536 g, 4.0 mmol), DMP (2.1553 g, 5.1 mmol)/DCM (20 mL), and DCM (80 mL) afforded crude **1g** (0.9215 g) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/l$) as a liquid.

The reaction of **1g** (0.8840 g, 2.9 mmol, prerared above)/diethyl ether (30 mL), and MeLi (4.4 mL, 1.6 M in Et₂O, 7.0 mmol) afforded **2g** (0.8362 g, 67%, two steps) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.30 (m, 1H, ArH), 7.21 (d, *J* = 8.4 Hz, 1H, ArH), 7.00 (d, *J* = 8.4, 1H, ArH), 6.24 (s, 1H, ArH), 4.99-4.83 (m, 1H, one proton of NCH₂), 4.30-4.15 (m, 1H, one proton of NCH₂), 2.49 (s, 1H, OH), 2.43 (s, 3H, CH₃), 2.21 (t, *J* = 7.1 Hz, 2H, CH₂), 1.79 (s, 3H, CH₃), 1.57-1.30 (m, 7H, 2 × CH₂ + CH₃), 1.23 (s, 3H, CH₃), 1.16 (s, 3H, CH₃), 0.93 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 135.3, 128.4, 127.4, 122.6, 119.7, 109.3, 102.0, 85.1, 83.6, 78.5, 42.9, 41.4, 31.1, 28.7, 25.9, 25.5, 22.0, 21.3, 18.4, 15.7, 13.6; IR (neat) v (cm⁻¹) 3546, 2961, 2932, 2871, 2230, 1477, 1459, 1370, 1335, 1298, 1229, 1189, 1138, 1111, 1096; MS (70 ev, EI) *m/z* (%) 326 (M⁺+1, 11.07), 325 (M⁺, 13.79), 202 (100), 160 (100); HRMS Calcd for C₂₂H₃₁NO (M⁺): 325.2406, Found: 325.2404.

(8) 2-(1-Benzyl-5-bromo-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2h) (zj-1-055, 1-056)

The reaction of **5h** (2.8472 g, 6.5 mmol), DMP (3.5460 g, 8.4 mmol)/DCM (20 mL), and DCM (80 mL) afforded crude **1h** (2.0670 g) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/l$) as a liquid.

The reaction of **1h** (2.0343 g, 4.7 mmol, prerared above)/diethyl ether (50 mL) and MeLi (8.2 mL, 1.6 M in Et₂O, 13.1 mmol) afforded **2h** (2.0169 g, 70%, two steps) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.68 (s, 1H, ArH), 7.26-7.09 (m, 4H, ArH), 6.97 (d, *J* = 8.7 Hz, 1H, ArH), 6.94-6.85 (m, 2H, ArH), 6.42 (s, 1H, ArH), 6.32 (d, *J* = 16.5 Hz, 1H, one proton of NCH₂), 5.33 (d, *J* = 16.5 Hz, 1H, one proton of NCH₂), 2.34 (s, 1H, OH), 2.19 (t, *J* =

6.9 Hz, 2H, CH₂), 1.80 (s, 3H, CH₃), 1.55-1.33 (m, 4H, 2 × CH₂), 1.27 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 0.91 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.0, 139.4, 136.4, 128.8, 128.5, 126.7, 125.6, 124.2, 122.5, 112.9, 111.8, 102.5, 84.9, 83.7, 78.5, 50.1, 42.7, 31.1, 28.6, 25.8, 25.6, 22.0, 18.4, 13.6; IR (neat) v (cm⁻¹) 3537, 3060, 3027, 2956, 2931, 2871, 2227, 1604, 1496, 1463, 1382, 1370, 1328, 1314, 1271, 1207, 1171, 1144, 1105, 1055, 1029; MS (70 ev, EI) m/z (%) 453 (M(⁸¹Br)⁺, 5.31), 451 (M(⁷⁹Br)⁺, 5.22), 91 (100); HRMS Calcd for C₂₆H₃₀NO⁷⁹Br (M⁺): 451.1511, Found: 451.1508.

- (9) 2-(1-Ethyl-6-methyl-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2i) (zj-1-089,
- 1-108)

The reaction of **5i** (3.4728 g, 11.2 mmol), DMP (5.2395 g, 12.4 mmol)/DCM (25 mL), and DCM (75 mL) afforded **1i** (1.5249 g, 44%) (eluent: petroleum ether \sim petroleum ether/ethyl acetate = 100/1) as a liquid.

The reaction of **1i** (1.4329 g, 4.6 mmol, prerared above)/diethyl ether (30 mL) and MeLi (6.9 mL, 1.6 M in Et₂O, 11.0 mmol) afforded **2i** (1.3653 g, 91%) (eluent: petroleum ether/ethyl acetate = $50/1 \sim 30/1$) as a solid; m.p. 78.1~79.3 °C (*n*-hexane/diethyl ether): ¹H NMR (300 MHz, CD₃COCD₃) δ 7.35 (d, *J* = 7.8 Hz, 1H, ArH), 7.16 (s, 1H, ArH), 6.83 (d, *J* = 7.2 Hz, 1H, ArH), 6.33 (s, 1H, ArH), 5.08-4.92 (m, 1H, one proton of NCH₂), 4.32-4.20 (m, 1H, one proton of NCH₂), 4.19 (s, 1H,

OH), 2.43 (s, 3H, CH₃), 2.18 (t, J = 6.6 Hz, 2H, CH₂), 1.82 (s, 3H, CH₃), 1.52-1.35 (m, 4H, 2 × CH₂), 1.32 (t, J = 7.1 Hz, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 0.90 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CD₃COCD₃) δ 142.0, 138.2, 130.8, 126.4, 121.5, 120.6, 110.4, 102.7, 87.3, 82.6, 78.6, 42.7, 41.7, 31.9, 28.4, 26.5, 26.3, 22.6, 22.1, 19.0, 15.9, 13.9; IR (KBr) v (cm⁻¹) 3542, 3024, 2961, 2932, 2872, 2227, 1617, 1521, 1489, 1467, 1371, 1339, 1311, 1269, 1225, 1180, 1139, 1105, 1058; MS (70 ev, EI) m/z (%) 326 (M⁺+1, 3.06), 325 (M⁺, 7.27), 202 (100), 160 (100); Elemental analysis calcd (%) for C₂₂H₃₁NO: C, 81.18; H, 9.60; N, 4.30; Found: C, 81.24; H, 9.53; N, 4.11.

(10) 2-(1-Ethyl-7-methyl-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2j) (zj-1-046, 1-049)

The reaction of **5j** (4.1782 g, 13.4 mmol), DMP (6.3333 g, 14.9 mmol)/DCM (20 mL), and DCM (80 mL) afforded crude **1j** (3.0237 g) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of **1j** (2.9784 g, 9.6 mmol, prerared above)/diethyl ether (50 mL) and MeLi (14.5 mL, 1.6 M in Et₂O, 23.2 mmol) afforded **2j** (2.9697 g, 69%, two steps) (eluent: petroleum ether/ethyl acetate = 50/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.40 (dd, J_1 = 7.5 and J_2 = 0.6 Hz, 1H, ArH), 6.95 (t, J = 7.4 Hz, 1H, ArH), 6.89 (dd,

 $J_1 = 7.4$ and $J_2 = 0.6$ Hz, 1H, ArH), 6.38 (s, 1H, ArH), 5.28-4.90 (m, 1H, one proton of NCH₂), 4.63-4.43 (m, 1H, one proton of NCH₂), 2.75 (s, 3H, CH₃), 2.48 (s, 1H, OH), 2.22 (t, J = 6.9 Hz, 2H, CH₂), 1.83 (s, 3H, CH₃), 1.55-1.38 (m, 4H, 2 × CH₂), 1.29 (t, J = 6.9 Hz, 3H, CH₃), 1.23 (s, 3H, CH₃), 1.19 (s, 3H, CH₃), 0.93 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.2, 136.1, 128.3, 125.0, 120.8, 119.4, 118.5, 104.6, 85.2, 83.6, 78.6, 43.0, 42.5, 31.1, 28.6, 26.0, 25.5, 22.0, 20.8, 18.4, 18.0, 13.6; IR (neat) v (cm⁻¹) 3546, 3043, 2960, 2931, 2872, 2230, 1486, 1459, 1409, 1371, 1319, 1303, 1237, 1177, 1141, 1109, 1093, 1049; MS (70 ev, EI) *m/z* (%) 325 (M⁺, 3.52), 202 (100); HRMS Calcd for C₂₂H₃₁NO (M⁺): 325.2406, Found: 325.2408.

(11) 1-(1-Ethyl-1*H*-indol-2-yl)-3,3-pentamethylenenon-4-yn-2-ol (2k) (zj-1-072, 1-173)

The reaction of **5k** (1.7757 g, 5.3 mmol), DMP (2.5471 g, 6.0 mmol)/DCM (15 mL), and DCM (60 mL) afforded **1k** (1.4110 g, 80%) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid.

The reaction of **1k** (1.2480 g, 3.7 mmol, prerared above)/diethyl ether (30 mL) and MeLi (3.0 mL, 3.0 M in Et₂O, 9.0 mmol) afforded **2k** (1.2188 g, 93%) (eluent: petroleum ether/ethyl acetate = $100/1 \sim 50/l$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 7.5 Hz, 1H, ArH), 7.33 (d, *J* = 7.8 Hz, 1H, ArH), 7.23-7.13 (m, 1H, ArH),

7.12-7.02 (m, 1H, ArH), 6.29 (s, 1H, ArH), 5.02-4.82 (m, 1H, one proton of NCH₂), 4.33-4.10 (m, 1H, one proton of NCH₂), 2.61 (s, 1H, OH), 2.27 (t, J = 6.9 Hz, 2H, CH₂), 2.13-1.96 (m, 1H, one proton of CH₂), 1.78 (s, 3H, CH₃), 1.84-1.67 (m, 1H, one proton of CH₂), 1.66-1.31 (m, 13H, 5 × CH₂ + CH₃), 1.01-0.69 (m, 5H, CH₂ + CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.0, 136.9, 127.2, 120.9, 120.1, 119.1, 109.6, 102.6, 87.1, 82.5, 78.9, 49.4, 41.5, 32.4, 32.2, 31.3, 28.4, 25.3, 23.6, 23.2, 22.1, 18.5, 15.6, 13.6; IR (neat) v (cm⁻¹) 3538, 3046, 3032, 2932, 2858, 2226, 1463, 1373, 1345, 1311, 1276, 1224, 1202, 1172, 1147, 1110, 1082, 1045, 1015; MS (70 ev, EI) *m/z* (%) 352 (M⁺+1, 6.75), 351 (M⁺, 3.00), 188 (100); HRMS Calcd for C₂₄H₃₃NO (M⁺): 351.2562, Found: 351.2563.

(12) 3-Ethyl-2-(1-ethyl-1*H*-indol-2-yl)-3-methylnon-4-yn-2-ol (2l) (zj-1-019, 1-021)

The reaction of **51** (2.3447 g, 7.9 mmol), DMP (3.6815 g, 8.69 mmol)/DCM (25 mL), and DCM (75 mL) afforded crude **11** (1.4618 g) (petroleum ether/ethyl acetate = $50/1 \sim 30/l$) as a liquid.

The reaction of **1l** (1.3854 g, 4.5 mmol, prerared above)/diethyl ether (30 mL) and MeLi (6.8 mL, 1.6 M in Et₂O, 10.9 mmol) afforded **2l** (1.3803 g, 59%, two steps) (petroleum ether/ethyl acetate = 30/1) as a liquid(dr 2:1): ¹H NMR (300 MHz, CDCl₃)

δ 7.54 (d, J = 7.5 Hz, 1H, ArH), 7.32 (d, J = 7.8 Hz, 1H, ArH), 7.21-7.13 (m, 1H, ArH), 7.10-7.02 (m, 1H, ArH), [6.31 (s, 0.65H), 6.30 (s, 0.33H), ArH], 5.06-4.86 (m, 1H, one proton of NCH₂), 4.35-4.19 (m, 1H, one proton of NCH₂), 2.54 (s, 1H, OH), 2.23 (t, J = 6.9 Hz, 2H, CH₂), [2.04-1.91 (m, 0.35H), 1.73-1.59 (m, 0.72H), one proton of CH₂], [1.82 (s, 1.01H), 1.80 (s, 1.96H), CH₃], 1.57-1.32 (m, 8H, 2 × CH₂ + CH₃ + one proton of CH₂), [1.18 (s, 1.00H), 1.10 (s, 1.99H), CH₃], 0.99-0.85 (m, 6H, 2 × CH₃); IR (neat) v (cm⁻¹) 3540, 2964, 2933, 2874, 2224, 1523, 1463, 1377, 1344, 1310, 1275, 1225, 1180, 1133, 1108, 1015; MS (70 ev, EI) *m/z* (%) 325 (M⁺, 6.69), 326 (M⁺+1, 3.60), 188 (100), 146(100); HRMS Calcd for C₂₂H₃₁NO (M⁺): 325.2406, Found: 325.2400.

(13) 3,3-Dimethyl-2-(1-methyl-1*H*-indol-2-yl)hept-4-yn-2-ol (2m) (zj-8-008, 8-009)

The reaction of **5m** (0.3561 g, 1.4 mmol), DMP (0.6875 g, 1.54 mmol)/DCM (5 mL), and DCM (35 mL) afforded **1m** (0.3211 g, 91%) [eluent: petroleum ether/ethyl acetate = 100/1 (500 mL) ~ 50/l (400 mL)] as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H, ArH), 7.75-7.65 (m, 1H, ArH), 7.40-7.29 (m, 2H, ArH), 7.18-7.08 (m, 1H, ArH), 4.00 (s, 3H, NCH₃), 2.22 (q, *J* = 7.4 Hz, 2H, CH₂), 1.59 (s, 6H, CH₃ × 2), 1.13 (t, *J* = 7.5 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 194.3, 139.4, 131.9, 125.64, 125.55, 123.0, 120.5, 113.1, 110.2, 85.5, 84.4, 42.3, 32.5, 28.8, 13.7, 12.6; IR (neat) v (cm⁻¹) 2975, 2936, 2876, 2236, 1660, 1614, 1511, 1462, 1385, 1374, 1360, 1321,

1243, 1218, 1152, 1121, 1101; MS (70 ev, EI) *m/z* (%) 254 (M⁺+1, 2.58), 253 (M⁺,

12.81), 158 (100); HRMS Calcd for C₁₇H₁₉NO (M⁺): 253.1467, Found: 253.1469.

The reaction of **1m** (0.2862 g, 1.13 mmol, prepared above)/diethyl ether (25 mL) MeLi (1.7 mL, 1.6 M in Et₂O, 2.712 mmol) afforded **2m** (0.2914 g, 96%) [eluent: petroleum ether/ethyl acetate = 50/1 (500 mL) ~ 30/l (500 mL) ~ 20/l (400 mL)] as a oil: ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H, ArH), 7.30 (d, *J* = 8.1 Hz, 1H, ArH), 7.23-7.15 (m, 1H, ArH), 7.13-7.01 (m, 1H, ArH), 6.38 (s, 1H, ArH), 4.05 (s, 3H, NCH₃), 2.55 (s, 1H, OH), 2.22 (q, *J* = 7.5 Hz, 2H, CH₂), 1.80 (s, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.19 (s, 3H, CH₃), 1.16 (t, *J* = 7.7 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.0, 138.3, 126.8, 121.1, 120.0, 119.3, 109.3, 102.7, 85.0, 84.3, 78.4, 42.9, 33.4, 28.4, 25.9, 25.6, 14.2, 12.4; IR (neat) v (cm⁻¹) 3538, 2976, 2937, 2874, 2233, 1522, 1468, 1371, 1356, 1315, 1236, 1176, 1143, 1069, 1048, 1012; MS (70 ev, EI) *m/z* (%) 270 (M⁺+1, 1.89), 269 (M⁺, 8.50), 174 (100); HRMS Calcd for C₁₈H₂₃NO (M⁺): 269.1780, Found: 269.1776.

(14) 2-(1-Ethyl-5-methoxy-1*H*-indol-2-yl)-3,3-dimethylnon-4-yn-2-ol (2n) (zj-1-084, 1-107)

The reaction of **5n** (1.5959 g, 4.9 mmol), DMP (2.3105 g, 5.39 mmol)/DCM (20 mL), and DCM (55 mL) afforded **1n** (1.2898 g) (eluent: petroleum ether/ethyl acetate = 50/1) as a liquid.

The reaction of **1n** (1.2523 g, 3.85 mmol, prepared above)/diethyl ether (30 mL) and MeLi (5.9 mL, 1.6 M in Et₂O, 9.44 mmol) afforded **2n** (0.9582 g, 59%, two steps) (eluent: petroleum ether/ethyl acetate = 50/l~30/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.20 (d, *J* = 8.7 Hz, 1H, ArH), 7.01 (d, *J* = 2.4 Hz, 1H, ArH), 6.83 (dd, *J_I* = 9.0 Hz, *J*₂ = 2.4 Hz, 1H, ArH), 6.26 (s, 1H, ArH), 4.97-4.83 (m, 1H, one proton of NCH₂), 4.28-4.14 (m, 1H, one proton of NCH₂), 3.83 (s, 3H, OCH₃), 2.49 (s, 1H, OH), 2.21 (t, *J* = 7.1 Hz, 2H, CH₂), 1.79 (s, 3H, CH₃), 1.58-1.39 (m, 4H, 2 × CH₂), 1.36 (t, *J* = 7.1 Hz, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 0.93 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.9, 140.1, 132.3, 127.4, 111.2, 110.3, 102.1, 101.9, 85.1, 83.6, 78.4, 55.9, 42.9, 41.4, 31.1, 28.6, 25.9, 25.5, 22.0, 18.4, 15.7, 13.6; IR (neat) v (cm⁻¹) 3539, 2955, 2933, 2872, 2831, 2226, 1620, 1581, 1522, 1476, 1455, 1400, 1371, 1319, 1299, 1271, 1228, 1210, 1181, 1151, 1110; MS (70 ev, EI) *m/z* (%) 342 (M⁺+1, 6.95), 341 (M⁺, 17.00), 218 (100), 176 (100); HRMS Calcd for C₂₂H₃₁NO₂ (M⁺): 341.2355, Found: 341.2356.

2. Synthesis of 4a~4n and 3o.

(1) 1-Butyl-9-ethyl-2,3,4-trimethyl-9*H*-carbazole (4a) (zj-1-113)

Typical Procedure II: To a dry Schlenk tube were added sequentially PtCl₄ (17.0 mg, 0.05 mmol, weighed in glove box), 2a (311.7 mg, 1.0 mmol), and toluene (50 mL) under N₂. After continuous stirring for 12 h under reflux, the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: Et₂O (20 mL \times 3)) and evaporation afforded a crude mixture of 4a and 3a (98 : 2, as determined by ¹H NMR analysis). Column chromatography on silica gel (eluent: petroleum ether/ dichloromethane = 50:1) afforded 4a (193.6 mg, 66%) as a liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, J = 7.8 Hz, 1H, ArH), 7.37-7.30 (m, 1H, ArH), 7.28 (d, J = 7.5 Hz, 1H, ArH), 7.18-7.10 (m, 1H, ArH), 4.37 (q, J = 7.1 Hz, 2H, NCH₂), 3.06-2.95 (m, 2H, ArCH₂), 2.77 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 1.70-1.42 (m, 4H, 2 × CH₂), 1.33 (t, J = 7.1 Hz, 3H, CH₃), 0.98 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 137.0, 133.3, 128.9, 126.2, 124.3, 124.1, 122.6, 121.1, 120.9, 118.5, 108.3, 39.5, 33.5, 28.5, 22.9, 17.2, 16.5, 16.1, 15.1, 13.9; IR (neat) v (cm⁻¹) 3047, 2957, 2927, 2871, 2727, 1608, 1581, 1483, 1455, 1397, 1377, 1333, 1303, 1261, 1247, 1198, 1176, 1152, 1138, 1104, 1077, 1033, 1008; MS (70 ev, EI) m/z (%) 294 (M⁺+1, 13.59), 293 (M⁺, 55.90), 250 (100); HRMS Calcd for C₂₁H₂₇N

(M⁺): 293.2144, Found: 293.2144.

The compounds **4b~4l** and **3m** were prepared according to **Typical Procedure II**. (2) **1-Butyl-2,3,4,9-tetramethyl-9***H***-carbazole (4b) (zj-1-141-2)**

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and **2b** (295.4 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4b** (175.4 mg, 63%) (eluent: petroleum ether) (**4b** : **3b** = 96 : 4 as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 119.6~120.7 °C (*n*-hexane/dichloromethane); ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, *J* = 7.8 Hz, 1H, ArH), 7.43-7.33 (m, 1H, ArH), 7.29 (d, *J* = 8.4 Hz, 1H, ArH), 7.19-7.10 (m, 1H, ArH), 3.93 (s, 3H, NCH₃), 3.13-2.96 (m, 2H, CH₂), 2.79 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 1.71-1.41 (m, 4H, 2 × CH₂), 0.99 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 138.4, 133.4, 128.8, 126.4, 124.3, 123.8, 122.5, 121.3, 120.9, 118.4, 108.3, 34.0, 32.9, 28.5, 23.0, 17.2, 16.4, 16.1, 13.9; IR (KBr) v (cm⁻¹) 2958, 2913, 2871, 2854, 1577, 1482, 1459, 1431, 1390, 1339, 1304, 1290, 1240, 1202, 1184, 1175, 1150, 1099, 1057, 1029; MS (70 ev, EI) *m/z* (%) 280 (M⁺+1, 12.85), 279 (M⁺, 52.36), 236 (100); Elemental analysis calcd (%) for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01; Found: C, 85.95; H, 9.18; N, 4.77.

(3) 9-Benzyl-1-butyl-2,3,4-trimethyl-9H-carbazole (4c) (qya-12-176)

The reaction of PtCl₄ (8.6 mg, 0.025 mmol) and **2c** (186.8 mg, 0.5 mmol) in toluene (25 mL) under reflux for 12 h afforded **4c** (106.4 mg, 60%) (eluent: petroleum ether/ dichloromethane = 100/1~50/1) (**4c** : **3c** = 96 : 4 as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 102.4~103.4 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, *J* = 7.8 Hz, 1H, ArH), 7.37-7.28 (m, 1H, ArH), 7.27-7.13 (m, 5H, ArH), 7.07-6.97 (m, 2H, ArH), 5.65 (s, 2H, NCH₂), 2.93-2.73 (m, 2H, CH₂), 2.87 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 1.67-1.51 (m, 2H, CH₂), 1.43-1.28 (m, 2H, CH₂), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.2, 138.7, 137.8, 133.7, 129.0, 128.8, 127.0, 126.8, 125.4, 124.6, 124.0, 122.6, 121.3, 121.0, 119.0, 108.6, 48.9, 34.2, 28.3, 22.9, 17.4, 16.5, 16.2, 14.0; IR (KBr) v (cm⁻¹) 3027, 2955, 2926, 2870, 1605, 1582, 1495, 1461, 1396, 1376, 1355, 1330, 1295, 1235, 1171, 1160, 1117, 1068; MS (70 ev, EI) *m/z* (%) 356 (M⁺+1, 6.85), 355 (M⁺, 24.38), 91 (100); Elemental analysis calcd (%) for C₂₆H₂₉N: C, 87.84; H, 8.22; N, 3.94; Found: C, 87.77; H, 8.31; N, 3.70.

(4) 9-Ethyl-2,3,4-trimethyl-1-propyl-9*H*-carbazole (4d) (zj-1-190)

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and **2d** (296.1 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4d** (201.5 mg, 72%) (eluent: petroleum ether/ dichloromethane = 100/1~50/1) (**4d** : **3d** = 93 : 7 as determined by ¹H NMR analysis of the crude product) as a liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.21 (d, *J* = 7.8 Hz, 1H, ArH), 7.39-7.31 (m, 1H, ArH), 7.29 (d, *J* = 7.8 Hz, 1H, ArH), 7.21-7.12 (m, 1H, ArH), 4.36 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.03-2.90 (m, 2H, ArCH₂), 2.78 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.33 (s, 3H, CH₃), 1.73-1.55 (m, 2H, CH₂), 1.34 (t, *J* = 7.1 Hz, 3H, CH₃), 1.06 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 137.0, 133.3, 128.9, 126.2, 124.3, 124.1, 122.6, 121.0, 120.9, 118.5, 108.3, 39.5, 30.9, 24.5, 17.3, 16.5, 16.1, 15.1, 14.2; IR (neat) v (cm⁻¹) 3046, 2958, 2928, 2869, 2728, 1607, 1579, 1455, 1397, 1377, 1332, 1302, 1259, 1240, 1222, 1177, 1152, 1138, 1104, 1077, 1033, 1008; MS (70 ev, EI) *m/z* (%) 280 (M⁺+1, 19.63), 279 (M⁺, 77.18), 250 (100); HRMS Calcd for C₂₀H₂₅N (M⁺): 279.1987, Found: 279.1990.

3.5 mmol scale (zj-2-185)

The reaction of PtCl₄ (59.1 mg, 0.15 mmol) and **2d** (1054.7 mg, 3.5 mmol) in toluene (175 mL) under reflux for 12 h afforded **4d** (746.2 mg, 75%) (eluent: petroleum ether/ dichloromethane = 100/1) (**4d** : **3d** = 93 : 7 as determined by ¹H NMR analysis of the crude product) as a liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.1 Hz, 1H, ArH), 7.35-7.26 (m, 1H, ArH), 7.18 (d, J = 8.1 Hz, 1H, ArH), 7.35-7.26 (m, 1H, ArH), 7.18 (d, J = 8.1 Hz, 1H, ArH), 7.16-7.07 (m, 1H, ArH), 4.23 (q, J = 7.1 Hz, 2H, NCH₂), 2.99-2.84 (m, 2H, ArCH₂), 2.72 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.70-1.50 (m, 2H, CH₂), 1.24 (t, J = 7.1 Hz, 3H, CH₃), 1.01 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 137.0, 133.2, 128.8, 126.1, 124.3, 124.1, 122.6, 121.0, 120.8, 118.5, 108.2, 39.4, 30.8, 24.5, 17.2, 16.4, 16.0, 15.0, 14.1.

(5) 9-Ethyl-2,3,4,6-tetramethyl-1-propyl-9*H*-carbazole (4e) (zj-1-037)

The reaction of PtCl₄ (16.8 mg, 0.05 mmol) and **2e** (311.4 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4e** (137.7 mg, 47%) (eluent: petroleum ether/ dichloromethane = 50/1 for the first round afforded 135.3 mg of pure **4e** and the impure part, which was further purified by chromatography on silica gel (eluent: petroleum ether/ dichloromethane = 50/1) to afford **4e** (2.4 mg, combined weight 137.7 mg) (**4e** : **3e** = 96 : 4 as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 94.9~95.9 °C (*n*-hexane/ dichloromethane); ¹H

NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H, ArH), 7.27-7.12 (m, 2H, ArH), 4.37 (q, J = 7.0 Hz, 2H, NCH₂), 3.06-2.91 (m, 2H, CH₂), 2.79 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.35 (s, 3H, CH₃), 1.75-1.52 (m, 2H, CH₂), 1.34 (t, J = 7.1 Hz, 3H, CH₃), 1.07 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 137.3, 133.2, 129.0, 127.5, 126.0, 125.6, 124.3, 122.8, 120.91, 120.88, 108.0, 39.6, 30.9, 24.5, 21.6, 17.4, 16.5, 16.1, 15.1, 14.2; IR (KBr) v (cm⁻¹) 2959, 2927, 2869, 1583, 1488, 1470, 1447, 1376, 1335, 1308, 1261, 1240, 1178, 1149, 1102, 1077; MS (70 ev, EI) *m/z* (%) 293 (M⁺, 67.29), 264 (100); Elemental analysis calcd (%) for C₂₁H₂₇N: C, 85.95; H, 9.27; N, 4.77; Found: C, 86.06; H, 9.23; N, 4.60.

(6) 9-Ethyl-2,3,4,6-tetramethyl-1-phenyl-9*H*-carbazole (4f) (zj-1-158)

The reaction of PtCl₄ (17.0 mg, 0.05 mmol) and **2f** (345.9 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4f** (167.0 mg, 49%, purity: 97%) (eluent: petroleum ether) (**4f** : **3f** = 97 : 3 as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 112.7~113.5 °C (*n*-hexane/ ether); ¹H NMR (300 MHz, CDCl₃) δ 8.07 (s, 1H, ArH), 7.48-7.26 (m, 5H, ArH), 7.23-7.07 (m, 2H, ArH), 3.52 (q, *J* = 7.0 Hz, 2H, NCH₂), 2.87 (s, 3H, CH₃), 2.52 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 0.83 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 139.3, 136.4, 133.0, 130.5, 130.4, 128.2, 127.6, 127.2, 125.6, 125.3, 123.9, 122.8, 122.7, 120.5, 108.3, 38.2, 21.7, 18.2, 17.4, 15.8, 13.8; IR (KBr) v (cm⁻¹) 2923, 1601, 1580, 1481, 1494, 1484, 1470, 1442, 1374, 1351, 13363, 1311, 1298, 1270,
1250, 1180, 1147, 1123, 1094, 1075, 1003; MS (70 ev, EI) *m/z* (%) 328 (M⁺+1,
31.11), 327 (100); Elemental analysis calcd (%) for C₂₄H₂₅N: C, 88.03; H, 7.70; N,
4.28; Found: C, 87.75; H, 7.83; N, 4.01.

(7) 1-Butyl-9-ethyl-2,3,4,6-tetramethyl-9*H*-carbazole (4g) (zj-1-033)

The reaction of PtCl₄ (16.5 mg, 0.05 mmol) and **2g** (325.5 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4g** (209.1 mg, 68%) (eluent: petroleum ether/ dichloromethane = 40/1) (**4g** : **3g** = 95 : 5 as determined by ¹H NMR analysis of the crude product) as a liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H, ArH), 7.27 (d, *J* = 8.4 Hz, 1H, ArH), 7.22 (d, *J* = 8.4 Hz, 1H, ArH), 4.44 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.09-2.98 (m, 2H, CH₂), 2.82 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 1.73-1.46 (m, 4H, 2 × CH₂), 1.38 (t, *J* = 7.1 Hz, 3H, CH₃), 1.01 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.8, 137.4, 133.2, 129.0, 127.5, 126.1, 125.6, 124.3, 122.9, 120.99, 120.96, 108.1, 39.7, 33.5, 28.6, 23.0, 21.6, 17.4, 16.5, 16.1, 15.1, 13.9; IR (neat) v (cm⁻¹) 2959, 2925, 2871, 1583, 1489, 1464, 1376, 1335, 1309, 1262, 1176, 1150, 1104, 1077; MS (70 ev, EI) *m/z* (%) 308 (M⁺+1, 16.46), 307 (M⁺, 66.58), 264 (100); HRMS Calcd for C₂₂H₂₉N (M⁺): 307.2300, Found: 307.2296.

(8) 6-Bromo-1-butyl-9-benzyl-2,3,4-trimethyl-9*H*-carbazole (4h) (zj-1-062)

The reaction of $PtCl_4$ (16.4 mg, 0.05 mmol) and **2h** (457.0 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded 4h (297.8 mg, 68%) (eluent: petroleum ether, then petroleum ether / dichloromethane = 100/1) (4h : 3h = 92 : 8 as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 122.4~123.9 ^oC (*n*-hexane/ dichloromethane); ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, J = 2.1 Hz, 1H, ArH), 7.29 (dd, $J_1 = 8.7$ and $J_2 = 1.8$ Hz, 1H, ArH), 7.22-7.07 (m, 3H, ArH), 6.97-6.87 (m, 3H, ArH), 5.47 (s, 2H, NCH₂), 2.82-2.65 (m, 2H, CH₂), 2.70 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.29 (s, 3H, CH₃), 1.62-1.43 (m, 2H, CH₂), 1.40-1.19 (m, 2H, CH₂), 0.87 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.7, 138.1, 138.0, 134.6, 129.0, 128.8, 127.2, 127.1, 125.5, 125.2, 124.9, 121.3, 120.0, 111.8, 109.9, 48.8, 34.0, 28.2, 22.8, 17.2, 16.5, 16.1, 13.9; IR (KBr) v (cm⁻¹) 3063, 3024, 2956, 2926, 2871, 2725, 1604, 1582, 1495, 1485, 1454, 1391, 1355, 1296, 1236, 1194, 1156, 1127, 1103, 1074, 1029, 1002; MS (70 ev, EI) m/z (%) 435 (M(Br⁸¹)⁺, 99.54), 433 (M(Br⁷⁹)⁺, 100); Elemental analysis calcd (%) for $C_{26}H_{28}BrN$: C, 71.89; H, 6.50; N, 3.22; Found: C, 71.55; H, 6.49; N, 3.13.

(9) 1-Butyl-9-ethyl-2,3,4,7-tetramethyl-9*H*-carbazole (4i) (zj-1-126)

The reaction of PtCl₄ (16.7 mg, 0.05 mmol) and **2i** (324.9 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4i** (231.9 mg, 76%) (eluent: petroleum ether/ dichloromethane = 50/1) (**4i** : **3i** = 95 : 5 as determined by ¹H NMR analysis of the crude product) as a oil; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 7.8 Hz, 1H, ArH), 7.14 (s, 1H, ArH), 6.98 (dd, *J*₁ = 8.1 and *J*₂ = 0.9 Hz, 1H, ArH), 4.40 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.07-2.94 (m, 2H, CH₂), 2.77 (s, 3H, CH₃), 2.52 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 1.72-1.43 (m, 4H, 2 × CH₂), 1.38 (t, *J* = 7.1 Hz, 3H, CH₃), 1.00 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.9, 137.1, 134.2, 132.7, 128.6, 126.1, 122.4, 121.9, 121.2, 120.9, 120.0, 108.6, 39.5, 33.5, 28.5, 23.0, 22.1, 17.2, 16.4, 16.1, 15.2, 13.9; IR (neat) v (cm⁻¹) 2956, 2924, 2871, 1617, 1583, 1489, 1455, 1397, 1377, 1332, 1302, 1287, 1264, 1247, 1193, 1170, 1103, 1077, 1013; MS (70 ev, EI) *m/z* (%) 308 (M⁺+1, 16.31), 307 (M⁺, 60.42), 264 (100); HRMS Calcd for C₂₂H₂₉N (M⁺): 307.2300, Found: 307.2307.

(10) 1-Butyl-9-ethyl-2,3,4,8-tetramethyl-9*H*-carbazole (4j) (zj-1-078)

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and 2j (327.7 mg, 1.0 mmol) in

toluene (50 mL) under reflux for 12 h afforded **4j** (178.3 mg, 58%) (eluent: petroleum ether ~ petroleum ether/ dichloromethane = 100/1) (**4j** : **3j** = 94: 6 as determined by ¹H NMR analysis of the crude product) as a oil; ¹H NMR (300 MHz, CDCl₃) δ 8.11-7.98 (m, 1H, ArH), 7.12-7.02 (m, 2H, ArH), 4.52 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.07-2.92 (m, 2H, CH₂), 2.74 (s, 3H, CH₃), 2.68 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 1.74-1.60 (m, 2H, CH₂), 1.58-1.42 (m, 2H, CH₂), 1.00 (t, *J* = 7.4 Hz, 3H, CH₃), 0.88 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 140.2, 133.5, 128.5, 128.1, 127.6, 127.4, 123.3, 122.6, 121.2, 120.6, 119.7, 41.5, 32.2, 29.3, 23.2, 21.1, 17.3, 16.7, 16.2, 14.02, 13.96; IR (neat) v (cm⁻¹) 3093, 3042, 2957, 2870, 2731, 1575, 1455, 1407, 1377, 1327, 1297, 1254, 1236, 1206, 1162, 1117, 1091, 1077, 1050; MS (70 ev, EI) *m/z* (%) 308 (M⁺+1, 21.86), 307 (M⁺, 88.14), 264 (100); HRMS Calcd for C₂₂H₂₉N (M⁺): 307.2300, Found: 307.2304.

(11) 1-Butyl-9-ethyl-4-methyl-2,3-pentamethylene-9*H*-carbazole (4k) (zj-2-007)

The reaction of PtCl₄ (17.0 mg, 0.05 mmol) and **2k** (352.7 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded **4k** and **3k** (190.2 mg, 57%, **4k** : **3k** = 88:12 as determined by ¹H NMR analysis of the crude product) (eluent: petroleum ether/ dichloromethane = $50/1 \sim 30/1$ for the first round, petroleum ether/

dichloromethane = $50/1 \sim 30/1$ for the second round (impure part)) as a liquid; ¹H NMR (300 MHz, CDCl₃) & 8.32-8.15 (m, 1H, ArH), 7.45-7.26 (m, 2H, ArH), 7.23-7.07 (m, 1H, ArH), 4.53-4.29 (m, 2H, NCH₂), 3.11-2.88 (m, 6H, 3 × CH₂), 2.82 (s, 3H, CH₃), 1.88-1.45 (m, 10H, $5 \times CH_2$), 1.41 (t, J = 7.1 Hz, 3H, CH₃), 1.01 (t, J =7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 1406, 137.2, 133.2, 127.8, 124.2, 122.7, 120.9, 119.8, 118.5, 108.3, 39.8, 34.5, 31.0, 29.0, 28.7, 28.3, 28.1, 27.6, 23.0, 17.1, 15.3, 14.0; the following signals are discernible for **3k**: 3.56-3.44 (m, 2H, CH_2), 2.42 (s, 3H, CH_3), 1.31 (t, J = 7.1 Hz, 3H, CH_3); IR (neat) v (cm-1) 3045, 2957, 2929, 2852, 1607, 1577, 1483, 1452, 1397, 1377, 1350, 1333, 1350, 1293, 1261, 1201, 1173, 1137, 1104, 1075, 1033, 1007; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m \times 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for 3k: T_R 4.9 min: 334 $(M^{+}+1, 20.68), 333 (M^{+}, 79.60), 290 (100);$ for **4k**: T_R 5.0 min: 334 (M⁺+1, 26.13), 333 (M^+ , 95.56), 290 (100); HRMS Calcd for C₂₄H₃₁N (M^+): 333.2457, Found: 333.2454.

(12) 1-Butyl-2,9-diethyl-3,4-dimethyl-9*H*-carbazole (4l) (zj-5-176-2)

The reaction of $PtCl_4$ (16.9 mg, 0.05 mmol) and **2l** (324.8 mg, 1.0 mmol) in toluene (50 mL) under reflux for 12 h afforded a mixture of **4l and 3l** (**4l** : **3l** = 98 : 2 as determined by ¹H NMR analysis of the crude product) with an impurity. Purification by column chromatography afforded **4l** (195.1 mg, 58%, purity: 92%)

[eluent: petroleum ether (500 mL) ~ petroleum ether/dichloromethane = 100/1 (500 mL × 4) ~ 30/1 (310 mL)].

After repeated recrystallization from the *n*-hexane/ dichloromethane, pure **41** was afforded as a solid: m. p. 98.1~99.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, *J* = 7.8 Hz, 1H, ArH), 7.45-7.34 (m, 2H, ArH), 7.23-7.11 (m, 1H, ArH), 4.48 (q, *J* = 7.2 Hz, 2H, NCH₂), 3.12-2.95 (m, 2H, CH₂), 2.88 (q, *J* = 7.5 Hz, 2H, CH₂), 2.82 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 1.75-1.47 (m, 4H, 2 × CH₂), 1.38 (t, *J* = 7.1 Hz, 3H, CH₃), 1.23 (t, *J* = 7.5 Hz, 3H, CH₃), 1.02 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 139.2, 137.1, 129.7, 125.6, 124.4, 124.2, 122.7, 121.3, 120.6, 118.5, 108.3, 39.4, 34.5, 28.0, 23.1, 17.3, 15.5, 15.1, 15.0, 13.9; IR (neat) v (cm⁻¹) 3048, 2959, 2927, 2870, 1608, 1580, 1447, 1397, 1377, 1352, 1332, 1307, 1263, 1248, 1231, 1194, 1175, 1152, 1136, 1104, 1073, 1052, 1034, 1016; MS (70 ev, EI) *m/z* (%) 308 (M⁺+1, 19.79), 307 (M⁺, 75.30), 264 (100); Elemental analysis calcd (%) for C₂₂H₂₉N: C, 85.94; H, 9.51; N, 4.56; Found: C, 85.99; H, 9.35; N, 4.33.

(13) 1-Ethyl-2,3,4,9-tetramethyl-9H-carbazole (4m) (zj-8-010-2)

The reaction of PtCl₄ (16.9 mg, 0.05 mmol) and **2m** (268.7 mg, 1.0 mmol) in toluene (50 mL) under reflux for 14.5 h afforded **4m** (196.1 mg, 78%) [eluent: petroleum ether (500 mL × 5) (**4m** : **3m** = 97 : 3 as determined by ¹H NMR analysis

of the crude product) as a solid: m. p. 94.6 ~ 95.7 °C (*n*-hexane/ diethyl ether); ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, J = 7.8 Hz, 1H, ArH), 7.44-7.31 (m, 2H, ArH), 7.22-7.12 (m, 1H, ArH), 4.00 (s, 3H, NCH₃), 3.15 (q, J = 7.5 Hz, 2H, CH₂), 2.81 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 1.32 (t, J = 7.5 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 138.2, 133.3, 128.9, 126.4, 124.3, 123.8, 122.51, 122.47, 120.9, 118.4, 108.3, 32.9, 21.6, 17.2, 16.2, 16.10, 16.06; IR (KBr) v (cm⁻¹) 2957, 2927, 2867, 1607, 1582, 1462, 1393, 1328, 1304, 1284, 1241, 1188, 1152, 1105, 1092, 1050, 1030; MS (70 ev, EI) *m/z* (%) 252 (M⁺+1, 19.31), 251 (M⁺, 82.06), 236 (100); Elemental analysis calcd (%) for C₁₈H₂₁N: C, 86.01; H, 8.42; N, 5.57; Found: C, 86.11; H, 8.30; N, 5.37.

(14) 1-Butyl-9-ethyl-6-methoxy-2,3,4-trimethyl-9H-carbazole (4n) (zj-1-123-2)

The reaction of PtCl₄ (17.0 mg, 0.05 mmol) and **2n** (341.2 mg, 1.0 mmol) in toluene (50 mL) under reflux for 16 h afforded **4n** (194.0 mg, 60%) (eluent: petroleum ether/ dichloromethane = $50/1 \sim 30/1 \sim 10:1$) (**4n** : **3n** = 98 : 2 as determined by ¹H NMR analysis of the crude product) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 2.1 Hz, 1H, ArH), 7.28 (d, J = 8.7 Hz, 1H, ArH), 7.06 (dd, $J_I = 8.7$ Hz, $J_2 = 2.4$ Hz, 1H, ArH), 4.43 (q, J = 7.1 Hz, 2H, NCH₂), 3.91 (s, 3H, CH₃), 3.11-2.92 (m, 2H, CH₂), 2.81 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 1.71-1.45 (m, 4H, 2 × CH₂), 1.38 (t, J = 7.1 Hz, 3H, CH₃), 1.01 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75

MHz, CDCl₃) δ 153.0, 137.7, 136.6, 133.5, 128.9, 125.9, 124.5, 121.1, 120.9, 112.3, 108.7, 107.1, 56.2, 39.7, 33.4, 28.5, 23.0, 17.2, 16.5, 16.1, 15.1, 13.9; IR (neat) v (cm⁻¹) 2953, 2928, 2869, 2827, 1617, 1581, 1487, 1377, 1353, 1311, 1296, 1259, 1219, 1175, 1143, 1105, 1077, 1041; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m × 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4n**: T_R 6.4 min: 324 (M⁺+1, 24.29), 323 (M⁺, 94.81), 280 (100); HRMS Calcd for C₂₂H₂₉NO (M⁺): 323.2249, Found: 323.2254.

(15) 4-Butyl-9-ethyl-2,3-dimethyl-9H-carbazole (30) (zj-2-117)

The reaction of PtCl₄ (3.5 mg, 0.01 mmol) and **20** (58.4 mg, 0.2 mmol) in toluene (10 mL) under reflux for 12 h afforded **30** and **30'** (38.5 mg, 70%, **30** : 30' = 92 : 8 as determined by $^{1}\mathrm{H}$ NMR analysis of the crude product) (petroleum ether/dichloromethane = $50/l \sim 30/1$) (**30** : **30'** = 91 : 9 determined by ¹H NMR of crude product) as a liquid: ¹H NMR of **30**^{2b} (300 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 1H, ArH), 7.46-7.33 (m, 2H, ArH), 7.25-7.15 (m, 1H, ArH), 7.09 (s, 1H, ArH), 4.31 (q, J = 7.2 Hz, 2H, NCH₂), 3.33-3.19 (m, 2H, ArCH₂), 2.49 (s, 3H, ArCH₃), 2.37 (s, 3H, ArCH₃), 1.85-1.52 (m, 4H, $2 \times CH_2$), 1.39 (t, J = 7.4 Hz, 3H, CH₃), 1.03 (t, J = 7.1 Hz, 3H, CH₃); the following signals are discernible for **3o'**: 8.07 (d, J = 8.1 Hz, 1H, ArH), 6.86 (s, 1H, ArH), 4.58 (q, J = 7.1 Hz, 2H, NCH₂), 3.17-3.10 (m, 2H, ArCH₂), 2.68 (s,

3H, ArCH₃), 2.46 (s, 3H, ArCH₃); ¹³C NMR of **3o** (75 MHz, CDCl₃) δ 140.0, 138.6, 136.4, 135.0, 124.9, 124.2, 123.1, 122.2, 119.3, 118.4, 108.0, 107.2, 37.1, 31.4, 30.4, 23.4, 22.3, 14.5, 14.1, 13.6; the following signals are discernible for **3o**': 135.3, 134.5, 124.4, 123.0, 118.8, 115.8, 108.5, 39.9, 33.9, 32.0, 29.7, 23.0, 20.915.5, 14.8; IR (neat) v (cm⁻¹) 3048, 2955, 2929, 2872, 2852, 1619, 1598, 1569, 1469, 1456, 1377, 1349, 1330, 1314, 1264, 1239, 1207, 1180, 1153, 1132, 1110, 1082, 1029, 1004; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m × 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) *m/z* (%) for **3o**: T_R 3.8 min: 280 (M⁺+1, 21.34), 279 (M⁺, 100), for **3o**': T_R 3.9 min: 280 (M⁺+1, 22.20), 279 (M⁺, 100).

3. Computational details

All calculations were performed with the Gaussian 09 program.³ Geometries have been fully optimized with the density functional theory of B3LYP method.^{4,5} The 6-31G(d) basis set was used for C, H, O, N, and Cl atoms and LANL2DZ basis set⁶ with effective core potential (ECP) for Pt atom. Harmonic vibration frequency calculations were carried out for all the stationary points to confirm each structure being either a minimum (no imaginary frequency) or a transition structure (one imaginary frequency). Solvent effect has been considered by using the CPCM⁷(UAHF atomic radii) model based on the gas-phase-optimized structures. The reported relative energies are free energies (ΔG_{sol}) in toluene (dielectric constant $\varepsilon = 2.37$).

Table S1. Electronic energies (E_{elec}), Gibbs free energies (G_{298}), enthalpies (H_{298}) and free energies (*delt* G_{sol}) in toluene (ε = 2.37) for all stationary points.

species	E_{elec}	H_{298}	G_{298}	delt G_{sol}	$G_{ m sol}$
M1_1	-2789. 672282	-2789. 263502	-2789. 350036	-18.42	-2789. 37939
TS1	-2789. 663559	-2789. 255900	-2789. 341829	-16.50	-2789. 368123
M2_1	-2789.69833	-2789. 287797	-2789.374180	-19.94	-2789. 405956
TS2	-2789. 646753	-2789. 238215	-2789. 324259	-15.81	-2789. 349454
M2_2	-2789.672632	-2789. 262542	-2789. 348296	-24.46	-2789. 387275

S2. Calculated Cartesian coordinates of all stationary points M1_1.

С	1.40650900	1.90811300	0.10155800
С	-0.04318000	1.80243400	-0.53366600
С	2.95852000	0.41431800	-1.22345300
С	4.20136100	0.03342600	-0.79962600
С	1.99654500	0.43842700	-0.08346100
С	4.09672400	-0.24988300	0.62094800
С	5.45274900	-0.13020000	-1.47617000
С	5.22898500	-0.71126700	1.34407400
С	6.52827200	-0.56793500	-0.75685800
Н	5.52665900	0.09214900	-2.53603000

С	6.40385200	-0.85704000	0.64568700
Н	5.17224500	-0.92961300	2.40428200
Н	7.49322800	-0.70401600	-1.23371500
Н	7.28655400	-1.20437800	1.17585900
Ν	2.85323100	-0.03294600	1.04738100
С	2.34498400	-0.45502400	2.35345300
Н	1.26172000	-0.57847500	2.29269100
Н	2.78663500	-1.41892600	2.62040000
Н	2.58399600	0.28163600	3.12589400
С	-0.35992900	0.33191700	-0.21300100
С	0.73811500	-0.45317800	-0.20325100
Н	2.68202200	0.72676800	-2.21972800
0	2.27762600	2.78810200	-0.60832900
Н	1.93501000	3.69076000	-0.49966200
С	-0.95192000	2.92450900	-0.00927800
Н	-1.92070600	2.88409700	-0.50807000
Н	-1.13604600	2.87240600	1.06132700
Н	-0.49438500	3.89538200	-0.24934800
С	-0.00015500	1.94636400	-2.07824600
Н	0.35354800	2.94276600	-2.36225400
Н	0.63780900	1.19925700	-2.55733500
Н	-1.01037000	1.80888100	-2.47026800
Cl	-1.56671700	-1.88197600	1.81109200
С	0.94577500	-1.94281700	-0.31828600
Н	1.69411300	-2.27505200	0.41401900
Н	0.01756900	-2.45046000	-0.06546900
Pt	-2.23785400	-0.35958400	0.08496500
Cl	-2.88696100	1.09351900	1.86148000
С	1.36810000	2.34890000	1.56902200
Н	2.37497500	2.32957500	1.99447600
Н	1.00945800	3.38100100	1.62096900
Н	0.69061600	1.74345000	2.17589100
Cl	-2.10850700	-2.03020100	-1.60296200
Cl	-3.39478000	0.98835800	-1.50039800
С	1.38589100	-2.38920000	-1.72563400
Н	0.62403600	-2.12396400	-2.46285600
Н	2.34322500	-1.94796800	-2.03050300
Н	1.50830500	-3.47804000	-1.74234700
TS1			
С	1.50623500	1.84743000	0.16141500
С	0.08963100	1.72725300	-0.42096900
С	2.96957100	0.16968700	-1.28883700
С	4.27523900	0.02853000	-0.80946900
С	2.05241500	-0.11181100	-0.23508000

С	4.16537400	-0.47264900	0.53285000
С	5.55803300	0.24899000	-1.37649600
С	5.31159800	-0.75825200	1.30232200
С	6.67041300	-0.03840500	-0.61775000
Н	5.64953300	0.62670300	-2.39056800
С	6.54155200	-0.53880900	0.70955300
Н	5.23521100	-1.14248100	2.31396600
Н	7.66380400	0.11319000	-1.02805800
Н	7.44406300	-0.75596300	1.27392100
Ν	2.85075300	-0.59079200	0.85292300
С	2.35327100	-1.18425800	2.09078800
Н	1.26247000	-1.20609000	2.07190500
Н	2.72030900	-2.21116900	2.18536400
Н	2.68711900	-0.60547800	2.95856300
С	-0.32811000	0.25474200	-0.20530100
С	0.65574600	-0.66065800	-0.33490400
Н	2.67630300	0.53236600	-2.26324100
0	2.25913300	2.75580100	-0.49337900
Н	3.03113600	3.00449700	0.04437900
С	-0.71296900	2.86222000	0.27165100
Н	-1.71251100	2.90689900	-0.16129800
Н	-0.82539600	2.71064000	1.34298100
Н	-0.20550400	3.81450700	0.07925500
С	0.06525800	2.01175600	-1.94369300
Н	0.39528300	3.03356200	-2.15154000
Н	0.69200000	1.31416500	-2.50457600
Н	-0.96086800	1.89481400	-2.29822300
Cl	-2.39710700	-1.67320600	-1.79628600
С	0.62084300	-2.15718400	-0.59106700
Н	1.25639700	-2.67406900	0.13924700
Н	-0.38810000	-2.53191400	-0.45067800
Pt	-2.27588200	-0.24173600	0.09831500
Cl	-1.75046000	-2.02713600	1.60642000
Cl	-3.36918900	1.39176900	-1.25132800
Cl	-2.67753400	1.03986400	2.07399100
С	1.67571100	1.90344800	1.66241900
Н	2.71693000	1.71994700	1.94913100
Н	1.40674200	2.91481400	1.98918900
Н	1.02117500	1.19953200	2.17601300
С	1.09706600	-2.51378800	-2.01052800
Н	0.44691100	-2.05047300	-2.75827900
Н	2.13289900	-2.20535000	-2.20061600
Н	1.04620300	-3.59949500	-2.14785500
M2_1			

С	-1.77759800	-1.75691100	-0.00810100
С	-0.25167900	-1.60660300	-0.47063800
С	-2.59123500	-0.63111100	-0.68310000
С	-4.04282400	-0.47725900	-0.33588500
С	-1.98510900	0.66762200	-0.25938000
С	-4.21545100	0.80361200	0.19547700
С	-5.13598400	-1.32158500	-0.48420100
С	-5.45803000	1.29576100	0.57915900
С	-6.39645500	-0.85115600	-0.09552600
Н	-5.00530100	-2.32037400	-0.88593300
С	-6.55318000	0.43854000	0.42342400
Н	-5.59378200	2.29786300	0.97142000
Н	-7.26497100	-1.49389200	-0.20286300
Н	-7.54087900	0.78723300	0.70932400
Ν	-2.93994600	1.44967400	0.26075300
С	-2.75642100	2.69602200	1.01201200
Н	-1.83510900	2.63894900	1.59144200
Н	-2.72462600	3.55881700	0.34174000
Н	-3.59589700	2.80108600	1.69919700
С	0.24721800	-0.15719900	-0.23009000
С	-0.57840700	0.95165700	-0.35621200
Н	-2.46747600	-0.75916500	-1.76546300
0	-2.35141900	-2.94570400	-0.53555800
Н	-2.09493900	-3.68840300	0.03312800
С	0.50489200	-2.76896200	0.20347700
Н	1.53196600	-2.83190900	-0.14609800
Н	0.53088100	-2.68854800	1.28763900
Н	0.01084500	-3.70520000	-0.08148500
С	-0.12740600	-1.81195400	-2.01105800
Н	-0.61471800	-2.75218500	-2.28362500
Н	-0.57547100	-1.00055700	-2.59343800
Н	0.92855900	-1.86367100	-2.28465500
Cl	2.69311400	1.42309200	-1.77865000
С	-0.20911400	2.39411500	-0.69609600
Н	-0.51269000	3.09195400	0.08336900
Н	0.86708200	2.48395000	-0.76446500
Pt	2.22638000	0.12076300	0.17081500
Cl	1.84238200	2.00966500	1.60033700
Cl	3.37188100	-1.60877700	-1.01155600
Cl	2.37869000	-1.10483100	2.21189100
С	-1.93011600	-1.73034500	1.52196600
Н	-2.98763900	-1.67039000	1.79492400
Н	-1.52378300	-2.64474700	1.96214400
Н	-1.39064800	-0.89450800	1.97715300
С	-0.81232000	2.80842900	-2.05125700
-----	-------------	-------------	-------------
Н	-0.43212000	2.16654700	-2.85275300
Н	-1.90962600	2.76728300	-2.07107200
Н	-0.51412300	3.83671700	-2.28224900
TS2			
С	1.12091900	2.27894400	-0.16280800
С	-0.16904100	1.72102400	-0.95601800
С	2.38417600	0.28614100	-1.10970400
С	3.67281100	-0.29289400	-0.82443300
С	1.98299400	1.03426700	0.05663400
С	4.02227000	0.11197400	0.48489100
С	4.56191600	-1.05065100	-1.59922900
С	5.23683400	-0.27837000	1.06299200
С	5.78026400	-1.41332700	-1.04081500
Н	4.29654400	-1.34916000	-2.60904600
С	6.10115500	-1.03746400	0.27951200
Н	5.51429500	0.01777000	2.06891900
Н	6.49153300	-1.99437600	-1.61892300
Н	7.05798400	-1.33913900	0.69606500
Ν	3.01004300	0.90345300	1.01586000
С	2.86729400	1.12301700	2.45540500
Н	1.81890800	1.03114600	2.74353300
Н	3.42796000	0.35183900	2.98894900
Н	3.24574100	2.10491400	2.75665100
С	-0.26114700	0.30914700	-0.36111900
С	0.95175700	-0.30086700	-0.08313000
Н	2.01959100	0.48253700	-2.10186500
0	1.92148200	3.14855400	-0.95057800
Н	1.56222600	4.04700500	-0.87307000
С	-1.33271400	2.71091800	-0.77657100
Н	-2.21714600	2.35823400	-1.30571700
Н	-1.61437600	2.88101100	0.25843000
Н	-1.02762900	3.66551600	-1.22755200
С	0.03388000	1.61348100	-2.50851900
Н	0.80722500	2.31512300	-2.83267500
Н	0.28030500	0.60536300	-2.84995000
Н	-0.90383900	1.86821400	-3.00313900
Cl	-1.44348800	-0.97964200	2.38966900
С	1.27956800	-1.62574100	0.57632000
Н	2.07224400	-1.45665700	1.31478400
Н	0.40275300	-1.91957300	1.14968200
Pt	-2.05575600	-0.46497400	0.13098500
Cl	-3.39804400	1.24926900	1.10552600
С	0.74171900	2.98364800	1.14486500

Н	1.64718500	3.27692400	1.68001100
Н	0.18038000	3.89637700	0.92789600
Н	0.11553700	2.36338200	1.79290500
Cl	-1.57655900	-2.65569000	-0.64967100
Cl	-3.02954900	-0.05408200	-2.00494300
С	1.69051700	-2.78675100	-0.34968300
Н	1.02434900	-2.86013800	-1.21033500
Н	2.72079700	-2.70346300	-0.69964800
Н	1.60311000	-3.72401300	0.20942300
M2_2			
С	-1.38821400	2.08691200	1.00425300
С	-0.24191400	1.72722900	-0.07215300
С	-2.21585200	-0.30107200	0.89043300
С	-3.39266900	-0.98942500	0.22529000
С	-2.48730400	1.13755700	0.62641500
С	-4.21226700	0.01036300	-0.30503400
С	-3.82215200	-2.31212600	0.14082500
С	-5.41725000	-0.23406000	-0.95265500
С	-5.02837300	-2.59058700	-0.51282200
Н	-3.24418100	-3.12128300	0.56893100
С	-5.81274100	-1.56985100	-1.05830200
Н	-6.03072700	0.56128900	-1.36151900
Н	-5.35939600	-3.62120100	-0.59526500
Н	-6.74256700	-1.81221000	-1.56312600
Ν	-3.61317700	1.28646200	-0.03745200
С	-4.26314100	2.49666200	-0.55032100
Н	-4.26925700	2.45438800	-1.64284400
Н	-5.29184200	2.51875700	-0.18233200
Н	-3.74149500	3.38484400	-0.21893200
С	0.15071800	0.22902700	0.17083400
С	-0.75255600	-0.71441900	0.52505700
Н	-2.29069000	-0.43237000	1.98207500
0	-0.98158300	1.74467400	2.32492500
Н	-0.24405700	1.10863000	2.26974500
Pt	2.11653700	-0.30284200	-0.23774500
С	-0.59465500	-2.21111200	0.70494600
Н	0.40747900	-2.51529400	0.43192000
Н	-1.25507100	-2.70263100	-0.01922300
С	-0.76232400	1.84340600	-1.52721100
Н	0.07554500	1.67497100	-2.20714900
Н	-1.52625100	1.09742600	-1.76859900
Н	-1.15951500	2.84654500	-1.72631900
С	0.84609900	2.79935600	0.13494400
Н	1.17227300	2.86110600	1.17352400

Н	1.71419300	2.59401200	-0.48465300
Н	0.44747900	3.76985500	-0.17493100
Cl	2.56288400	1.04442900	-2.16630800
Cl	3.34603500	1.18808700	1.16250000
Cl	2.42487700	-1.84068500	1.56535200
Cl	1.42786400	-1.97241800	-1.80152000
С	-1.75501100	3.57439400	1.08276100
Н	-1.89139200	4.04325500	0.10567500
Η	-2.65857300	3.70788200	1.68708300
Н	-0.94557200	4.08990200	1.59816000
С	-0.88731900	-2.71504600	2.12860900
Η	-1.91813800	-2.53772800	2.46343200
Н	-0.71523200	-3.79587700	2.17060600
Н	-0.20466600	-2.24847300	2.84497400

References:

(1) (a) Dess, D. B.; Martin, J. C. J, Org. Chem, 1983, 48, 4156. (b) Hirose, T.;
Noguchi, Y.; Furuya, Y.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Ōmura, S.;
Sunazuka, T. Chem. Eur. J., 2013, 19, 10741.

(2) (a) Qiu, Y.; Kong, W.; Fu, C.; Ma, S. Org. Let., 2012, 14, 6198. (b) Qiu, Y.; Ma, D.;
Kong, W.; Fu, C.; Ma, S. Org. Chem. Front., 2014, 1, 62.

(3) Gaussian 09, Revision A.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;

Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,

B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,

A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;

Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;

Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J.

J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;

Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,

G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;

Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J., Gaussian, Inc., Wallingford CT, **2009**.

(4) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. Phys. Rev. B 1988, 37, 785.

(5) For reviews of density-functional methods, see: (a) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989. (b) Ziegler, T. Chem. Rev. 1991, 91, 651. (c) Density Functional Methods in Chemistry; Labanowski, J., Andzelm, J., Eds.; Springer: Berlin, 1991.

- (6) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt, W. R.; Hay, P.
- J. J. Chem. Phys. 1985, 82, 284.
- (7) (a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995; (b) Cossi, M.; Rega,
- N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669; (c) Takano, Y.; Houk,
- K. N. J. Chem. Theory Comput. 2005, 1, 70.

