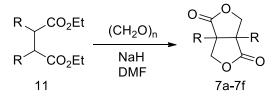
Supporting Information

Catalytic Enantioselective Approach to Tetrol Bearing Vicinal All-Carbon Quaternary Stereogenic Centers Hui Yang, Kou-Sen Cao, Wen-Hua Zheng*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China E-mail: <u>wzheng@nju.edu.cn</u>

Table of Contents


General Information	S2
General Procedure for Preparation of Substrates	
Procedure for Preparation of Dimethyldioxirane (DMDO)	S9
General Procedure for Oxidative Desymmetrization	
General Procedure for the Conversion of 2g	
Determination of the Absolute Stereochemistry	S17-S18
Determination of the relative configuration of acetals	S18-S19
Proposed transition state	S20
References	S20
NMR and HPLC Spectra	S21-S84

General Information

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. Melting points were measured on a SGW X-4. Melting points are uncorrected. NMR spectras were recorded on Bruker ARX 300 spectrometer and Bruker ARX 400 spectrometer, which were recorded in ppm (δ) downfield of TMS ($\delta = 0$) in deuterated solvent. Signal splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), or multiplet (m), with coupling constants (J) in hertz. Mass spectra were conducted at Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). HPLC analyses were performed on Shimadzu SPD-20A using Daicel Chiralpak AD-H, IB Column. Values of optical rotation were measured on Rudolph Automatic Polarimeter A21101 at the wavelength of the sodium D-line (589 nm).

Diesters 11^1 and tetraester 12^2 were prepared following procedures in the literature.

General Procedure for Preparation of 7a-7f

To a solution of diester 11^1 (10 mmol) and paraformaldehyde (0.9 g, 30 mmol) in DMF (10 mL) was added NaH (0.12 g, 3 mmol). The reaction was allowed to stir at 50 °C until the starting material disappeared. The reaction mixture was diluted with ethyl acetate and quenched by saturated NH₄Cl. Then the organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate / petroleum ether) to give the product **7a-7f** (62-95% yield) as white solid.

3a,6a-diphenyltetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7a)

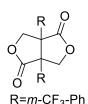
White solid. Analytical data for **7a**: mp: 148-149 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.22 (m, 6H), 6.92-6.80 (m, 4H), 5.13 (d, J = 9.6 Hz, 2H), 4.87 (d, J = 9.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 176.58, 130.86, 129.13, 128.99, 127.38, 72.16, 60.95. IR (neat, cm⁻¹): $\nu = 1766$, 1486, 1446, 1258, 1164, 1024, 948, 752, 731. HRMS (EI) m/z M⁺: Calcd for C₁₈H₁₄O₄: 294.0892. Found: 294.0896.

3a,6a-bis(4-methoxyphenyl)tetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7b)

White solid. Analytical data for **7b**: mp: 174 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.76 (s, 8H), 5.03 (d, *J* = 9.6 Hz, 2H), 4.72 (d, *J* = 9.6 Hz, 2H), 3.76 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.86, 159.75, 128.73, 122.60, 114.46, 72.29, 60.33, 55.32. IR (neat, cm⁻¹): v = 1773, 1609, 1516, 1485, 1300, 1252, 1185, 1058, 1024, 802. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₀H₁₈O₆Na: 377.1001. Found: 377.0985.

.

3a,6a-bis(4-chlorophenyl)tetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7c)


White solid. Analytical data for **7c**: mp: 176 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.23 (m, 4H), 6.88-6.75 (m, 4H), 5.11 (d, J = 9.7 Hz, 2H), 4.78 (d, J = 9.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 175.70, 135.48, 129.53, 129.18, 128.74, 72.13, 60.30. IR (neat, cm⁻¹): $\nu = 1775$, 1497, 1279, 1157, 1097, 1036, 856, 807, 737. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₁₈H₁₂Cl₂O₄Na: 385.0010. Found: 384.9995.

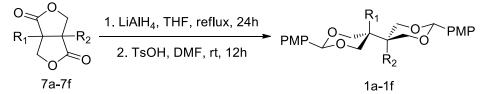
3a,6a-di-p-tolyltetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7d)

White solid. Analytical data for **7d**: mp: 200-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.2 Hz, 4H), 6.73 (d, *J* = 8.3 Hz, 4H), 5.05 (d, *J* = 9.5 Hz, 2H), 4.79 (d, *J* = 9.5 Hz, 2H), 2.28 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.78, 138.90, 129.76, 127.86, 127.24, 72.23, 60.44, 21.02. IR (neat, cm⁻¹): v = 1772, 1517, 1250, 1150, 1061, 1015, 957, 793, 724. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₀H₁₈O₄Na: 345.1103. Found: 345.1085.

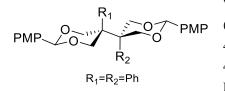
3a,6a-bis(3-(trifluoromethyl)phenyl)tetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7e)

White solid. Analytical data for **7e**: mp: 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 6.84 (s, 2H), 5.13 (d, J = 9.9 Hz, 2H), 4.81 (d, J = 9.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.16, 131.66, 131.61, 130.83, 130.06, 126.15 (q, $J_{C-F} = 16.0$ Hz), 124.44, 124.35 (q, $J_{C-F} = 16.0$ Hz), 72.18, 61.26. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.20. IR (neat, cm⁻¹): $\nu = 1775$, 1462, 1326, 1159, 1119, 1016, 891, 790. HRMS (EI) m/z M⁺:

Calcd for C₂₀H₁₂F₆O₄: 430.0640. Found: 430.0638.

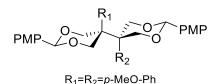

3a,6a-di(naphthalen-2-yl)tetrahydro-1H,4H-furo[3,4-c]furan-1,4-dione (7f)

White solid. Analytical data for **7f**: mp: 228-230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.63 (m, 4H), 7.60-7.43 (m, 8H), 6.77 (dd, J = 8.7, 2.1 Hz, 2H), 5.23 (d, J = 9.6 Hz, 2H), 5.04 (d, J = 9.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.52, 132.94, 132.82, 128.90, 128.18, 128.10, 127.57, 127.40, 127.22, 126.96, 124.14, 72.55, 61.11. IR (neat, cm⁻¹): $\nu = 1771$, 1450, 1275, 1157, 1028, 1009, 993, 861, 745. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₆H₁₈O₄Na: 417.1103. Found:


417.1084.

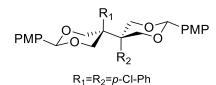
General Procedure for Preparation of 1a-1f³

A solution of 7 (10 mmol) in 30 mL of dry THF was added slowly to a suspension of 1.9 g (50 mmol) LiAlH₄ in 20 mL of dry THF. The reaction mixture was refluxed for 24 hours. It was then cooled to 0 $^{\circ}$ C and 20 mL of water in 20 ml of ethanol was added slowly with vigorous stirring and then filtered. The precipitate was refluxed in CH₃OH (three 50-mL portions) and filtered. The combined filtrate was concentrated. Then 10 mL of MeOH was added. It was neutralized (to pH 1-2) with concentrated hydrochloric acid and concentrated. Then, TsOH (5%), *p*-Anisaldehyde dimethyl acetal (30 mmol), and DMF (15 mL) was added. The reaction mixture was allowed to stir at room temperature for 6-12 hours. The reaction mixture was diluted with ethyl acetate and H₂O. Then the organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate / petroleum ether) to give the product **1a-1f** as white solid in 16-28% yields for two steps.


(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5,5'-diphenyl-5,5'-bi(1,3-dioxane) (1a)

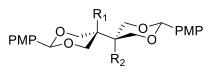
White solid. Analytical data for **1a**: mp: 293-295 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.20 (m, 10H), 6.92 (d, J = 8.4 Hz, 4H), 6.69 (d, J = 8.4 Hz, 4H), 5.33 (s, 2H), 4.74 (d, J = 11.1 Hz, 4H), 4.13 (d, J = 11.2 Hz, 4H), 3.68 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.09, 137.59, 130.47, 129.35, 127.96, 127.62,

126.75, 113.65, 102.28, 70.61, 55.27, 44.91. IR (neat, cm⁻¹): v = 1613, 1518, 1390, 1304, 1249, 1104, 1029, 979, 829, 702. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₄O₆Na: 561.2253. Found: 561.2254.


(2,5-cis,2',5'-cis)-2,2',5,5'-tetrakis(4-methoxyphenyl)-5,5'-bi(1,3-dioxane) (1b)

White solid. Analytical data for 1b: mp: 236-237 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.15 (m, 4H), 6.99-6.94 (m, 4H), 6.94-6.88 (m, 4H), 6.74-6.69 (m, 4H), 5.34 (s, 2H), 4.67 (d, J = 11.2 Hz, 4H), 4.12 (d, J = 11.3 Hz, 4H), 3.86 (s, 6H), 3.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.99, 156.95, 129.42,

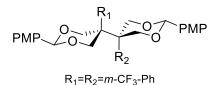
129.30, 128.48, 126.53, 112.56, 112.15, 101.16, 69.62, 54.18, 43.40. IR (neat, cm^{-1}): v = 1612, 1517, 1375, 1245, 1124, 1082, 1026, 845, 807. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₆H₃₈O₈Na: 621.2464. Found: 621.2466.


(2,5-cis,2',5'-cis)-5,5'-bis(4-chlorophenyl)-2,2'-bis(4-methoxyphenyl)-5,5'-bi(1,3-dioxane) (1c)

White solid. Analytical data for 1c: mp: 234-235 °C. ¹H NMR [~]PMP (400 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.17-7.11 (m, 4H), 7.00-6.94 (m, 4H), 6.77-6.72 (m, 4H), 5.38 (s, 2H), 4.65 (d, *J* = 11.2 Hz, 4H), 4.14 (d, J = 11.3 Hz, 4H), 3.72 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.18, 135.85, 132.84, 130.68, 129.96,

128.13, 127.50, 113.69, 102.40, 70.41, 55.25, 44.80. IR (neat, cm⁻¹): v = 1614, 1515, 1386, 1244, 1123, 1079, 1024, 971, 839, 804, 750. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₂Cl₂O₆Na: 629.1474. Found: 629.1473.

(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5,5'-di-p-tolyl-5,5'-bi(1,3-dioxane) (1d)



 $R_1 = R_2 = p$ -Me-Ph

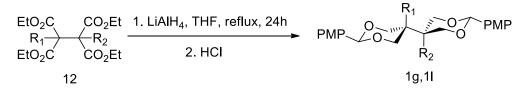
White solid. Analytical data for 1d: mp: 200 °C. ¹H NMR (400 PMP O PMP MHz, CDCl₃) δ 7.21 (s, 8H), 7.02-6.96 (m, 4H), 6.76-6.71 (m, 4H), 5.34 (s, 2H), 4.72 (d, *J* = 11.2 Hz, 4H), 4.11 (d, *J* = 11.3 Hz, 4H), 3.71 (s, 6H), 2.42 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.02, 136.09, 134.60, 130.59, 129.17, 128.65,

127.58, 113.60, 102.17, 70.66, 55.23, 44.51, 21.05. IR (neat, cm⁻¹): v = 1612, 1516, 1385, 1248, 1173, 1121, 1020, 922, 830, 773. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₄H₃₈O₆Na: 589.2566. Found: 589.2575.

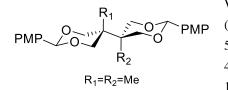
(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5,5'-bis(3-(trifluoromethyl)phenyl)-5,5'-bi(1,3-dioxan e) (1e)

White solid. Analytical data for 1e: mp: 285 °C. ¹H NMR (400 PMP MHz, CDCl₃) δ 7.64-7.58 (m, 2H), 7.54-7.46 (m, 2H), 7.42-7.34 (m, 2H), 7.33-7.26 (m, 2H), 7.01-6.94 (m, 4H), 6.80-6.72 (m, 4H), 5.50 (s, 2H), 4.76 (d, J = 11.2 Hz, 4H), 4.33 (d, J = 11.4 Hz, 4H), 3.75 (s, 6H). ¹³C NMR (101 MHz, CDCl₃)

δ 160.20, 138.20, 132.36, 130.36 (d, *J*_{C-F} = 132 Hz), 129.68, 128.42, 127.45, 125.85 (q, *J*_{C-F} = 16.0 Hz), 125.42, 123.94 (q, $J_{C-F} = 16.0$ Hz), 113.67, 102.40, 70.17, 55.22, 45.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76. IR (neat, cm⁻¹): v = 1614, 1517, 1394, 1331, 1244, 1125, 1032, 928, 831, 770. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₂F₆O₆Na: 697.2001. Found: 697.2004.

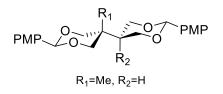

(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5,5'-di(naphthalen-2-yl)-5,5'-bi(1,3-dioxane) (1f)

White solid. Analytical data for 1f: mp: 243 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.86 (m, 4H), 7.86-7.79 (m, 4H), 7.58-7.47 (m, 6H), 6.99-6.88 (m, 4H), 6.69-6.60 (m, 4H), 5.35 (s, 2H), 4.97 (d, J = 11.2 Hz, 4H), 4.27 (d, J = 11.5 Hz, 4H), 3.65 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.02, 135.23,


133.00, 132.19, 130.22, 128.92, 128.44, 127.53, 127.40, 127.33, 127.06, 126.15, 125.99, 113.57, 102.41, 70.79, 55.18, 45.41. IR (neat, cm⁻¹): v = 1612, 1514, 1377, 1242, 1170, 1134, 1074, 1026, 806, 777. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₄₂H₃₈O₆Na: 661.2566. Found: 661.2563.

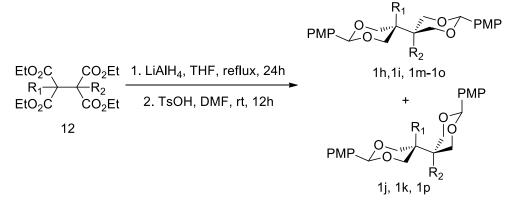
General Procedure for Preparation of 1g, 1l³

A solution of tetraester 12² (10 mmol) in 30 mL of dry THF was added slowly with cooling and vigorous stirring to a suspension of 1.9g (50 mmol) lithium aluminum hydride in 20 mL of dry THF. The reaction mixture was refluxed for 24h. It was then cooled to 0 °C and 20 mL of water in 20 mL of ethanol was added slowly with vigorous and filtered. The precipitate was refluxed in CH₃OH (three 50-mL portions) and then filtered. The combined filtrate was concentrated. 10 mL of MeOH was added. It was neutralized (to pH 1-2) with concentrated hydrochloric acid and concentrated. Then, p-Anisaldehyde dimethyl acetal (30 mmol) and 3 drops of concentrated hydrochloric acid was added. The reaction mixture was allowed to stir at 55°C for 30 min. After completion of the reaction, Et₂O (30 mL) was added and filtered. The obtained white solid was washed with H₂O and Et₂O to give the product in 52% (1g) and 45% (1l) yields for two steps.

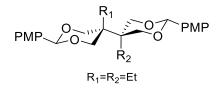

(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5,5'-dimethyl-5,5'-bi(1,3-dioxane) (1g)

White solid. Analytical data for 1g: mp: 196-197 °C. ¹H NMR $\mathsf{PMP} \underbrace{\mathsf{O}}_{\mathsf{P}} \underbrace{\mathsf{O}}_{\mathsf{P}} \underbrace{\mathsf{PMP}}_{\mathsf{P}} \underbrace{\mathsf{O}}_{\mathsf{P}} \mathsf{PMP}}_{\mathsf{P}} \underbrace{\mathsf{(400 MHz, CDCl_3) \delta 7.44-7.38 (m, 4H), 6.94-6.86 (m, 4H),}}_{5.35 (s, 2H), 4.05 (d, J = 10.8 Hz, 4H), 3.87 (d, J = 11.1 Hz, 4H)}$ 4H), 3.81 (s, 6H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.12, 130.71, 127.40, 113.74, 101.84, 71.77, 55.34, 35.99,

16.10. IR (neat, cm^{-1}): v = 1616, 1520, 1427, 1394, 1256, 1158, 1057, 975, 928, 829. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₄H₃₀O₆Na: 437.1940. Found: 437.1946.

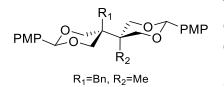

(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5-methyl-5,5'-bi(1,3-dioxane) (11)

White solid. Analytical data for 11: mp: 187-189 °C. ¹H NMR (400 MHz, d⁶-acetone) δ 7.48-7.32 (m, 4H), 7.01-6.84 (m, 4H), 5.54 (s, 1H), 5.52 (s, 1H), 4.44-4.32 (m, 2H), 4.16-4.06 (m, 2H), 4.06-3.95 (m, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.64-3.55 (m, 2H), 2.70-2.59 (m, 1H), 0.78 (s, 3H). ¹³C NMR (101 MHz,


d⁶-acetone) δ 160.91, 160.73, 132.79, 132.23, 128.43, 128.37, 114.15, 113.98, 102.29, 102.02, 75.00, 69.59, 55.53, 55.50, 38.16, 33.48, 16.94. IR (neat, cm⁻¹): v = 1613, 1515, 1385, 1249, 1170, 1099, 1023, 976, 820. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₃H₂₈O₆Na: 423.1784. Found: 423.1783.

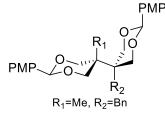
General Procedure for Preparation of 1h-1k, 1m-1p³

A solution of tetraester 12^2 (10 mmol) in 30 ml of dry THF was added slowly dropwise with cooling and vigorous stirring to a suspension of 1.9g (50 mmol) LiAlH₄ in 20 mL of dry THF. The reaction mixture was refluxed for 24h. It was then cooled to 0 °C and 20 mL of water in 20 mL of ethanol was added slowly with vigorous and filtered. The precipitate was refluxed in CH₃OH (three 50-mL portions) and then filtered. The combined filtrate was concentrated. 10 mL of MeOH was added. It was neutralized (to pH 1-2) with concentrated hydrochloric acid and concentrated. Then, TsOH (5%), p-Anisaldehyde dimethyl acetal (30 mmol), DMF (15 mL) was added. The reaction mixture was allowed to stir at rt for 6-12 hours. The reaction mixture was diluted with ethyl acetate and H₂O. Then the organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate / petroleum ether) and recrystallized from Et_2O to give the product as white solid in 12%-32% yields for two steps.


(2,5-cis,2',5'-cis)-5,5'-diethyl-2,2'-bis(4-methoxyphenyl)-5,5'-bi(1,3-dioxane) (1h)

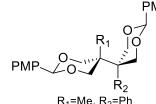
White solid. Analytical data for **1h**: mp: 150 °C. ¹H NMR (400 $\mathsf{PMP} \underbrace{\mathsf{O}}_{\mathsf{O}} \underbrace{\mathsf{PMP}}_{\mathsf{O}} \underbrace{\mathsf{O}}_{\mathsf{O}} \mathsf{PMP} = \mathsf{MHz}, \mathsf{CDCl}_3 \delta 7.43-7.35 (m, 4H), 7.95-7.85 (m, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 4.06-3.92 (m, 8H), 3.80 (s, 6H), 2.02 (q, J = 7.6 Hz, 4H), 5.37 (s, 2H), 5$ 1.13 (t, J = 7.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.11, 130.83, 127.43, 113.73, 101.35, 70.29, 55.33, 39.42, 22.91,

10.93. IR (neat, cm^{-1}): v = 1614, 1514, 1378, 1249, 1171, 1085, 1024, 948, 814, 782. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₆H₃₄O₆Na: 465.2253. Found: 465.2254.


(2,5-cis,2',5'-cis)-5-benzyl-2,2'-bis(4-methoxyphenyl)-5'-methyl-5,5'-bi(1,3-dioxane) (1i)

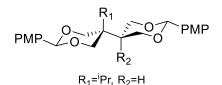
White solid. Analytical data for 1i: mp: 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 4H), 7.30-7.12 (m, 5H), 6.87-6.75 (m, 4H), 5.39 (s, 1H), 5.16 (s, 1H), 4.06 (dd, *J* = 39.2, 11.3 Hz, 4H), 3.81 (d, J = 10.9 Hz, 2H), 3.75-3.64 (m, 8H), 3.28 (s, 2H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

160.25, 160.09, 139.44, 131.08, 130.67, 130.65, 128.50, 127.61, 127.31, 126.44, 113.83, 113.71, 1389, 1298, 1247, 1172, 1099, 1024, 960, 922, 817. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₀H₃₄O₆Na: 513.2253. Found: 513.2254.


(2,5-trans,2',5'-cis)-5-benzyl-2,2'-bis(4-methoxyphenyl)-5'-methyl-5,5'-bi(1,3-dioxane) (1j)

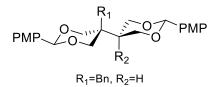
White solid. Analytical data for **1j**: mp: 175-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.38-7.27 (m, 5H), 7.09 (d, J = 6.9 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.45 (s, 1H), 5.07 (s, 1H), 4.46 (d, J = 11.5 Hz, 4H), 4.20 (d, J = 11.3 Hz, 2H), 3.85-3.70 (m, 4H), 2.49 (s, 2H), 1.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.05, 160.04, 136.51, 131.19, 130.82, 130.27,

128.48, 127.51, 127.49, 126.88, 113.74, 113.72, 101.75, 101.49, 74.48, 70.59, 55.34, 55.30, 38.68, 38.20, 36.34, 17.01. IR (neat, cm⁻¹): v = 1614, 1518, 1391, 1299, 1249, 1172, 1100, 1025, 987, 818, 750. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₀H₃₄O₆Na: 513.2253. Found: 513.2257.


(2,5-cis,2',5'-trans)-2,2'-bis(4-methoxyphenyl)-5-methyl-5'-phenyl-5,5'-bi(1,3-dioxane) (1k)

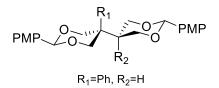
White solid. Analytical data for **1k**: mp: 172-174 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.6 Hz, 2H), 7.51-7.40 (m, 4H), 7.35-7.25 (m, 1H), 7.05-6.98 (m, 2H), 6.96-6.90 (m, 2H), 6.76-6.70 (m, 2H), 5.57 (s, 1H), 5.44 (s, 1H), 5.14 (d, *J* = 11.7 Hz, 2H), 4.59 (d, *J* = 11.7 Hz, 2H), 4.38 (d, *J* = 12.4 Hz, 2H), 3.82 (s, 3H), 3.72 (s, 3H), 3.50 (d, *J* = 12.5 Hz, 2H), 0.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.22,

160.02, 139.05, 131.00, 130.38, 129.68, 127.97, 127.65, 127.61, 126.22, 113.86, 113.59, 102.57, 102.19, 74.99, 72.45, 55.36, 55.24, 46.43, 36.09, 16.80. IR (neat, cm⁻¹): v = 1613, 1516, 1383, 1300, 1246, 1172, 1117, 1084, 1011, 821, 723. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₉H₃₂O₆Na: 499.2097. Found: 499.2104.


(2,5-cis,2',5'-cis)-5-isopropyl-2,2'-bis(4-methoxyphenyl)-5,5'-bi(1,3-dioxane) (1m)

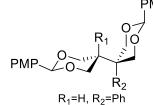
White solid. Analytical data for **1m**: mp: 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 8.6, 1.8 Hz, 4H), 6.89 (t, J = 9.3 Hz, 4H), 5.45 (s, 1H), 5.33 (s, 1H), 4.47 (dd, J = 11.5, 3.7 Hz, 2H), 4.27 (t, J = 11.2 Hz, 2H), 4.16 (d, J = 12.1 Hz, 2H), 3.79 (d, J = 4.9 Hz, 6H), 3.74 (d, J = 12.1 Hz, 2H), 2.60 – 2.49

(m, 1H), 1.64-1.53 (m, 1H), 0.96 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.11, 159.93, 131.17, 130.55, 127.55, 127.35, 113.78, 113.63, 101.52, 101.47, 72.80, 71.21, 55.33, 55.30, 37.83, 37.03, 32.20, 17.50. IR (neat, cm⁻¹): $\nu = 1612$, 1513, 1378, 1244, 1173, 1094, 1028, 984, 813, 781. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₅H₃₂O₆Na: 451.2097. Found: 451.2110.


(2,5-cis,2',5'-cis)-5-benzyl-2,2'-bis(4-methoxyphenyl)-5,5'-bi(1,3-dioxane) (1n)

White solid. Analytical data for **1n**: mp: 164-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.6 Hz, 2H), 7.43-7.28 (m, 7H), 6.95 (dd, J = 18.3, 8.6 Hz, 4H), 5.51 (s, 1H), 5.38 (s, 1H), 4.25 (dd, J = 11.3, 3.7 Hz, 2H), 4.06-3.88 (m, 6H), 3.85 (d, J = 8.9 Hz, 6H), 3.26 (s, 2H), 2.28-2.14 (m, 1H). ¹³C NMR (101

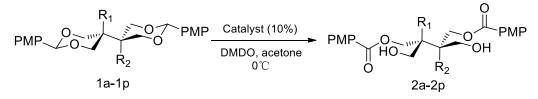
MHz, CDCl₃) δ 160.26, 160.09, 137.40, 131.04, 130.67, 130.58, 128.52, 127.58, 127.33, 126.68, 113.84, 113.70, 102.38, 101.56, 71.52, 67.35, 55.37, 55.33, 37.43, 36.34, 35.88. IR (neat, cm⁻¹): v = 1615, 1518, 1385, 1249, 1174, 1106, 1078, 1027, 964, 831, 874, 747. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₉H₃₂O₆Na: 499.2097. Found: 499.2104.


(2,5-*trans*,2',5'-*cis*)-2,2'-bis(4-methoxyphenyl)-5-phenyl-5,5'-bi(1,3-dioxane) (10)

White solid. Analytical data for **10**: mp: 211-213 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.38 (m, 3H), 7.35-7.28 (m, 2H), 7.19-7.10 (m, 2H), 6.90-6.70 (m, 4H), 5.56 (s, 1H), 5.20 (s, 1H), 4.75 (d, *J* = 11.4 Hz, 2H), 4.24-4.04 (m, 4H), 3.79 (d, *J* = 5.6 Hz, 3H), 3.74 (s, 3H), 3.66 (t, *J* = 11.4 Hz, 2H), 2.40-2.30 (m,

1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.12, 160.04, 139.04, 130.58, 130.33, 128.62, 127.75, 127.62, 127.26, 126.76, 113.65, 102.36, 101.51, 72.35, 68.04, 55.30, 55.27, 41.19, 39.89. IR (neat, cm⁻¹): v = 1613, 1515, 1381, 1248, 1169, 1104, 1083, 1024, 823, 782. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₈H₃₀O₆Na: 485.1940. Found: 485.1941.

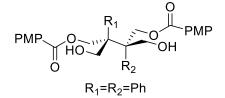
(2,5-cis,2',5'-cis)-2,2'-bis(4-methoxyphenyl)-5-phenyl-5,5'-bi(1,3-dioxane) (1p)


White solid. Analytical data for **1p**: mp: 165 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.40-7.25 (m, 5H), 7.04 (d, *J* = 7.6 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.38 (s, 1H), 5.25 (s, 1H), 4.70 (d, *J* = 11.6 Hz, 2H), 4.38 (dd, *J* = 11.1, 3.5 Hz, 2H), 3.95 (d, *J* = 11.6 Hz, 2H), 3.88-3.70 (m, 8H), 3.04-2.93 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.26, 159.95, 139.72, 131.03,

130.30, 128.86, 127.69, 127.48, 127.38, 125.15, 113.81, 113.62, 101.86, 101.33, 72.86, 69.69, 55.37, 55.30, 39.29, 38.40. IR (neat, cm⁻¹): v = 1614, 1517, 1382, 1245, 1130, 1087, 1033, 974, 807, 734. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₈H₃₀O₆Na: 485.1940. Found: 485.1942.

Procedure for Preparation of Dimethyldioxirane (DMDO)⁴

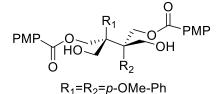
To a vigorously stirring solution of 40 mL H_2O , 40 mL acetone, and 32g NaHCO₃ at room temperature was added 60 g Oxone in a portion. Simultaneously, reduced pressure (ca. 30 mm, water aspirator) was connected to the receiving flask cooled by liquid nitrogen. After about 1 hour, the receiving flask was taken out, and the fresh DMDO was transferred to a 100 mL round flask. The DMDO was used directly without any further treatment. The concentration of DMDO is determined through titration (~0.1 mmol/mL).


General Procedure for Oxidative Desymmetrization of 1a-1p⁵

To a flame-dried Schlenk tube were added substrate **1** (0.025 mmol) and catalyst 10 mol%. The tube was put into ice-water bath. To the mixture was added 2 mL fresh-made DMDO* (~0.1 mmol/mL). The mixture was stirred at 0 °C until the starting material disappeared (monitored by TLC). The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (DCM: CH₃OH = 20:1) to afford a mixture of diastereomers **2** and **2'**.

(*DMDO was used immediately after preparation, and the concentration of DMDO was determined to be ~0.1 mmol/mL. The concentration dropped from ~0.1 mmol/mL to ~0.07 mmol/mL after storage for one week at -20 °C.)

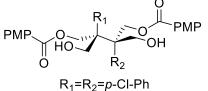
(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-diphenylbutane-1,4-diyl bis(4-methoxybenzoate) (2a)



White solid, 94%, 15.8:1 d.r., >99% ee. Analytical data for 2a: PMP $[\alpha]_D{}^{20} = +26.8^\circ$ (c = 0.38, CH₃OH). mp: 89-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.8 Hz, 4H), 7.25-7.14 (m, 6H), 6.95-6.84 (m, 4H), 6.79 (d, J = 8.9 Hz, 4H), 5.36 (d, J = 11.5 Hz, 2H), 5.00 (d, J = 11.5 Hz, 2H), 4.46 (d, J = 12.4 Hz,

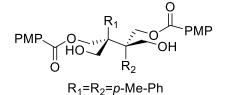
2H), 3.92 (d, J = 12.4 Hz, 2H), 3.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.14, 163.56, 138.06, 131.72, 128.57, 127.45, 127.02, 121.90, 113.64, 63.09, 62.81, 55.41, 52.12. IR (neat, cm⁻¹): v = 2920, 1705, 1604, 1511, 1253, 1166, 1101, 1026, 845, 767. HRMS (ESI) m/z [M+Na]+: Calcd for $C_{34}H_{34}O_8Na$: 593.2151. Found: 593.2161. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 80:20, 1.5 mL/min, $\lambda = 254$ nm, $t_R(major) = 22.16$ min, $t_R(minor) = 32.99$ min. Analytical data for the isomer of 2a: white solid, mp: 83°C. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.78 (m, 4H), 7.26-7.20 (m, 6H), 7.00-6.93 (m, 4H), 6.89-6.82 (m, 4H), 5.14 (d, J = 11.8 Hz, 2H), 4.98 (d, J = 1.18 Hz, 2H)= 11.7 Hz, 2H), 4.40 (d, J = 12.1 Hz, 2H), 4.15 (d, J = 12.1 Hz, 2H), 3.81 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.82, 163.64, 137.82, 131.76, 128.54, 127.71, 127.18, 121.92, 113.77, 64.07, 62.73, 55.46, 52.81. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₄O₈Na: 593.2151. Found: 593.2158.

(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-bis(4-methoxyphenyl)butane


-1,4-diyl bis(4-methoxybenzoate) (2b)

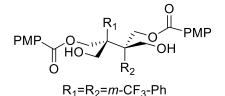
White solid, 93%, 18:1 d.r., >99% ee. Analytical data for 2b: $PMP \qquad \bigcirc O \qquad PMP \qquad \bigcirc O \qquad PMP \qquad \square O \qquad \square O$ (d, J = 11.5 Hz, 2H), 4.94 (d, J = 11.5 Hz, 2H), 4.39 (d, J =11.9 Hz, 2H), 3.89 (d, J = 12.5 Hz, 2H), 3.80 (d, J = 2.8 Hz,

12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.17, 163.57, 158.21, 131.74, 130.01, 129.69, 121.95, 113.66, 112.74, 63.39, 62.98, 55.42, 55.16, 51.77. IR (neat, cm⁻¹): v = 2818, 1707, 1605, 1513, 1255, 1167, 1103, 1025, 768. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₈O₁₀Na: 653.2363. Found: 653.2370. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 70:30, 2.0 mL/min, $\lambda = 254$ nm, t_R(major) = 8.91 min, t_R(minor) = 18.83 min.


(2R, 3R)-2,3-bis(4-chlorophenyl)-2,3-bis(hydroxymethyl)butane-1,4-diyl bis(4-methoxybenzoate) (2c)

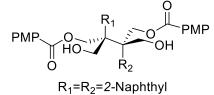
White solid, 93%, 13:1 d.r., >99% *ee*. Analytical data for **2c**: $[\alpha]_D^{20} = +10.4^{\circ}$ (c = 0.50, CH₃OH). mp: 109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 4H), 7.22 (d, *J* = 8.9 Hz, 4H), 6.95-6.83 (br, 4H), 6.83-6.77 (m, 4H), 5.36 (d, J = 11.7 Hz, 2H), 5.06 (d, J = 11.6 Hz, 2H), 4.29 (d, J = 12.2 Hz, 2H),

3.84-3.73 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 167.13, 163.74, 136.45, 133.17, 131.73, 130.01, 127.71, 121.55, 113.74, 62.96, 62.50, 55.43, 52.12. IR (neat, cm⁻¹): v = 2919, 1712, 1604, 1508, 1253, 1169, 1096, 1028, 846, 793, 765. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₄H₃₂Cl₂O₈Na: 661.1372. Found: 661.1376. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 1.5 mL/min, λ = 254nm, t_R(major) = 10.05 min, t_R(minor) = 11.20 min.


(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-di-p-tolylbutane-1,4-diyl bis(4-methoxybenzoate) (2d)

White solid, 88%, 11:1 d.r., >99% ee. Analytical data for 2d: PMP $[\alpha]_D{}^{20} = +9.4^{\circ}$ (c = 0.53, CH₃OH). mp: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.68 (m, 4H), 7.02 (d, J = 8.0 Hz, 4H), 6.90-6.73 (m, 8H), 5.26 (d, J = 11.5 Hz, 2H), 4.91 (d, J = 11.5 Hz, 2H), 4.43 (d, J = 12.3 Hz, 2H), 3.95 (d, J = 12.3 Hz,

2H), 3.80 (s, 6H), 2.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.13, 163.55, 136.54, 134.85, 131.75, 128.44, 128.19, 122.01, 113.64, 63.62, 62.86, 55.42, 51.81, 20.96. IR (neat, cm⁻¹): v = 2919, 1692, 1604, 1512, 1255, 1166, 1102, 1027, 846, 767. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₆H₃₈O₈Na: 621.2464. Found: 621.2465. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 1.5 mL/min, λ = 254nm, t_R(major) = 9.13 min, t_R(minor) = 10.08 min.

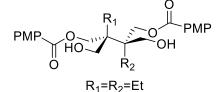

(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-bis(3-(trifluoromethyl)phenyl) butane-1,4-diyl bis(4-methoxybenzoate) (2e)

White solid, 89%, 6:1 d.r., >99% ee. Analytical data for 2e: $PMP \longrightarrow O H = (\alpha)_{D}^{20} = +14.9^{\circ} (c = 0.51, CH_{3}OH). mp: 202-204 \,^{\circ}C. {}^{1}H NMR = (400 \text{ MHz, CDCl}_{3}) \delta 7.68 (d, J = 8.8 \text{ Hz, 4H}), 7.54 (d, J = 7.6 \text{ Hz} 2H) 7.41 (t, J = 7.7 \text{ Hz} 2H) 7.35 7.15 (br. 2H) 7.10 6.00 \text{ Hz}$ Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.35-7.15 (br, 2H), 7.10-6.90 (br, 2H), 6.79 (d, J = 8.8 Hz, 4H), 5.47 (d, J = 11.6 Hz, 2H),

5.26-5.05 (br, 2H), 4.40-4.20 (br, 2H), 3.86-3.70 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 167.14, 163.81, 138.94, 131.75, 130.14, 129.82, 128.18, 125.27, 124.15 (q, $J_{C-F} = 16.0 \text{ Hz}$), 122.56, 121.34, 113.74, 62.70, 62.13, 55.43, 52.72. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.57. IR (neat, cm⁻¹): v = 2918, 1695, 1609, 1524, 1328, 1260, 1169, 1117, 1015, 763, 710. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₆H₃₂F₆O₈Na: 729.1899. Found: 729.1901. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 1.5 mL/min, $\lambda = 254$ nm, t_R(major) = 7.71 min, t_R(minor) = 8.55 min.

(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-di(naphthalen-2-yl)butane-1,4-diyl bis(4-methoxybenzoate) (2f)

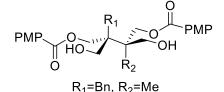
 $\begin{array}{c} O \\ H \\ O \\ O \\ O \\ O \\ O \\ H \end{array}$ White solid, 96%, 12:1 d.r., >99% *ee.* Analytical data for **2f**: $[\alpha]_D^{20} = -29.3^{\circ} (c = 0.92, CH_3OH). mp: 92-94 ^{\circ}C. ^{1}H NMR \\ (400 \text{ MHz, CDCl}_3) \delta 7.80 (d, J = 8.0 \text{ Hz, 2H}), 7.70-7.56 (m, 10.16) \\ (10.16) (10.16) (10.16) (10.16) (10.16) (10.16) \\ (10.16) (10.1$ 8H), 7.51-7.41 (m, 4H), 7.34-7.28 (br, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 8.9 Hz, 4H), 5.52 (d, J = 10.1 Hz, 2H),


5.30-5.06 (br, 2H), 4.58 (d, J = 12.1 Hz, 2H), 4.12-3.96 (br, 2H), 3.74 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) & 167.18, 163.55, 135.72, 132.56, 132.23, 131.70, 128.28, 127.98, 127.92, 127.24, 126.62, 126.18, 125.94, 121.79, 113.63, 63.30, 63.22, 55.36, 52.56. IR (neat, cm⁻¹): v = 2920, 1690, 1604, 1510, 1255, 1166, 1100, 1024, 845, 766. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₄₂H₃₈O₈Na: 693.2464. Found: 693.2464. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 1.5 mL/min, λ = 254nm, t_R(major) = 12.69 min, t_R(minor) = 15.65 min.

(2R, 3R)-2,3-bis(hydroxymethyl)-2,3-dimethylbutane-1,4-diyl bis(4-methoxybenzoate) (2g)

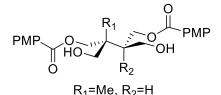
white solid, 84%, 8:1 d.r., >99% ee. Analytical data for 2g: $PMP \longrightarrow O \longrightarrow R_{2} O H PMP \qquad [\alpha]_{D}^{20} = -4.0^{\circ} (c = 0.50, CH_{3}OH). mp: 141-142 \,^{\circ}C. \,^{1}H NMR (400 \text{ MHz, CDCl}_{3}) \,\delta \, 8.05-7.95 (m, 4H), \,6.98-6.87 (m, 4H),$ S11 R₁=R₂=Me

4.66 (d, J = 11.3 Hz, 2H), 4.36 (d, J = 11.2 Hz, 2H), 3.86 (s, 6H), 3.75 (d, J = 12.3 Hz, 2H), 3.57 (d, J = 12.3 Hz, 2H), 1.06 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) & 166.94, 163.64, 131.74, 122.18, 113.78, 66.20, 64.61, 55.48, 43.30, 16.81. IR (neat, cm⁻¹): v = 2921, 1703, 1675, 1605, 1511, 1460, 1259, 16051167, 1101, 1030, 843, 765. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₄H₃₀O₈Na: 469.1838. Found: 469.1839. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 80:20, 1.5 mL/min, $\lambda = 254$ nm, t_R(major) = 12.87 min, t_R(minor) = 13.92 min.


(2R, 3R)-2,3-diethyl-2,3-bis(hydroxymethyl)butane-1,4-diyl bis(4-methoxybenzoate) (2h)

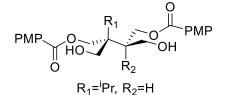
Colorless oil, 61%, 18:1 d.r., >99% ee. Analytical data for 2h: $PMP \longrightarrow O \longrightarrow R_{2} O H PMP = (\alpha)_{R_{2}} O H = -3.2^{\circ} (c = 0.44, CH_{3}OH). ^{1}H NMR (400 MHz, CDCl_{3}) \\ \delta \ 8.01-7.90 \ (m, \ 4H), \ 6.98-6.86 \ (m, \ 4H), \ 4.47 \ (q, \ J = 12.0 \ Hz, \ 4H), \ 3.89-3.77 \ (m. \ 10H), \ 1.79 \ (ddd, \ J = 14.6, \ 7.2, \ 3.0 \ Hz, \ 4H),$ 4H), 3.89-3.77 (m, 10H), 1.79 (ddd, J = 14.6, 7.2, 3.0 Hz, 4H), 1.02 (t, J = 7.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.43,

163.54, 131.60, 122.34, 113.79, 65.82, 62.95, 55.48, 46.12, 22.95, 9.14. IR (neat, cm⁻¹): v = 2920, 1706, 1604, 1511, 1462, 1251, 1166, 1100, 1024, 846, 768. HRMS (ESI) m/z [M+Na]+: Calcd for C₂₆H₃₄O₈Na: 497.2151. Found: 497.2151. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 90:10, 1.5 mL/min, $\lambda = 254$ nm, tR(major) = 20.49 min, tR(minor) = 22.66 min.


(2R, 3R)-2-benzyl-2,3-bis(hydroxymethyl)-3-methylbutane-1,4-diyl bis(4-methoxybenzoate) (2i)

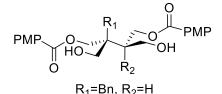
 $\begin{array}{c} \begin{array}{c} O \\ PMP \\ O \\ O \\ HO \\ O \\ \end{array} \begin{array}{c} O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ O \\ R_2 \end{array} \begin{array}{c} O \\ PMP \\ CDCl_3 \end{array} \begin{array}{c} O \\ S.04-7.98 \end{array} \begin{array}{c} (c = 0.46, CH_3OH). \ ^1H \ NMR \ (400 \ MHz, CDCl_3) \ \delta \ 8.04-7.98 \end{array} \begin{array}{c} (m, 2H), \ 7.90-7.83 \ (m, 2H), \ 7.25-7.12 \ (m, SH), \ 6.95-6.87 \ (m, 4H), \ 4.79 \ (d, \ J = 11.3 \ Hz, 1H), \ 4.53 \ (d, \ J = 11.3 \ Hz, 1H) \end{array}$ 11.3 Hz, 1H), 4.32 (dd, J = 29.0, 12.2 Hz, 2H), 3.88-3.75 (m,

9H), 3.69 (d, J = 12.1 Hz, 1H), 3.06 (s, 2H), 1.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.77, 166.08, 163.65, 163.56, 137.25, 131.71, 131.62, 130.77, 128.35, 126.55, 122.21, 122.19, 113.82, 113.77, 67.17, 66.19, 65.49, 63.11, 55.48, 55.48, 46.14, 44.35, 36.08, 17.46. IR (neat, cm^{-1}): v = 2919, 1709, 1604, 1551, 1255, 1165, 1099, 1026, 845, 767. HRMS (ESI) m/z [M+Na]+: Calcd for C₃₀H₃₄O₈Na: 545.2151. Found: 545.2155. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 90:10, 1.5 mL/min, $\lambda = 254$ nm, $t_R(major) = 48.88$ min, $t_R(minor) = 44.34$ min.


(2R, 3R)-2,3-bis(hydroxymethyl)-2-methylbutane-1,4-diyl bis(4-methoxybenzoate) (2l)

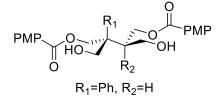
(dd, J = 36.6, 11.8 Hz, 2H), 2.07-1.96 (m, 1H), 1.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.92, 166.62, 163.62, 131.73, 131.71, 122.11, 113.78, 113.74, 67.84, 65.67, 62.30, 59.58, 55.47, 55.46, 44.85, 41.23, 41.10, 18.82. IR (neat, cm⁻¹): v = 2919, 1678, 1604, 1804,1510, 1419, 1257, 1167, 1101, 1028, 843, 769. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₃H₂₈O₈Na: 455.1682. Found: 455.1685. The ee of 21 was determined by transforming 21 to 8. And analytical data for 8 was given below.


(2R, 3R)-2,3-bis(hydroxymethyl)-2-isopropylbutane-1,4-diyl bis(4-methoxybenzoate) (2m)

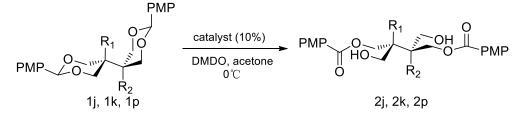
Colorless oil, 76%, 8:1 d.r., >99% ee. Analytical data for 2m: PMP $[\alpha]_D{}^{20} = +8.1^\circ (c = 0.67, CH_3OH)$. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (t, J = 8.9 Hz, 4H), 6.90 (dd, J = 12.3, 8.9 Hz, 4H), 4.90-4.77 (m, 1H), 4.49 (dd, J = 11.2, 3.9 Hz, 1H), 4.29 (dd, J = 57.0, 12.1 Hz, 2H), 3.96-3.80 (m, 8H), 3.60 (dd, J = 43.7,

12.3 Hz, 2H), 2.46-2.38 (m, 1H), 2.35 (dt, J = 13.8, 7.0 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.15, 166.17, 163.59, 163.52, 131.76, 131.61, 122.28, 122.06, 113.78, 113.66, 64.48, 62.42, 61.41, 58.42, 55.46, 44.90, 42.39, 28.49, 17.49, 17.39. IR (neat, cm⁻¹): v = 2919, 1706, 1604, 1511, 1251, 1165, 1099, 1024, 845, 768. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₅H₃₂O₈Na: 483.1995. Found: 483.2019. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 90:10, 1.0 mL/min, $\lambda = 254$ nm, t_R(major) = 34.28 min, t_R(minor) = 32.37 min.


(2R, 3R)-2-benzyl-2,3-bis(hydroxymethyl)butane-1,4-diyl bis(4-methoxybenzoate) (2n)

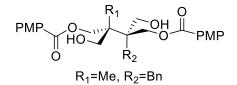
Colorless oil, 75%, 5:1 d.r., >99% ee. Analytical data for 2n: 4H), 4.74 (d, J = 6.7 Hz, 2H), 4.54 (d, J = 11.6 Hz, 1H), 4.18 (d, J = 11.7 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.84-3.72 (m, 3.84), 3.84), 3.84-3.72 (m, 3.84), 3.84), 3.84-3.72 (m, 3.84), 3.84), 3.84), 3.84, 3.84), 3.84), 3.84, 3.84), 3.84), 3.

2H), 3.57 (dd, J = 27.7, 12.3 Hz, 2H), 2.88 (dd, J = 48.3, 13.7 Hz, 2H), 2.18-2.10 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.86, 166.62, 163.77, 163.63, 136.25, 131.79, 130.67, 128.49, 126.81, 122.18, 121.99, 113.90, 113.74, 64.36, 62.76, 61.29, 58.26, 55.52, 55.48, 44.82, 42.77, 37.58. IR (neat, cm⁻¹): v = 2919, 1706, 1604, 1511, 1252, 1165, 1099, 1024, 845, 767. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₉H₃₂O₈Na: 531.1995. Found: 531.2006. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 80:20, 1.5 mL/min, $\lambda = 254$ nm, t_R(major) = 15.32 min, t_R(minor) = 20.97 min.


(25, 3R)-2,3-bis(hydroxymethyl)-2-phenylbutane-1,4-diyl bis(4-methoxybenzoate) (20)

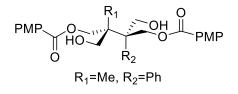
Colorless oil, 88%, 8:1 d.r., >99% ee. Analytical data for 20: $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -22.3^{\circ} (c = 0.53, CH_{3}OH). ^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.93-7.86 (m, 2H), 7.79-7.72 (m, 2H), 7.45-7.33 (m, 2H), 7.45-7$ 4H), 7.26-7.22 (m, 1H), 6.92-6.77 (m, 4H), 5.03 (d, J = 11.4Hz, 1H), 4.79 (d, J = 11.4 Hz, 1H), 4.57 (dd, J = 11.3, 8.6 Hz,

1H), 4.29-4.22 (m, 2H), 4.11 (d, J = 12.1 Hz, 1H), 3.86-3.78 (m, 8H), 2.52-2.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.95, 166.61, 163.63, 163.55, 141.14, 131.77, 131.65, 128.78, 127.00, 126.49, 122.02, 121.99, 113.67, 65.89, 62.98, 62.03, 59.07, 55.45, 55.41, 48.20, 46.86. IR (neat, cm⁻¹): v = 2918, 1706, 1604, 1511, 1254, 1165, 1098, 1021, 845, 765, 695. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₈H₃₀O₈Na: 517.1838. Found: 517.1839. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 0.2 mL/min, $\lambda = 254$ nm, t_R(major) = 84.59 min, t_R(minor) = 88.63 min.


General Procedure for Oxidative Desymmetrization of 1j, 1k, 1p⁵

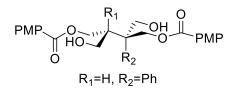
To a flame-dried Schlenk tube were added substrate 1j, 1k or 1p (0.025 mmol) and catalyst 10 mol%. The tube was put into ice-water bath. To the mixture was added 2 mL fresh-made DMDO* (~0.1 mmol/mL). The mixture was stirred at 0 °C until the starting material disappeared (monitored by TLC). The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (DCM: $CH_3OH = 20:1$) to afford product **2j**, **2k**, **2p**.

(*DMDO was used immediately after preparation, and the concentration of DMDO was determined to be ~0.1 mmol/mL. The concentration dropped from ~0.1 mmol/mL to ~0.07 mmol/mL after storage for one week at -20 °C.)


(25, 3R)-2-benzyl-2,3-bis(hydroxymethyl)-3-methylbutane-1,4-diyl bis(4-methoxybenzoate) (2j)

Colorless oil, 89%, 5:1 d.r., 98% ee. Analytical data for 2j: (m, 2H), 7.29-7.23 (m, 4H), 7.21-7.15 (m, 1H), 6.94-6.87 (m, 4H), 4.95 (d, J = 11.2 Hz, 1H), 4.53 (d, J = 11.3 Hz, 1H),

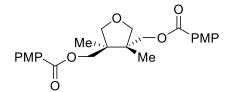
4.37 (d, J = 12.2 Hz, 1H), 4.14 (d, J = 12.2 Hz, 1H), 3.90-3.80 (m, 8H), 3.59 (dd, J = 12.4, 9.3 Hz, 2H),3.21 (d, J = 13.2 Hz, 1H), 2.80 (d, J = 13.2 Hz, 1H), 1.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.28, 166.00, 163.74, 163.55, 136.81, 131.84, 131.60, 130.89, 128.33, 126.56, 122.11, 121.98, 113.80, 67.12, 66.59, 64.25, 61.69, 55.50, 55.47, 46.11, 44.73, 35.06, 17.13. IR (neat, cm^{-1}): v = 2356, 1710, 1605, 1258, 1102, 1056, 766. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₀H₃₄O₈Na: 545.2151. Found: 545.2158. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 90:10, 1.5 mL/min, $\lambda = 254$ nm, t_R(major) = 38.60 min, t_R(minor) = 56.35 min.


(2R, 3S)-2,3-bis(hydroxymethyl)-2-methyl-3-phenylbutane-1,4-diyl bis(4-methoxybenzoate) (2k)

Colorless oil, 87%, 4:1 d.r., >99% ee. Analytical data for 2k: (m, 4H), 7.29-7.23 (m, 1H), 7.00-6.90 (m, 2H), 6.87-6.80 (m, 2H), 5.32 (d, J = 11.8 Hz, 1H), 5.16 (d, J = 11.8 Hz, 1H),

4.53 (d, J = 12.2 Hz, 1H), 4.29 (d, J = 11.6 Hz, 1H), 4.14 (d, J = 11.6 Hz, 1H), 4.02 (d, J = 12.2 Hz, 1H), 3.87 (s, 3H), 3.85-3.78 (m, 4H), 3.63 (d, J = 12.2 Hz, 1H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 167.11, 166.42, 163.66, 163.63, 138.70, 131.75, 131.71, 128.14, 127.95, 127.04, 122.07, 121.88, 113.86, 113.70, 67.99, 65.05, 63.30, 62.73, 55.50, 55.44, 51.62, 44.67, 17.12. IR (neat, cm⁻¹): v = 2919, 1704, 1604, 1511, 1253, 1165, 1099, 1023, 845, 767. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₉H₃₂O₈Na: 531.1995. Found: 531.2102. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 0.3 mL/min, $\lambda = 254$ nm, t_R(major) = 42.39 min, t_R(minor) = 44.72 min.

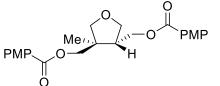
(2R, 3R)-2,3-bis(hydroxymethyl)-2-phenylbutane-1,4-diyl bis(4-methoxybenzoate) (2p)


Colorless oil, 91%, 8:1 d.r., >99% *ee*. Analytical data for **2p**: $[\alpha]_D^{20} = -1.0^\circ$ (c = 0.58, CH₃OH). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.91 (m, 2H), 7.88-7.82 (m, 2H), 7.50-7.44 (m, 2H), 7.41-7.34 (m, 2H), 7.29-7.22 (m, 1H), 6.92-6.83 (m, 4H), 4.92 (d, J = 11.7 Hz, 1H), 4.82 (d, J = 11.7 Hz, 1H),

4.42 (qd, J = 11.5, 5.8 Hz, 2H), 4.22 (d, J = 12.0 Hz, 1H), 4.01 (d, J = 12.1 Hz, 1H), 3.92 (dd, J = 11.9, 5.8 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.77 (dd, J = 12.0, 4.0 Hz, 1H), 2.68-2.61 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.71, 166.57, 163.62, 140.95, 131.74, 131.72, 128.83, 127.07, 126.88, 122.00, 121.94, 113.75, 113.72, 65.49, 64.92, 62.90, 60.09, 55.47, 55.46, 49.08, 47.33. IR (neat, cm⁻¹): v = 2919, 1705, 1604, 1511, 1468, 1256, 1165, 1098, 1019, 845, 798. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₈H₃₀O₈Na: 517.1838. Found: 517.1839. The enantiomeric ratio was determined by Daicel Chiralpak IB, Hexanes/IPA = 80:20, 0.2 mL/min, $\lambda = 254$ nm, t_R(major) = 73.80 min, t_R(minor) = 79.59 min.

General Procedure for the synthesis of 3, 8, 9⁶

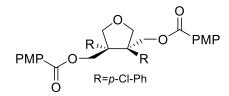
To a dry 25 mL round-bottom flask were added 1.12 g TsCl (5.8 mmol, 2.2 equiv), 32 mg DMAP (0.27 mmol, 0.10 equiv), 0.74 mL Et₃N (5.4 mmol, 2.0 equiv), and 6 mL DCM. The resulting mixture was cooled to 0 °C, and a solution of **2** in 6 mL DCM was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The solution was then washed with sat. aq. NaHCO₃ (1×12 mL) and H₂O (1×12 mL). The combined aqueous layers were extracted with DCM (12 mL) and the combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate / petroleum ether) to afford product **3**, **8**, **9** in 90%-95% yield.


((3R, 4R)-3,4-dimethyltetrahydrofuran-3,4-diyl)bis(methylene) bis(4-methoxybenzoate) (3)

White solid, Analytical data for **3**: $[\alpha]_D{}^{20} = -7.1^\circ$ (c = 0.79, CHCl₃). mp: 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 8.4, 5.9 Hz, 4H), 7.06-6.85 (m, 4H), 4.46-4.27 (m, 4H), 4.09 (t, J = 9.0 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.81 (dd, J = 8.6, 6.0 Hz, 2H), 1.28 (s, 6H). ¹³C NMR (101 MHz,

CDCl₃) δ 166.25, 163.55, 131.60, 122.29, 113.79, 77.12, 68.01, 55.47, 46.57, 17.24. IR (neat, cm⁻¹): v = 2357, 1726, 1604, 1455, 1276, 1164, 1052, 750, 714. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₄H₂₈O₇Na: 451.1733. Found: 451.1735.

((3R, 4R)-3-methyltetrahydrofuran-3,4-diyl)bis(methylene) bis(4-methoxybenzoate) (8)

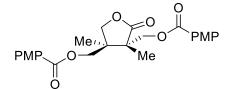


Colorless oil, Analytical data for **8**: $[\alpha]_D{}^{20} = -8.4^\circ$ (c = 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.09-7.91 (m, 4H), 7.04-6.88 (m, 4H), 4.56 (dd, *J* = 11.3, 6.7 Hz, 1H), 4.48-4.30 (m, 3H), 4.29-4.20 (m, 1H), 4.01 (d, *J* = 8.7 Hz, 1H), 3.89 (s, 6H), 3.66 (d, *J* = 8.8 Hz, 1H), 2.62 (dq, *J* = 15.7, 7.8 Hz, 1H),

1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.19, 163.52, 131.63, 122.27, 113.74, 77.23, 71.04, 66.70, 62.82, 55.46, 47.66, 44.60, 21.80. IR (neat, cm⁻¹): v = 2917, 1698, 1605, 1511, 1464, 1258,

1167, 1094, 1024, 847, 799, 769. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₃H₂₆O₇Na: 437.1576 Found: 437.1574. The enantiomeric ratio was determined by Daicel Chiralpak AD-H, Hexanes/IPA = 90:10, 0.6 mL/min, $\lambda = 254$ nm, t_R(major) = 58.34 min, t_R(minor) = 52.72 min.

((3R, 4R)-3,4-bis(4-chlorophenyl)tetrahydrofuran-3,4-diyl)bis(methylene) bis(4-methoxybenzoate) (9)

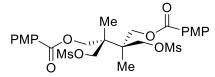

White solid, Analytical data for 9: $[\alpha]_D^{20} = -44.5^\circ$ (c = 0.40, $\begin{array}{c} \begin{array}{c} \label{eq:result of the second s$ 9.5 Hz, 2H), 3.87 (d, J = 11.6 Hz, 2H), 3.80 (s, 6H). ¹³C

NMR (101 MHz, CDCl₃) & 165.69, 163.54, 136.90, 133.60, 131.42, 129.02, 128.79, 121.68, 113.69, 77.16, 67.11, 55.43, 54.66. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₃₄H₃₀Cl₂O₇Na: 643.1266. Found: 643.1236.

Procedure for the synthesis of 4⁷

To a 10 mL round-bottom flask were added 2g (0.1 mmol, 1.0 equiv) and 1 mL acetone. The resulting mixture was cooled to 0 °C, and 2 mL Jones reagent was added dropwise. The mixture was allowed to stir at 0 °C for 30 min. The reaction mixture was then diluted with EtOAc (3 \times 10 mL) and washed with brine, the combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate / petroleum ether) to afford product 4 in 81% yield.

((35, 45)-3,4-dimethyl-2-oxotetrahydrofuran-3,4-diyl)bis(methylene) bis(4-methoxybenzoate) (4)


Hz, 1H), 4.32 (dd, J = 11.4, 5.0 Hz, 2H), 4.24 (dd, J = 12.9, 10.5 Hz, 2H), 3.86 (d, J = 1.9 Hz, 6H), 1.32 (s, 3H), 1.21 (s,

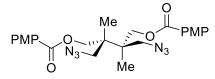
3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.70, 165.94, 165.51, 163.82, 131.82, 131.75, 121.57, 121.48, 113.94, 74.68, 68.82, 66.80, 55.50, 55.48, 47.01, 43.81, 15.79, 14.21. IR (neat, cm^{-1}): v = 2919, 1709, 1604, 1511, 1468, 1255, 1165, 1085, 1019, 845, 766. HRMS (ESI) m/z [M+Na]+: Calcd for C₂₄H₂₆O₈Na: 465.1525. Found: 465.1525.

Procedure for the synthesis of 10⁸

To a dry 10 mL round-bottom flask were added MsCl (0.3 mmol), DMAP (0.01 mmol), Et₃N (0.3 mmol), and 1 mL dry DCM. The resulting mixture was cooled to 0 °C, and a solution of 2g (0.1 mmol) in 1 mL dry DCM was added dropwise. The mixture was allowed to warm to room temperature and was allowed to stir overnight. The solution was then washed with sat. aq. NaHCO₃ and H_2O . The combined aqueous layers were extracted with DCM and the combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate / petroleum ether) to afford product 10 in 99% yield.

(25, 35)-2,3-dimethyl-2,3-bis(((methylsulfonyl)oxy)methyl)butane-1,4-diyl bis(4-methoxybenzoate) (10)

Colorless oil, Analytical data for 10: $[\alpha]_D^{20} = +2.4^\circ$ (c = 0.50,
 PMP
 CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 8.07-7.92 (m, 4H),


 s
 6.99-6.87 (m, 4H), 4.53-4.32 (m, 8H), 3.86 (s, 6H), 3.00 (s,
6H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.80,

163.76, 131.70, 121.71, 113.95, 70.19, 65.35, 55.50, 42.21, 37.40, 16.51. HRMS (ESI) m/z [M+Na]+: Calcd for C₂₆H₃₄O₁₂S₂Na: 625.1389. Found: 625.1421.

Procedure for the synthesis of 5⁸

To a 10 mL round-bottom flask were added 10 (0.1 mmol), NaN₃ (0.3 mmol), Bu₄NI (0.02 mmol), and 1 mL of DMF. The mixture was allowed to stir at 120 °C for 2d. The reaction mixture was diluted with ethyl acetate and H₂O. Then the organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate / petroleum ether) to give the product 5 in 62% yield.

(2R, 3R)-2,3-bis(azidomethyl)-2,3-dimethylbutane-1,4-diyl bis(4-methoxybenzoate) (5)

Colorless oil. Analytical data for **5**: $[\alpha]_D^{20} = 18.7^\circ$ (c = 0.50, $\begin{array}{c} Me \\ O \\ N_{3} \end{array} \begin{array}{c} Me \\ N_{3} \end{array} \begin{array}{c} PMP \\ N_{3} \end{array} \begin{array}{c} CHCl_{3} \end{pmatrix} \cdot {}^{1}H \ NMR \ (400 \ MHz, \ CDCl_{3}) \ \delta \ 8.03-7.91 \ (m, \ 4H), \\ 6.98-6.87 \ (m, \ 4H), \ 4.42-4.32 \ (m, \ 4H), \ 3.87 \ (s, \ 6H), \ 3.65 \ (dd, \ H) \end{array}$ J = 48.3, 12.4 Hz, 4H), 1.13 (s, 6H). ¹³C NMR (101 MHz,

CDCl₃) δ 165.90, 163.62, 131.59, 122.10, 113.86, 66.52, 55.49, 42.55, 29.71, 17.65. IR (neat, cm⁻¹): v = 2923, 2099, 1710, 1605, 1511, 1462, 1253, 1165, 1095, 1027, 846,768. HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₄H₂₈N₆O₆Na: 519.1968. Found: 519.1968.

Determination of the Absolute Stereochemistry

The absolute configurations of products were determined by transforming 2c to 9 and the absolute configuration of 9 was determined by X-Ray Crystallographic Analysis. The stereochemistry of the other products was assigned by analogy.

X-Ray Crystallographic Analysis of 9 (CCDC number: 1052043)

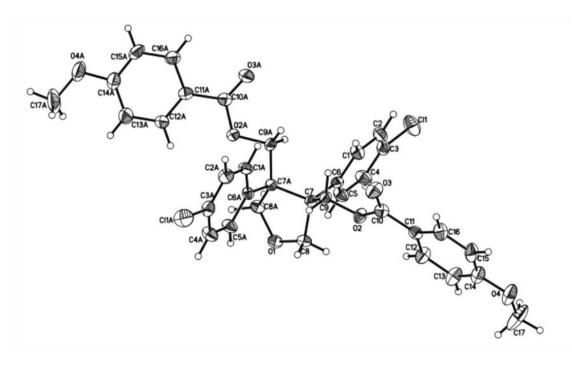


Figure 1. X-ray structure of 9

Determination of the relative configuration of acetals⁹

The relative configurations of acetals were determined by X-Ray Crystallographic Analysis of **1a**, **1h**, **1j**. The relative configurations of other acetals were assigned by analogy.

X-Ray Crystallographic Analysis of 1a (CCDC number: 1052042)

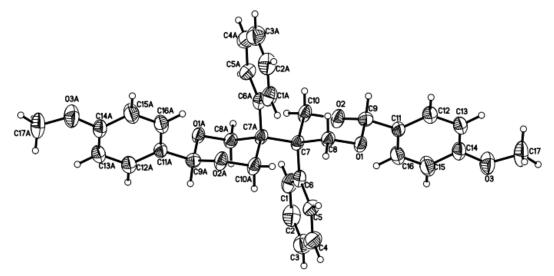


Figure 2. X-ray structure of **1a** X-Ray Crystallographic Analysis of **1h** (CCDC number: 1052039)

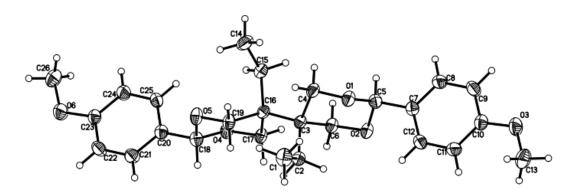


Figure 3. X-ray structure of 1h

X-Ray Crystallographic Analysis of 1j (CCDC number: 1052038)

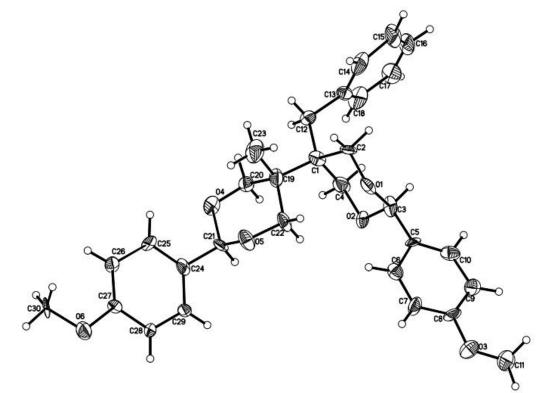
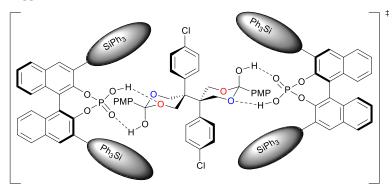



Figure 4. X-ray structure of 1j

Suggested transition state

On the basis of the experimental results and our previous DFT calculations about desymmetrization of 1,3-diols via oxidative cleavage of benzylidene acetals. We proposed a reaction pathway, diacetal **1c** was oxidized to form an "ortho ester" intermediate, which underwent an intramolecular [1,3]-proton shift process which can be facilitated in the presence of triphenylsilyl substituted BINOL phosphoric acid **A8**, stereoselectivity was controlled through two hydrogen bonds formed by each phosphoric acid and the "ortho ester" intermediate. Thus given the product **2c** as (R, R) configuration.

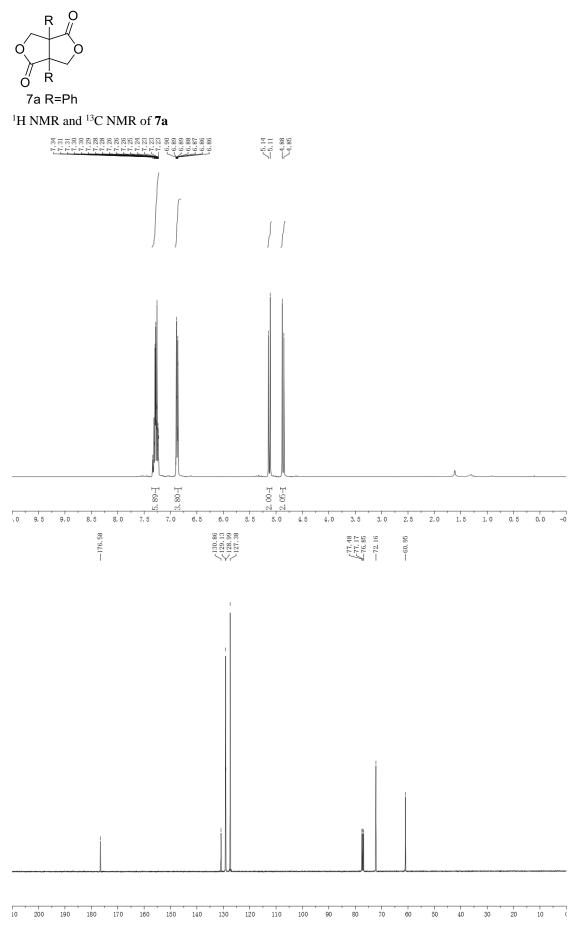
References

(1) M. Periasamy, G. Ramani, G. P. Muthukumaragopal, Synthesis, 2009, 10, 1739.

(2) a) B. R. D'Souza, J. Louie, *Organic Letters*, **2009**, *11*, 4168; b) F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, T. Norin, P. Szmulik, *Tetrahedron*, **1985**, *41*, 1347; c) T. Ibuka, T. Aoyagi, K. Kitada, F. Yoneda, Y. Yamamoto, *Journal of Organometallic Chemistry*, **1985**, *287*, 18; d) C.-Y. Hsing, L.-T. Li, *Journal of the American Chemical Society*, **1949**, *71*, 774.

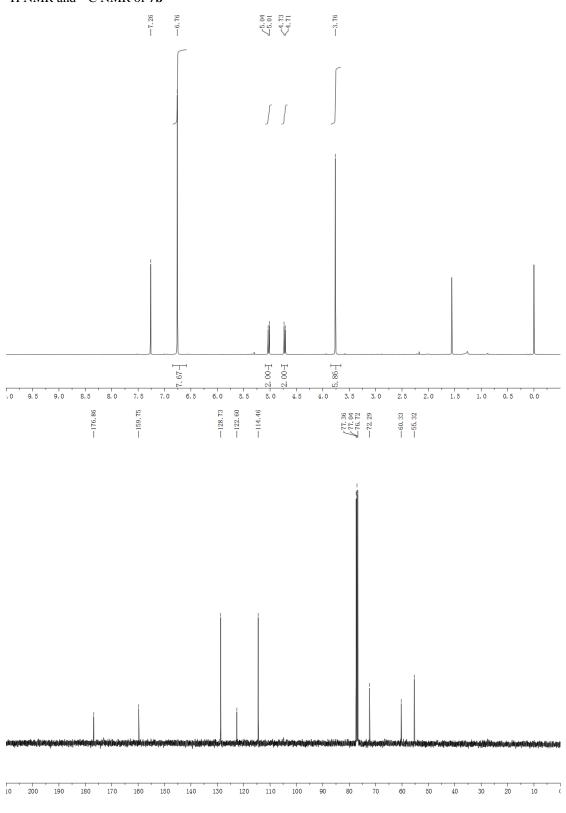
(3) N. G. Luk'yanenko, O. T. Mel'nik, Khimiya Geterotsiklicheskikh Soedinenii, 1987, 9, 1173.

(4) a) R. W. Murray, M. Singh, *Org. Synth.* **1998**, *9*, 288; **1997**, *74*, 91; b) H. Mikula, D. Svatunek, D. Lumpi, F. Glöcklhofer, C. Hametner, J. Fröhlich, *Org. Process Res. Dev.* **2013**, *17*, 313.

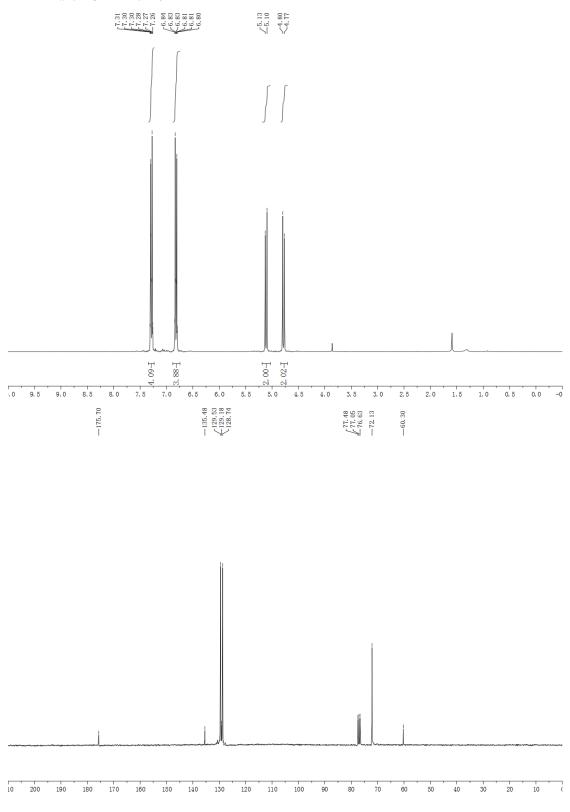

(5) S.-S. Meng, Y. Liang, K.-S. Cao, L. Zou, X.-B. Lin, H. Yang, K. N. Houk, W.-H. Zheng, J. Am. Chem. Soc. 2014, 136, 12249.

(6) a) K. Weinges, R. Spänig, *Chemische Berichte*, **1968**, *101*, 3010; b) M. R. Mason, Y. Su, R. A. Jacobson, J. G. Verkade, *Organometallics*, **1991**, *10*, 2335.

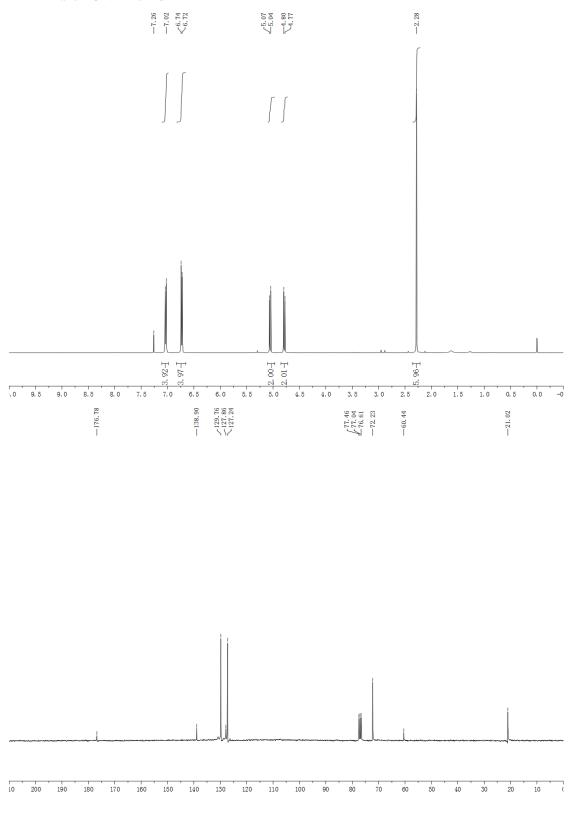
(7) a) S. Serra, C. Fuganti, *Helvetica Chimica Acta*, 2002, 85, 2489; b) S. P. Chavan, P. K. Zubaidha, V. D. Dhondge, *Tetrahedron*, 1993, 49, 6429.


(8) a) S. K. Talluri, A. Sudalai, *Tetrahedron*, **2007**, *63*, 9758; b) D. Wannaporn, T. Ishikawa, *Molecular Diversity*, **2005**, *9*, 321.

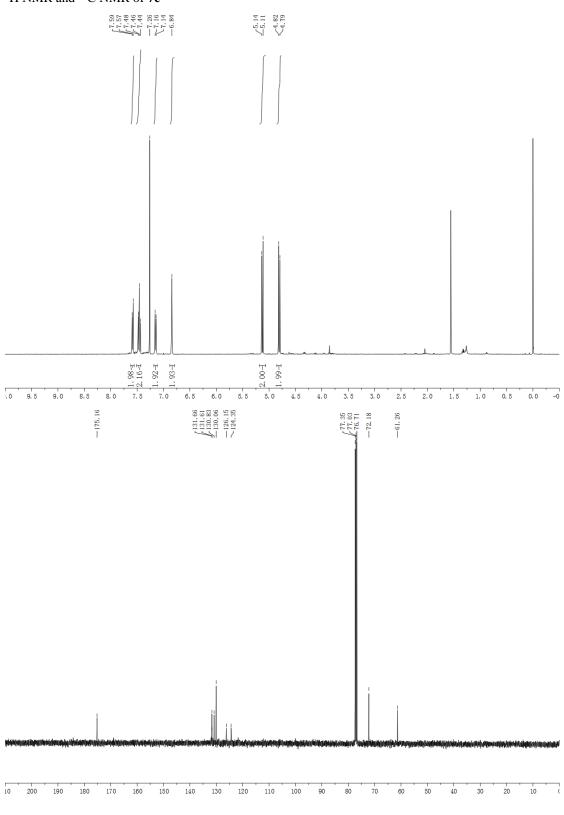
(9) J. Hudec, J. Huke, J. W. Liebeschuetz, J. Chem. Soc., Perkin Trans. 1998, 2, 1129.



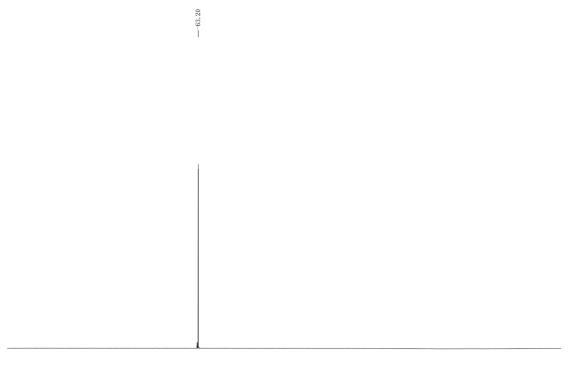
7b R=*p*-OMePh ¹H NMR and ¹³C NMR of **7b**

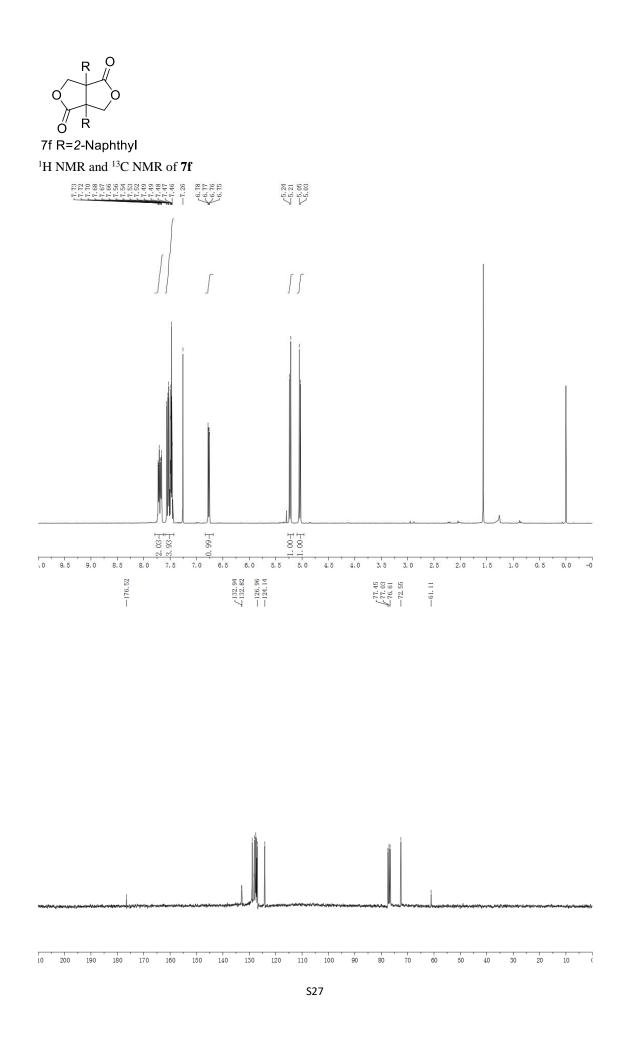


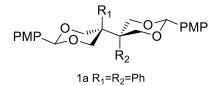
⁷c R=p-Cl-Ph ¹H NMR and ¹³C NMR of **7**c

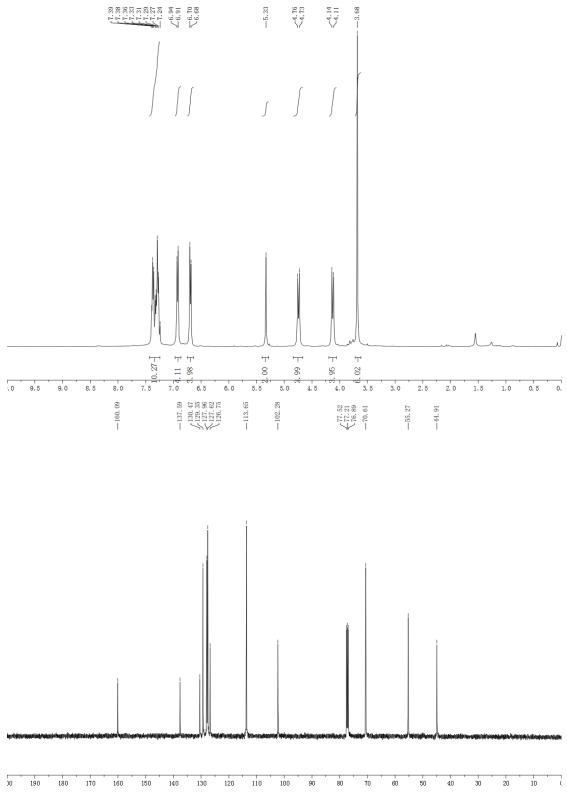


7d R=*p*-Me-Ph ¹H NMR and ¹³C NMR of **7d**

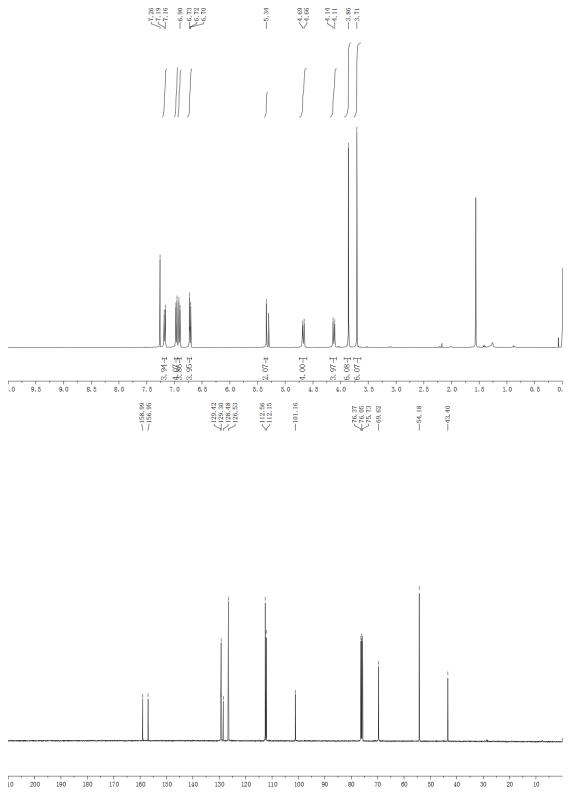


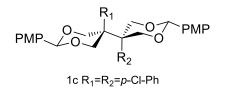

7e R=m-CF₃-Ph ¹H NMR and ¹³C NMR of **7e**

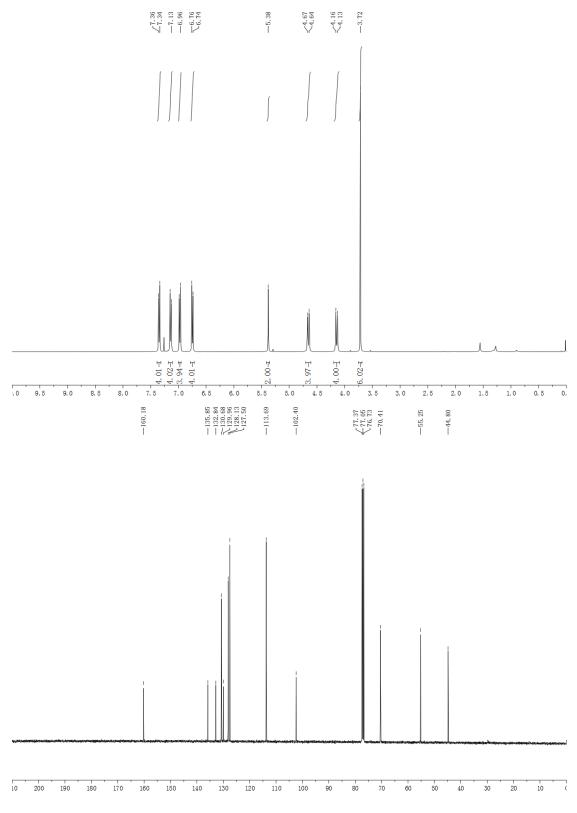


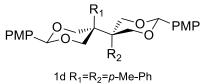


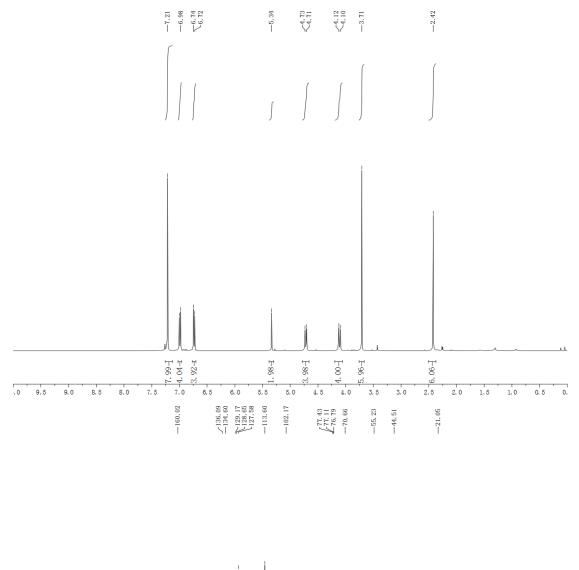

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

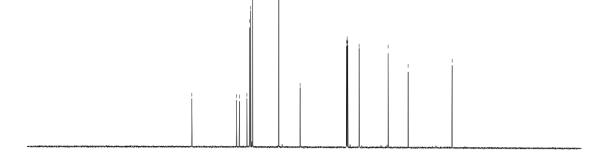


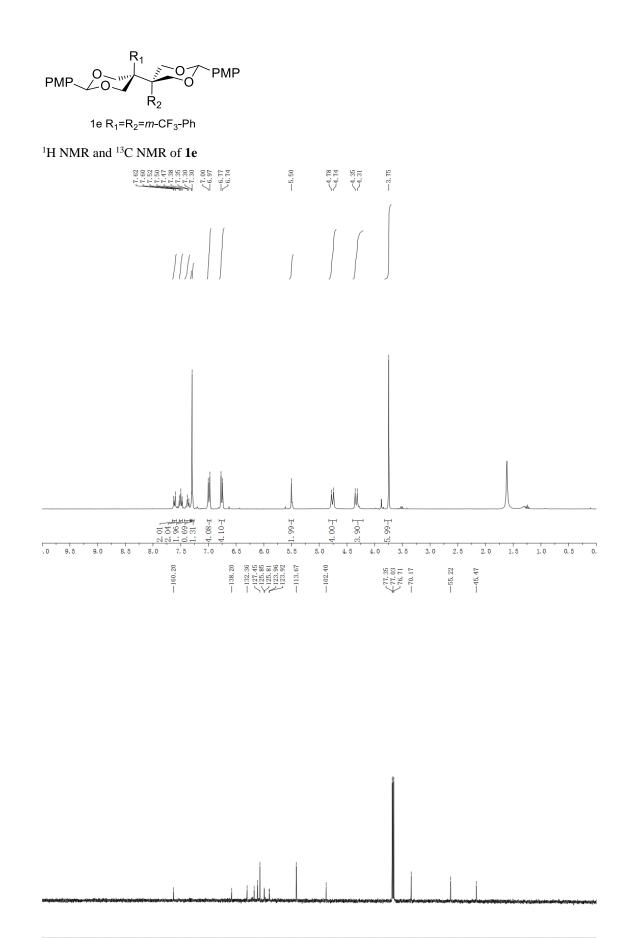

¹H NMR and ¹³C NMR of **1a**



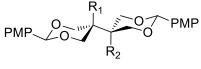

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of $\mathbf{1b}$

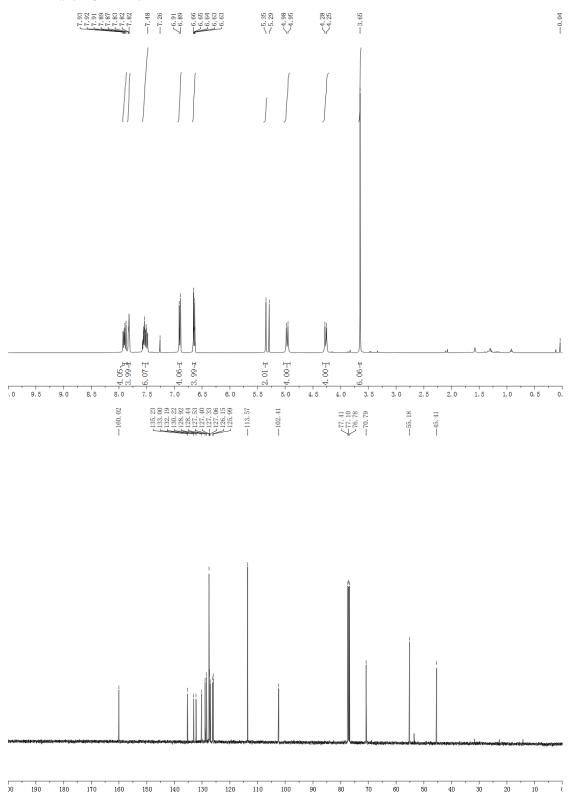


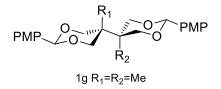

 ^1H NMR and ^{13}C NMR of 1c

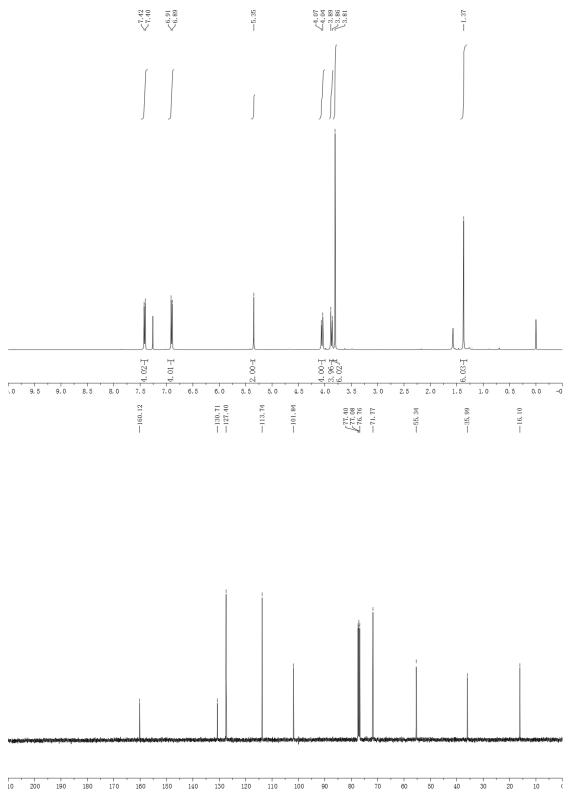


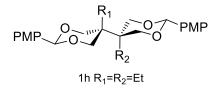
¹H NMR and ¹³C NMR of **1d**



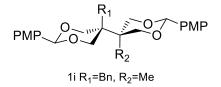

¹⁹F NMR of **1e**

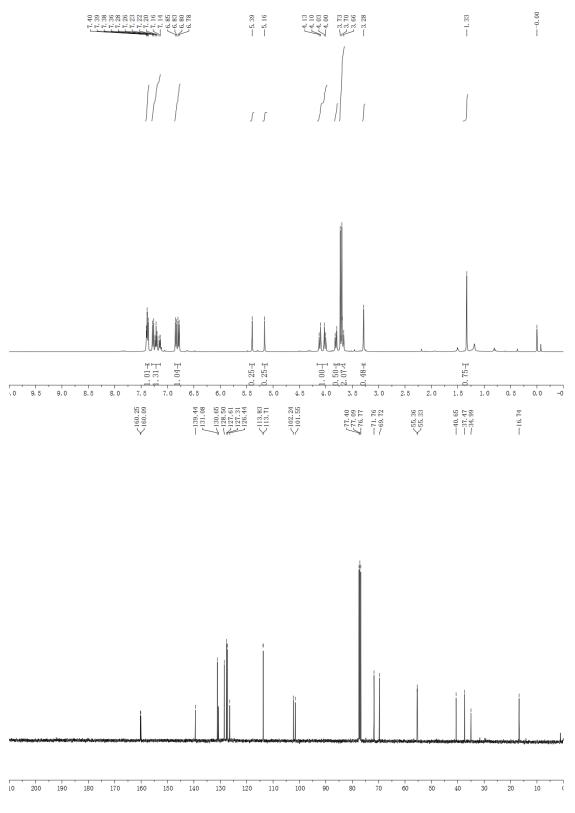

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

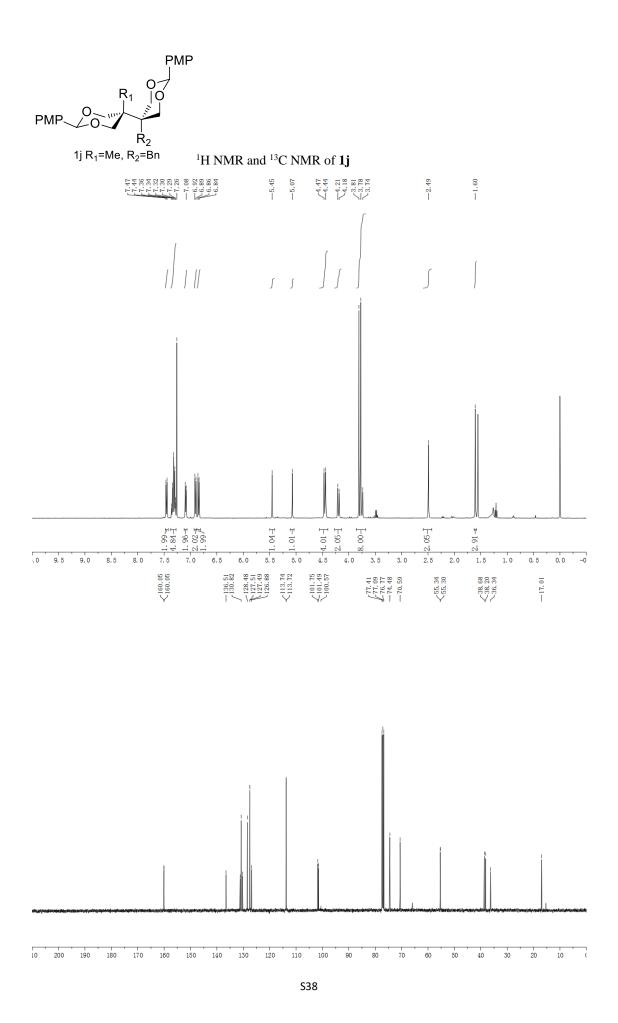

1f R₁=R₂=2-Naphthyl

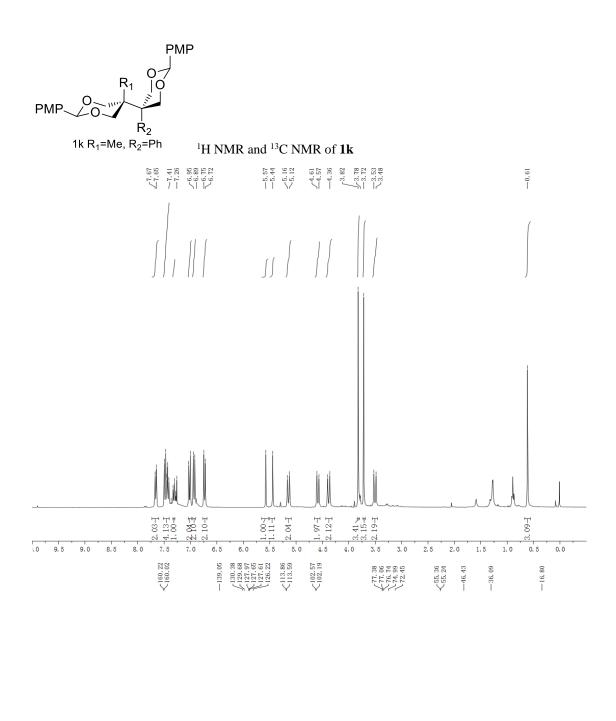

 ^1H NMR and ^{13}C NMR of 1f

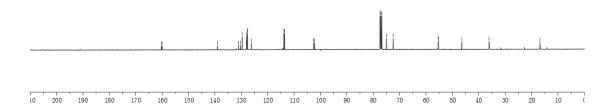


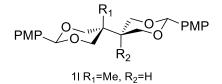

 1 H NMR and 13 C NMR of **1**g

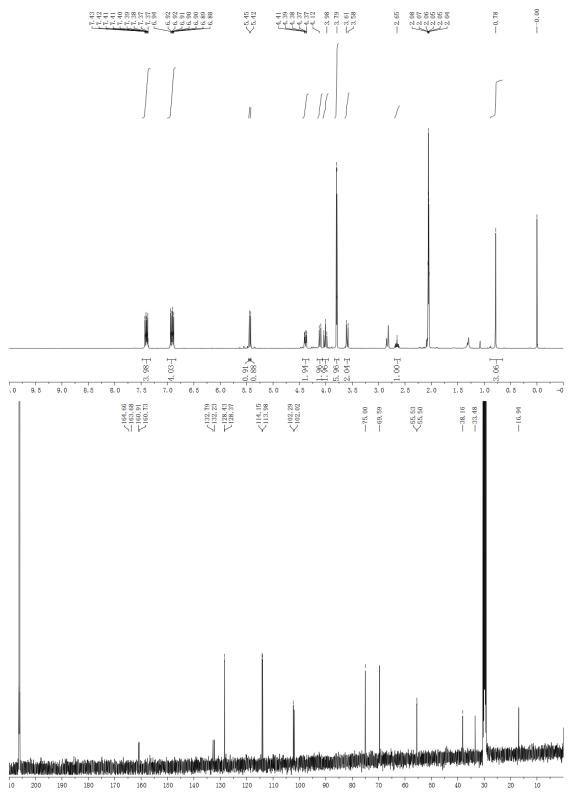


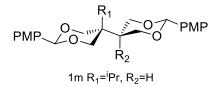

¹H NMR and ¹³C NMR of **1h**





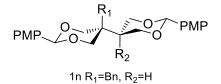

¹H NMR and ¹³C NMR of **1i**

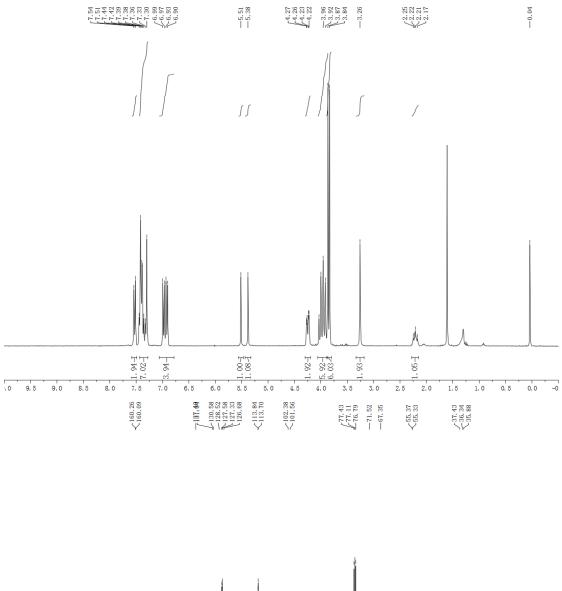


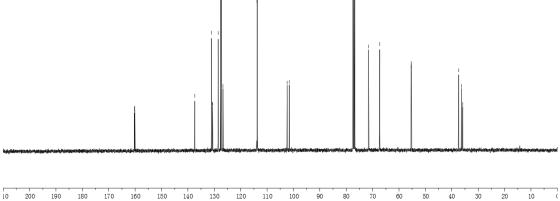


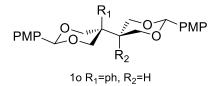


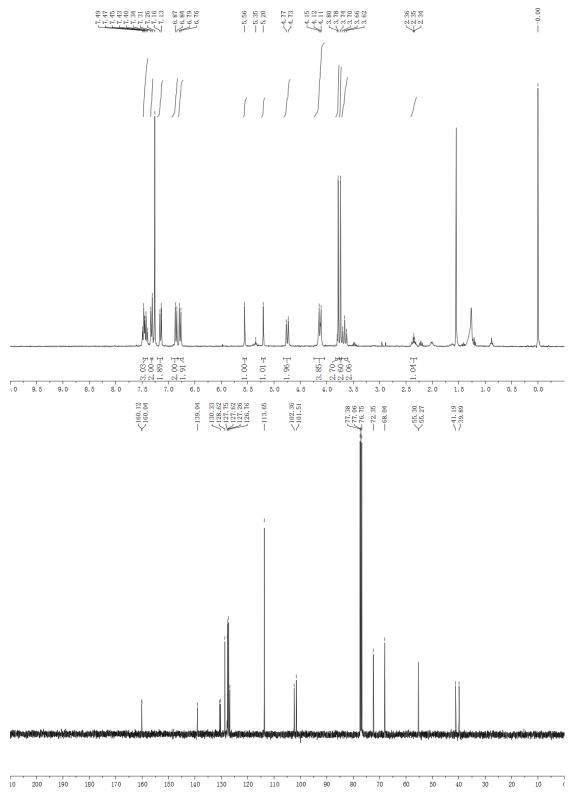
¹H NMR and ¹³C NMR of **1**l

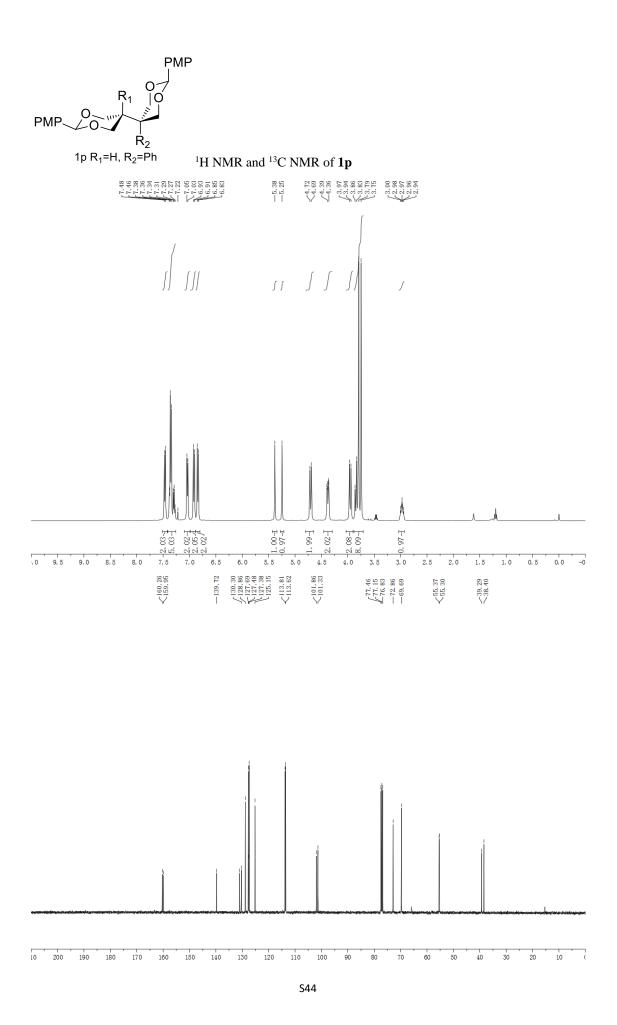


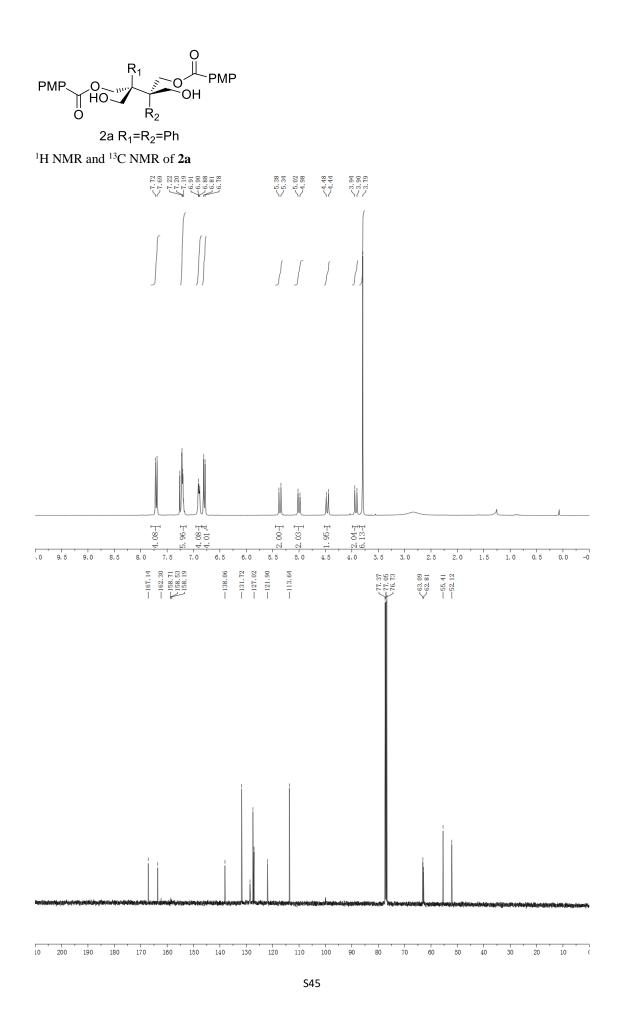

¹H NMR and ¹³C NMR of **1m**

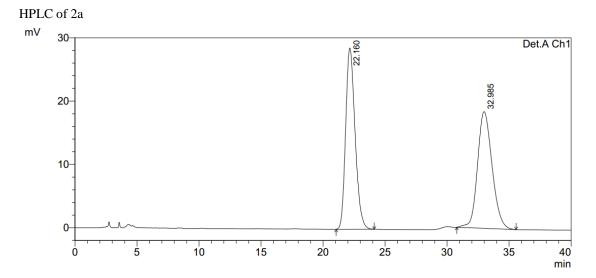



(

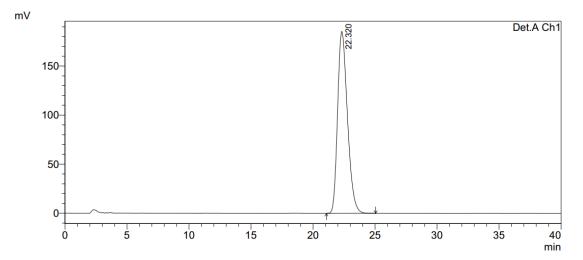

 ^1H NMR and ^{13}C NMR of 1n

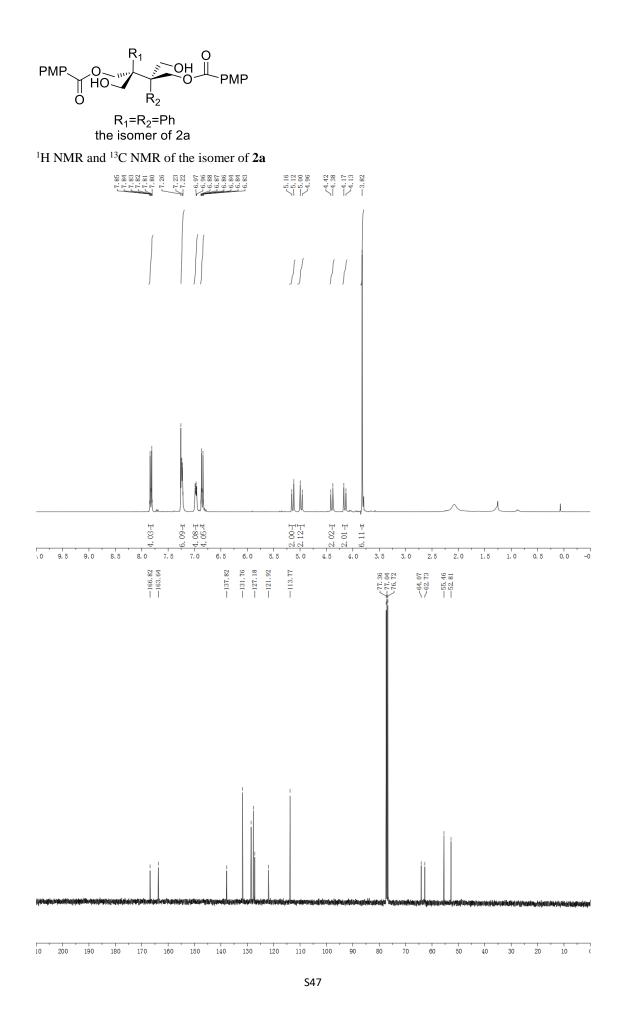


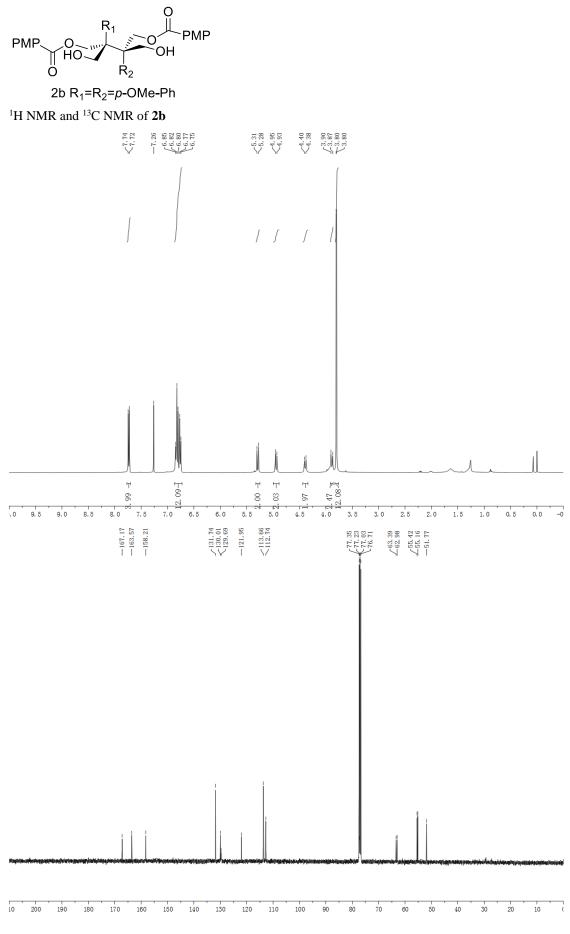


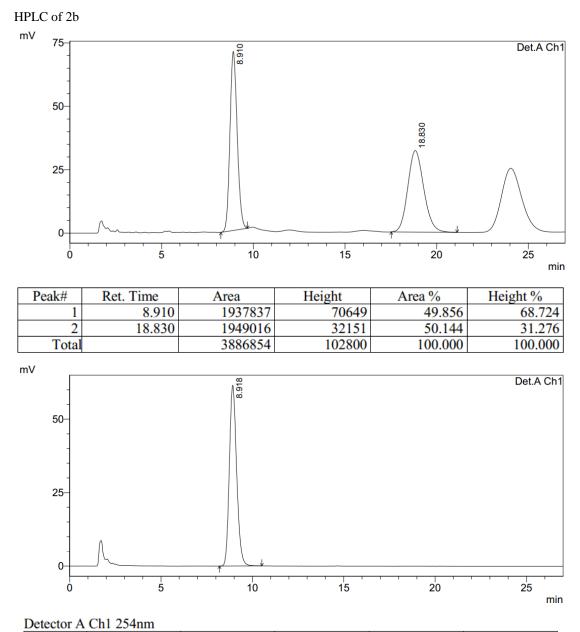


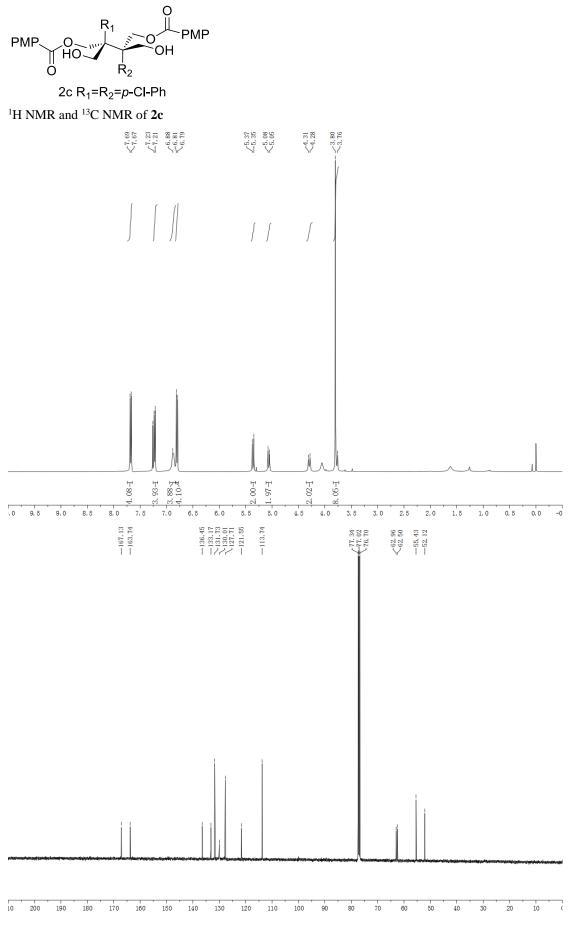
¹H NMR and ¹³C NMR of **10**

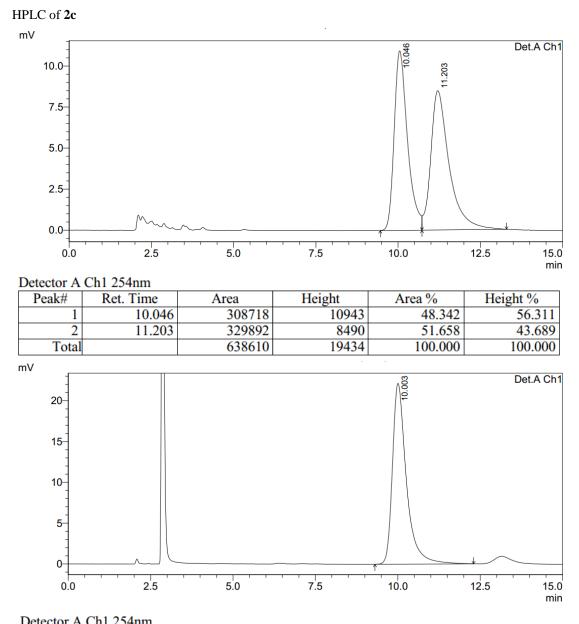


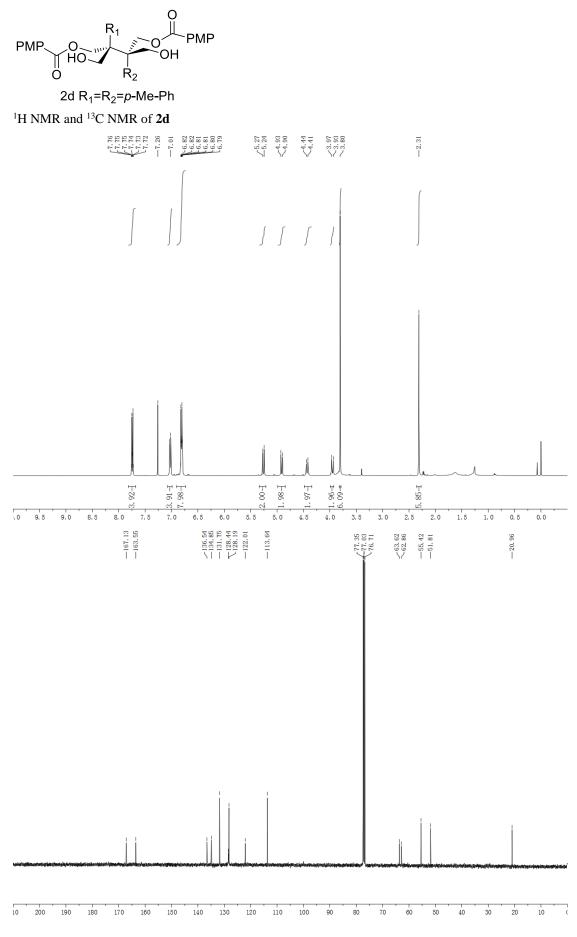


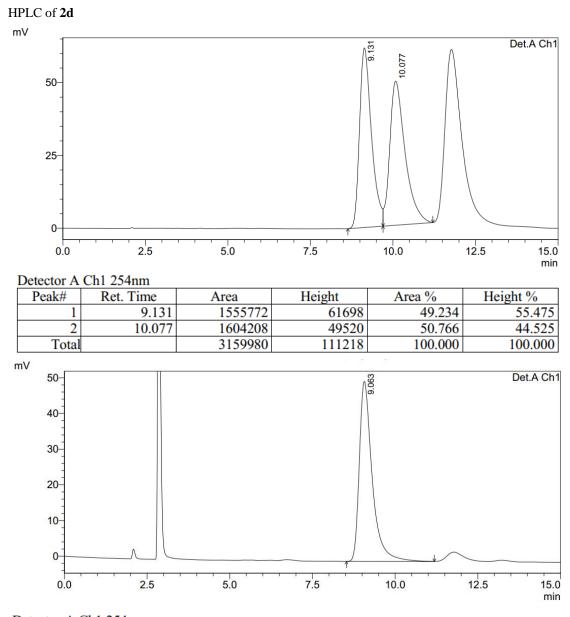

DI		C11 1	254
Detector	А	Chl	254nm


Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.160	1508939	28629	50.087	60.848
2	32.985	1503690	18421	49.913	39.152
Total		3012630	47050	100.000	100.000

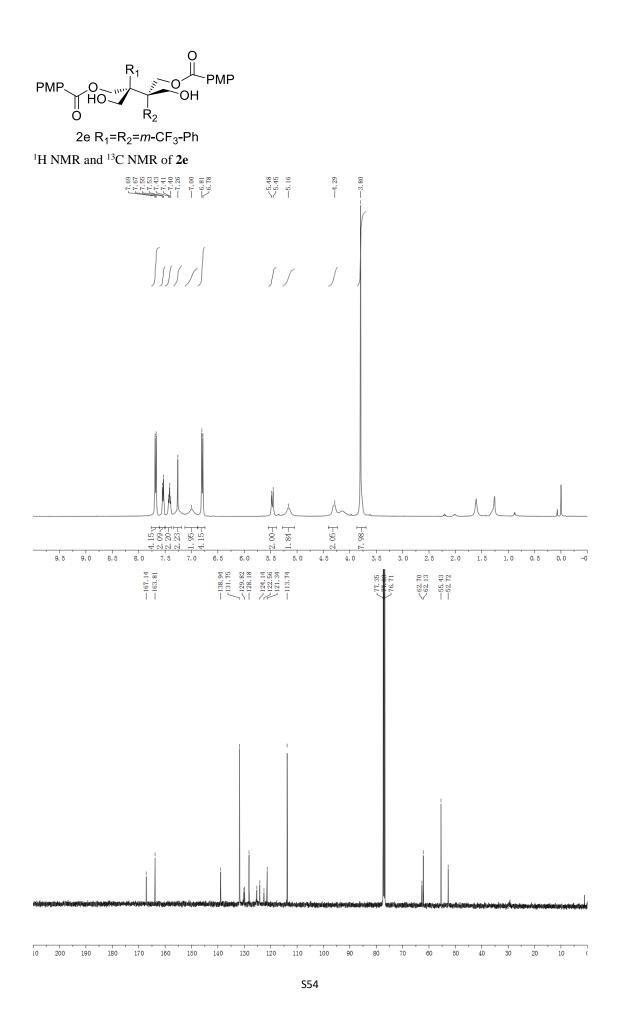

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	22.320	10242487	185419	100.000	100.000	
Total		10242487	185419	100.000	100.000	

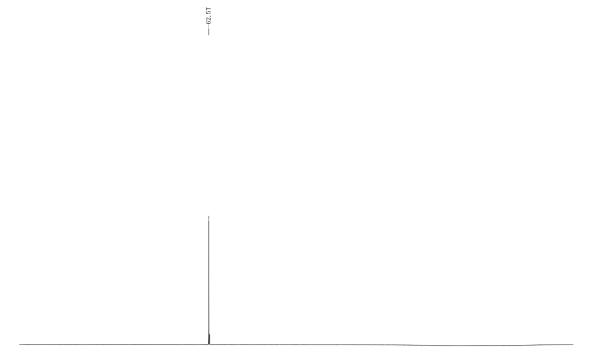



Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.918	1710769	61522	100.000	100.000
Total		1710769	61522	100.000	100.000

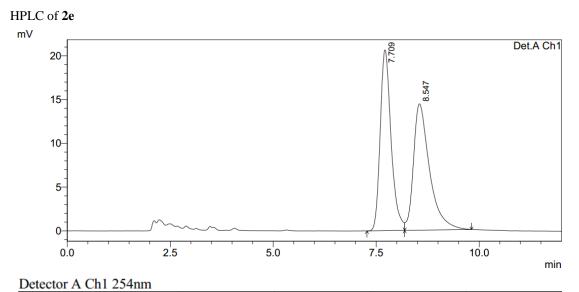


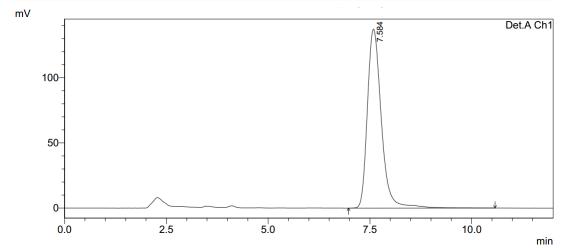
S50

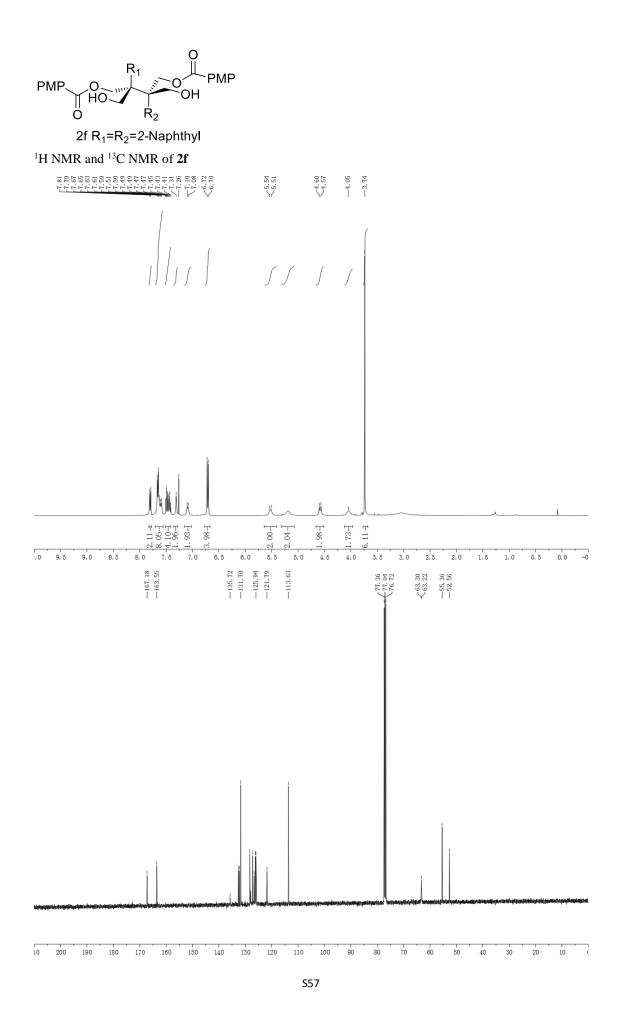

Detector A Chi 234hin						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	10.003	653293	22172	100.000	100.000
	Total		653293	22172	100.000	100.000

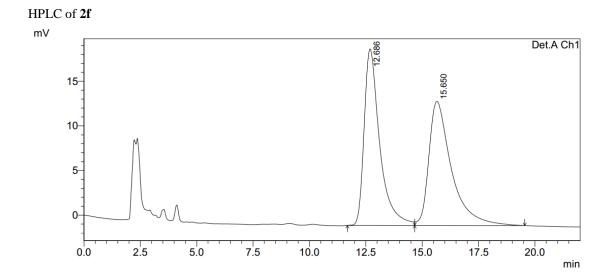


Detector A CH1 254hh	Detector A Ch1 254nm
----------------------	----------------------

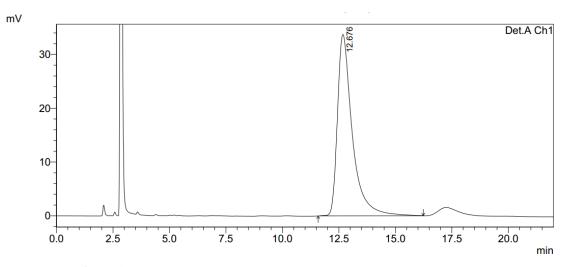

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.063	1367793	50444	100.000	100.000
Total		1367793	50444	100.000	100.000


¹⁹F NMR of **2e**

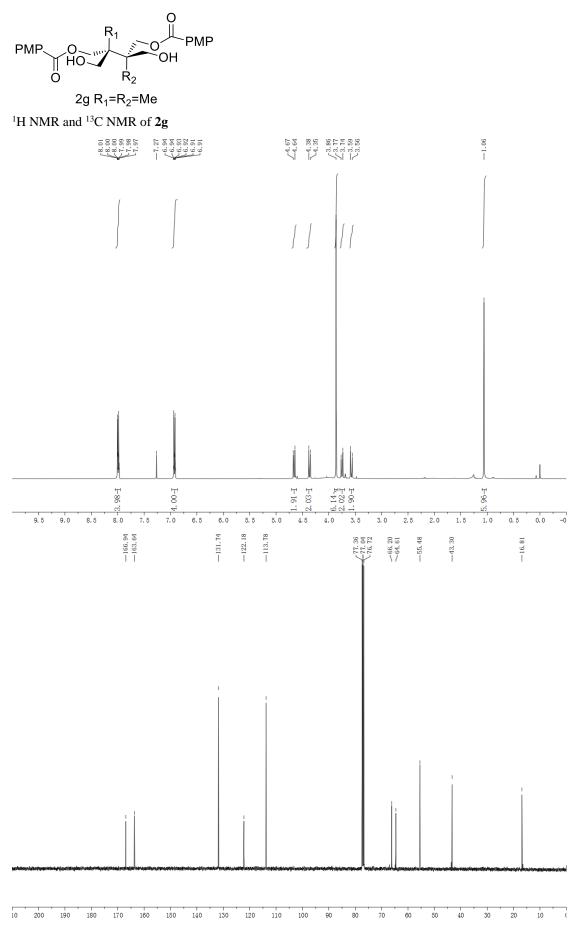

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

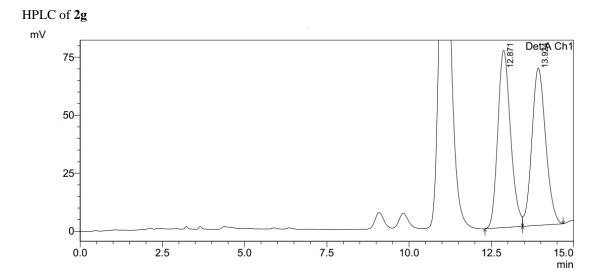


Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.709	379685	20662	49.216	58.867
2	8.547	391787	14438	50.784	41.133
Total		771472	35100	100.000	100.000

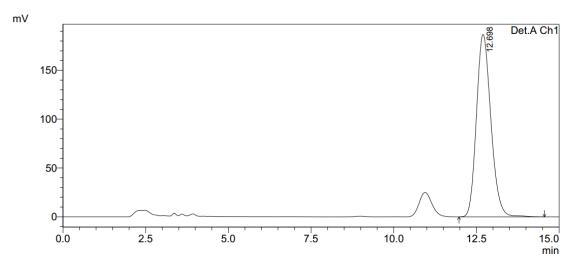


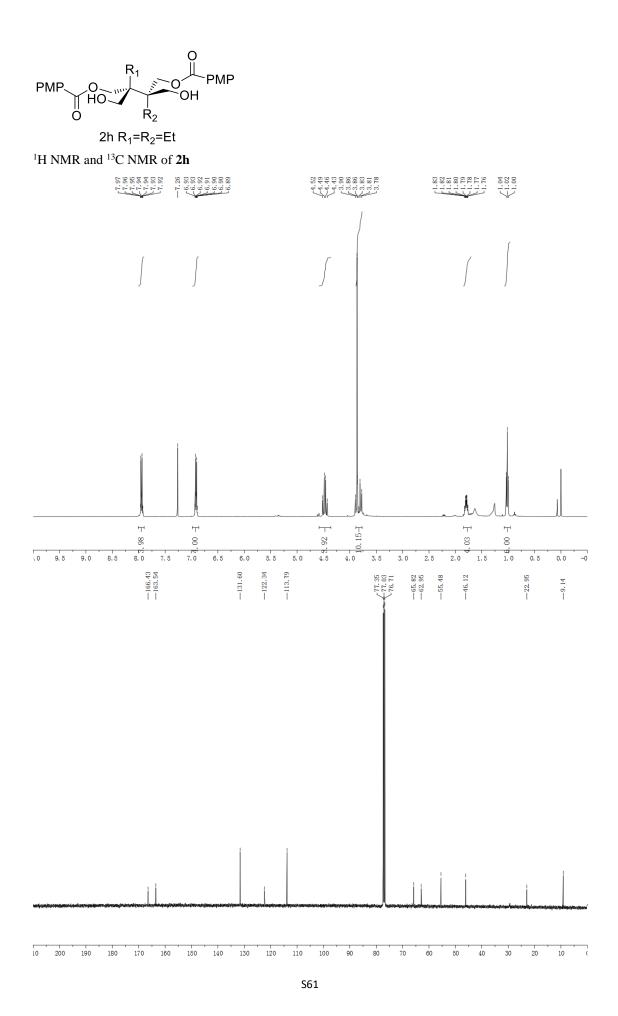
Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	7.584	3261476	137252	100.000	100.000	
Total		3261476	137252	100.000	100.000	

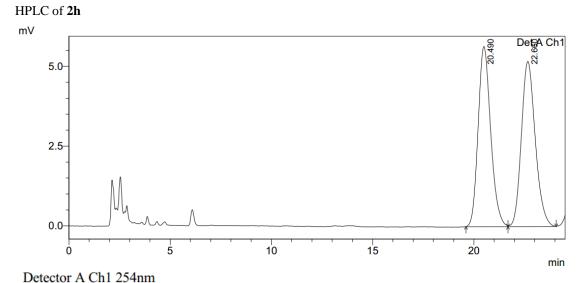




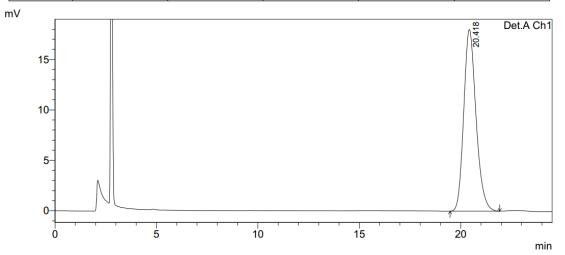
Ι	Detector A Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
Γ	1	12.686	950209	19792	49.495	58.727	
Γ	2	15.650	969611	13910	50.505	41.273	
	Total		1919820	33703	100.000	100.000	


Detector A Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	12.676	1542237	33727	100.000	100.000
	Total		1542237	33727	100.000	100.000

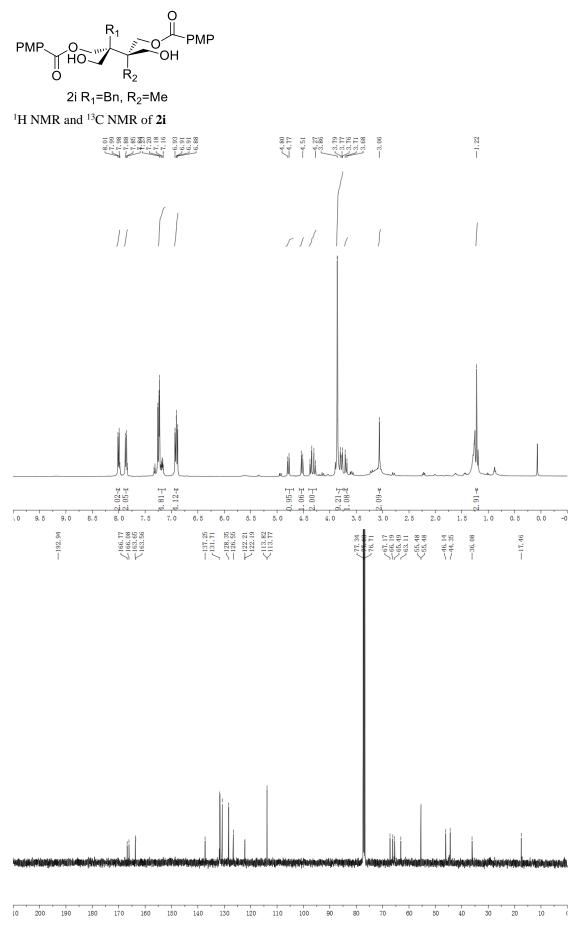


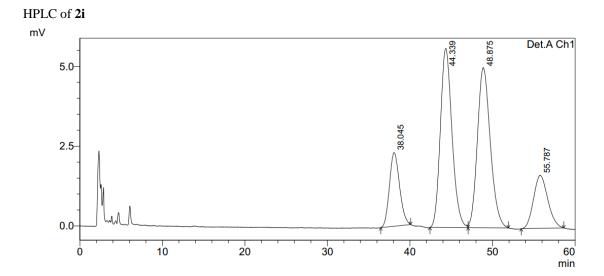

Detector A	A Ch1	254nm	

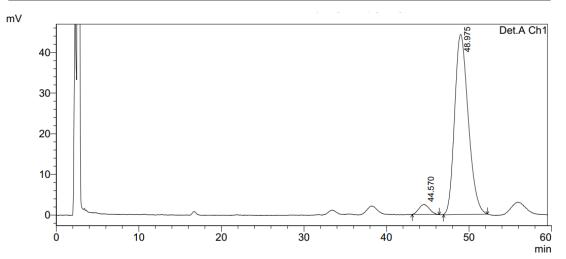
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.871	2056614	76423	50.931	52.994
2	13.924	1981446	67788	49.069	47.006
Total		4038060	144211	100.000	100.000



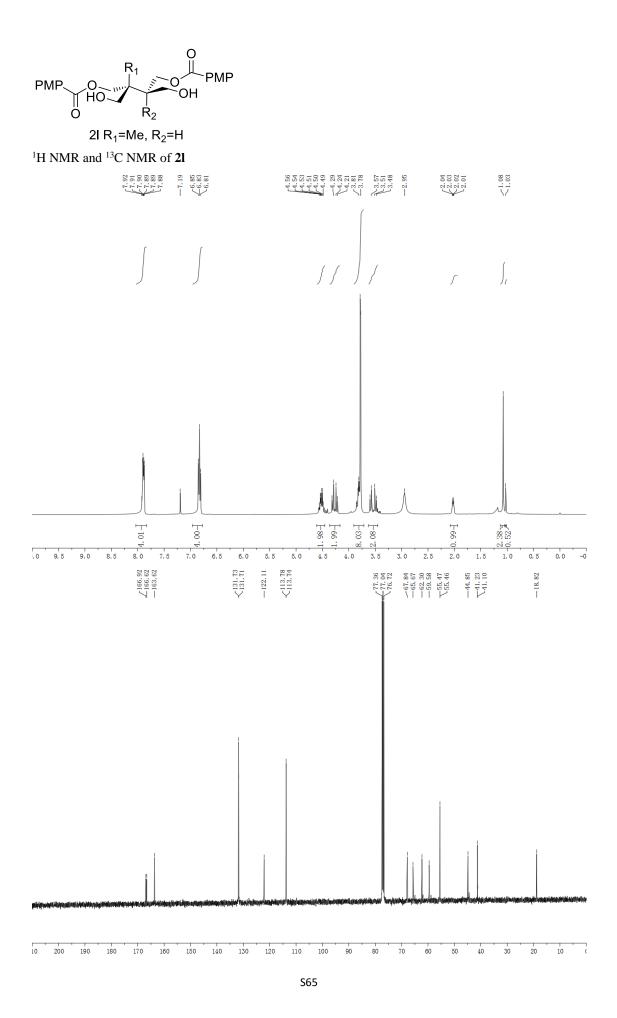
]	Detector A Ch1 254nm									
[Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	12.698	5682976	186841	100.000	100.000				
	Total		5682976	186841	100.000	100.000				

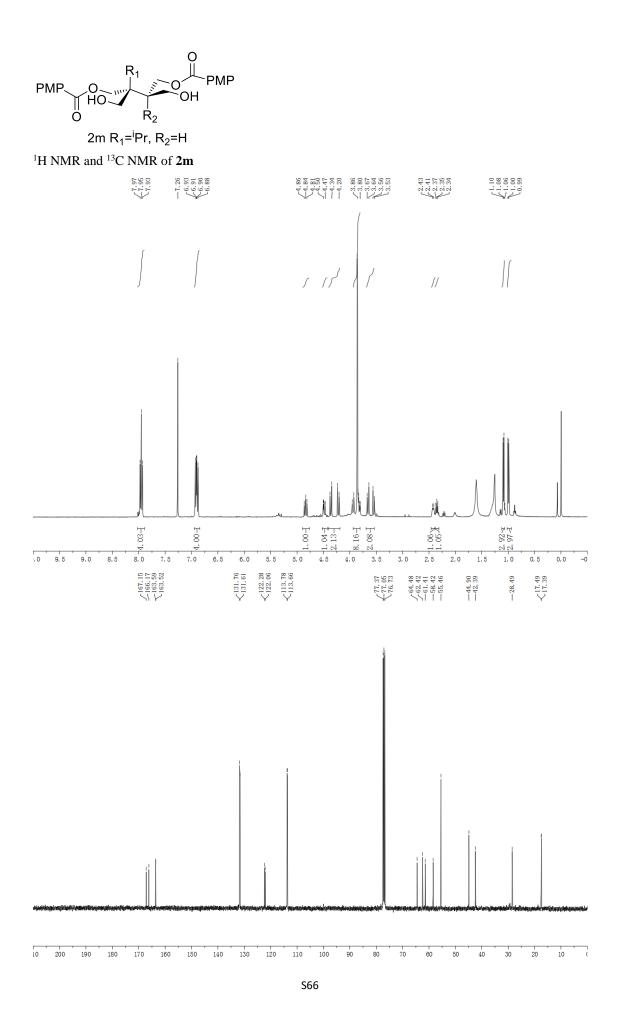


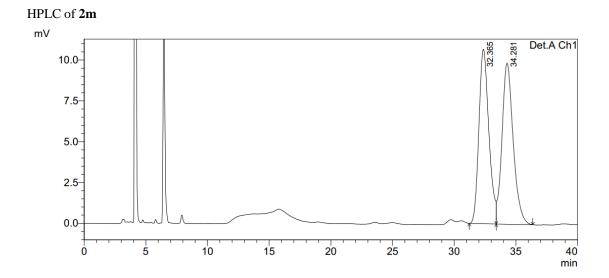

bettetor A Chi 25-hill					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.490	243499	5646	49.691	52.185
2	22.660	246524	5174	50.309	47.815
Total		490022	10820	100.000	100.000


Detector A	Ch1 254nm	
D 1 //		

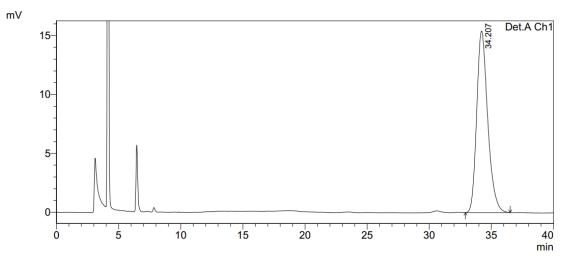
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.418	758817	18011	100.000	100.000
Total		758817	18011	100.000	100.000

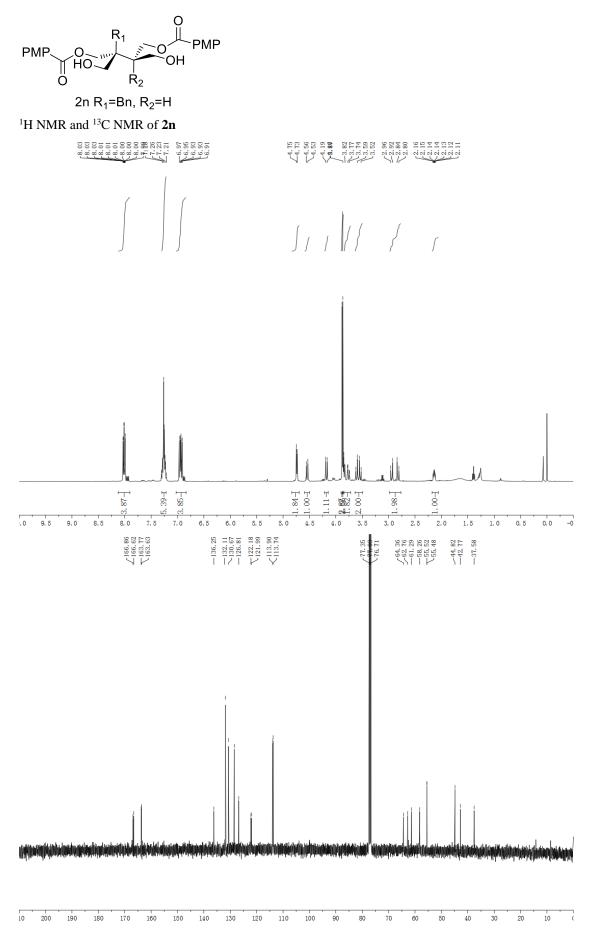


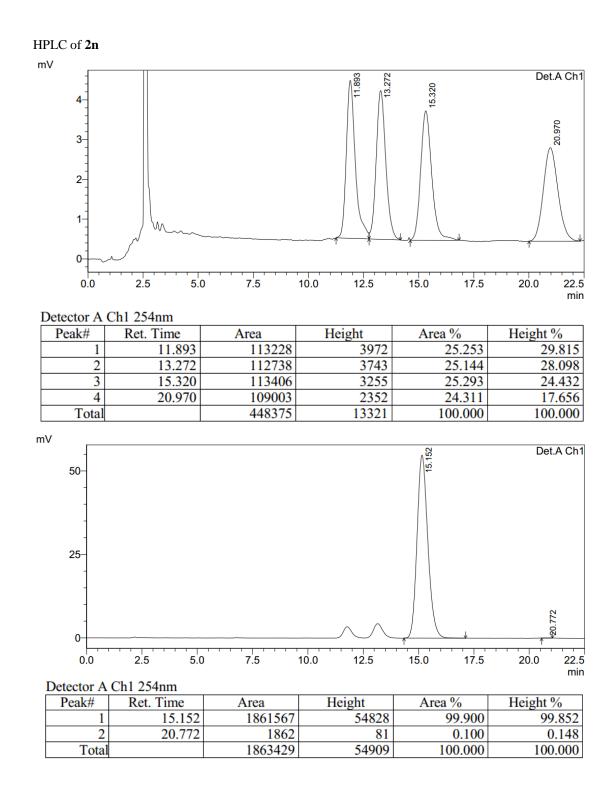

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	38.045	196757	2310	13.190	15.803				
2	44.339	549111	5617	36.810	38.425				
3	48.875	545979	5025	36.600	34.377				
4	55.787	199894	1666	13.400	11.396				
Total		1491740	14619	100.000	100.000				

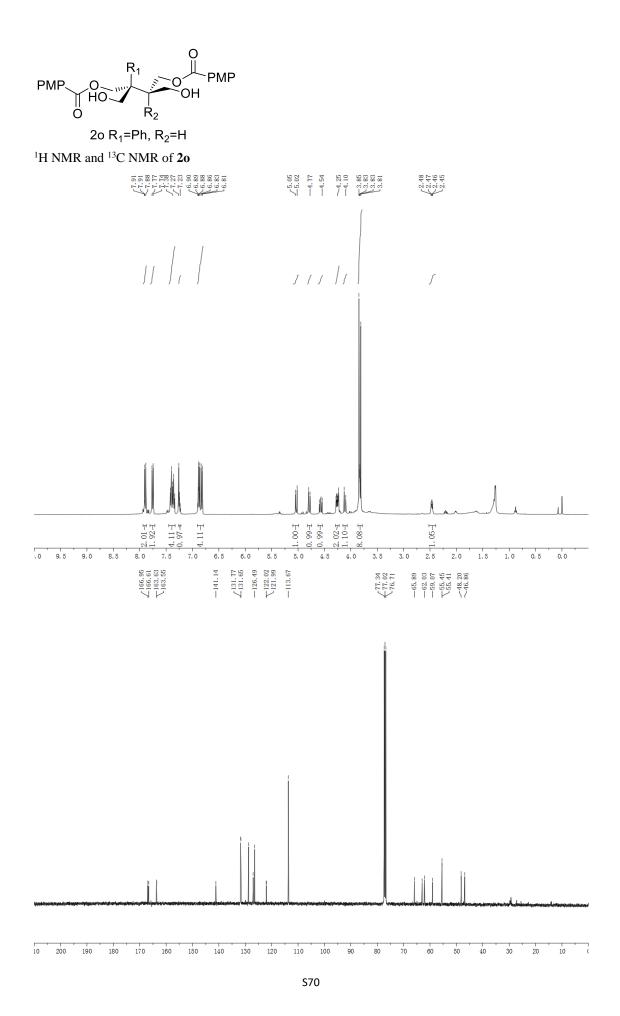


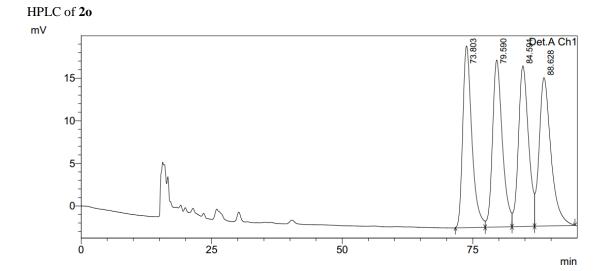
Detector	A	Ch1	254nm


Peak#	Ret. Time	Area	Height	Area %	Height %
1	44.570	218229	2499	4.113	5.338
2	48.975	5087705	44314	95.887	94.662
Total		5305934	46813	100.000	100.000

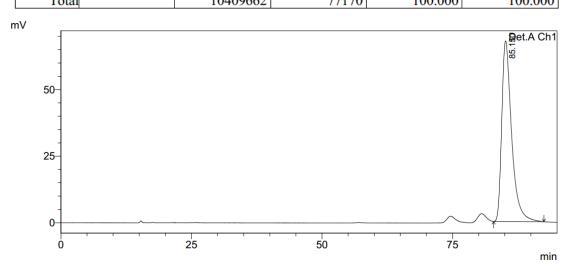


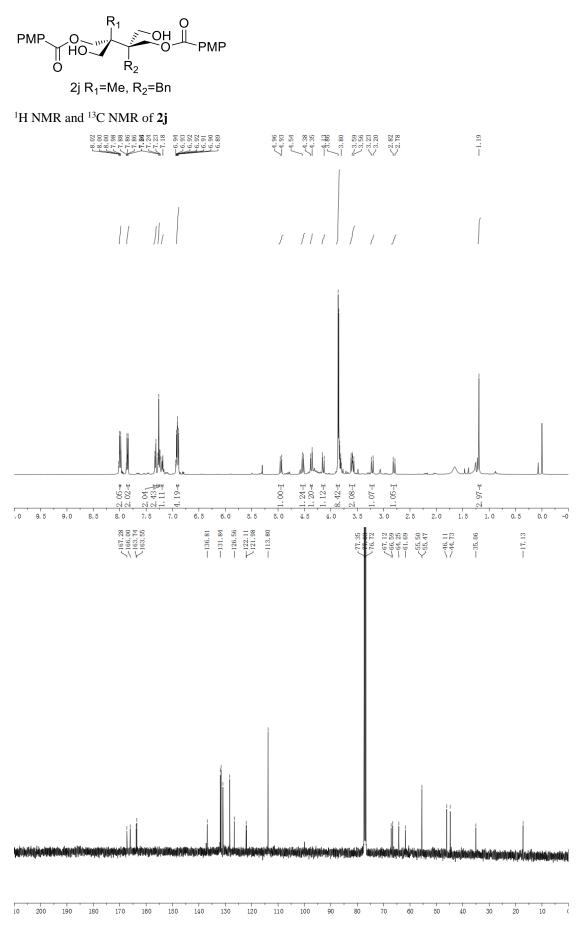


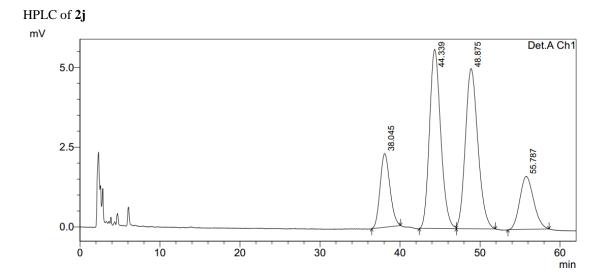

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	32.365	598535	10686	48.973	52.000				
2	34.281	623631	9864	51.027	48.000				
Total		1222167	20550	100.000	100.000				



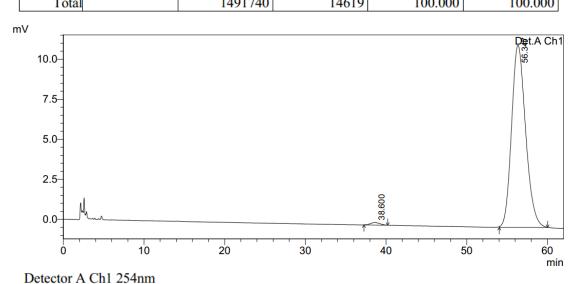
Detector A	Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	34.207	951128	15414	100.000	100.000					
Total		951128	15414	100.000	100.000					



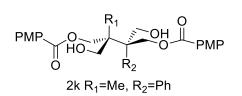


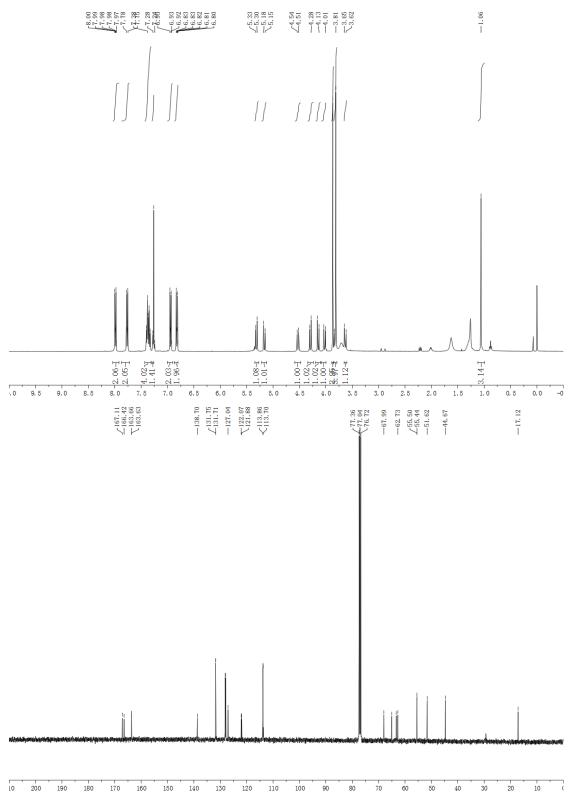


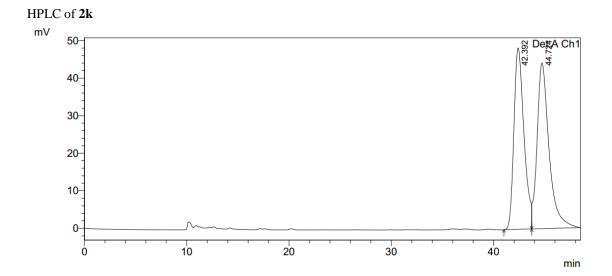
Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	73.803	2576184	21325	24.748	27.634				
2	79.590	2564243	19597	24.633	25.394				
3	84.591	2528115	18847	24.286	24.423				
4	88.628	2741120	17401	26.332	22.549				
Total		10409662	77170	100.000	100.000				



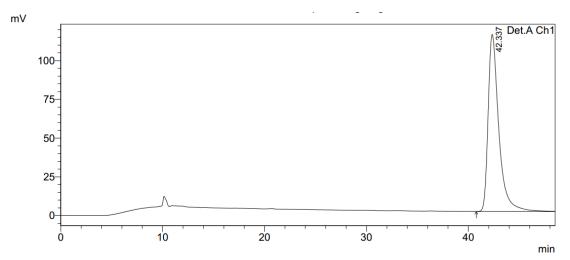
]	Detector A Ch1 254nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
ſ	1	85.150	8894760	67852	100.000	100.000				
	Total		8894760	67852	100.000	100.000				



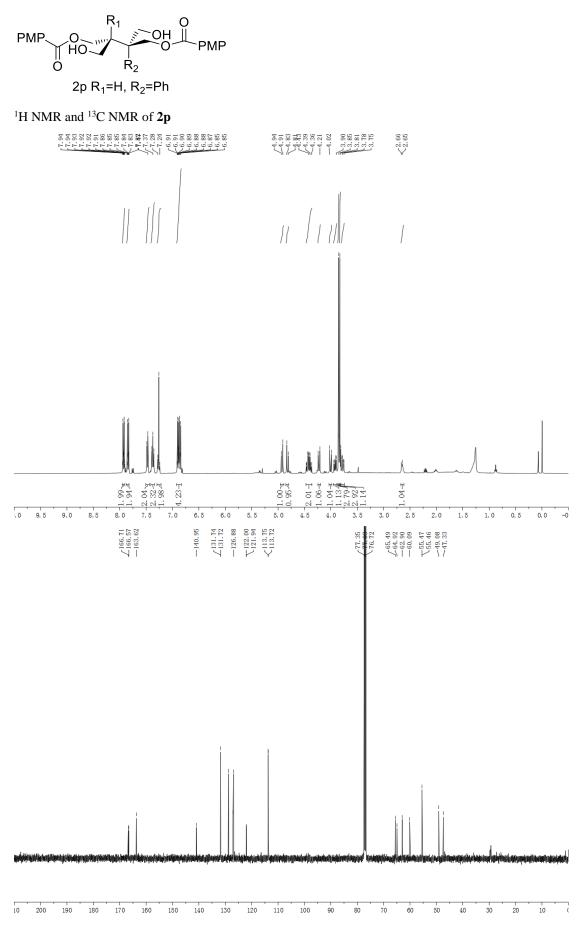

Peak#	Ret. Time	Area	Height	Area %	Height %
1	38.045	196757	2310	13.190	15.80
2	44.339	549111	5617	36.810	38.42
3	48.875	545979	5025	36.600	34.37
4	55.787	199894	1666	13.400	11.39
Total		1491740	14619	100.000	100.00

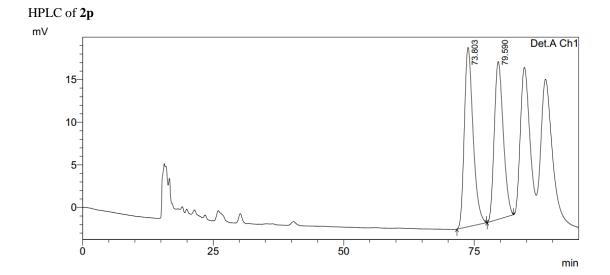


Peak#	Ret. Time	Area	Height	Area %	Height %	
1	38.600	12937	166	0.931	1.441	
2	56.347	1376357	11385	99.069	98.559	
Total		1389294	11552	100.000	100.000	



¹H NMR and ¹³C NMR of **2k**





Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	42.392	3291141	48311	47.824	52.270		
2	44.724	3590635	44114	52.176	47.730		
Total		6881776	92425	100.000	100.000		

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	42.337	8319933	114302	100.000	100.000	
Total		8319933	114302	100.000	100.000	

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height					
1	73.803	2449192	21041					
2	79.590	2211167	18514					

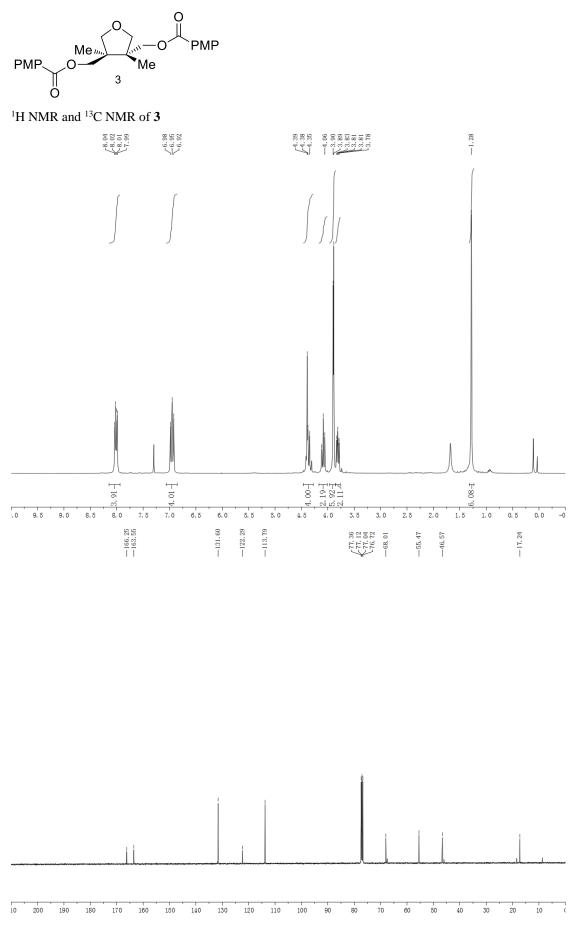
4660358

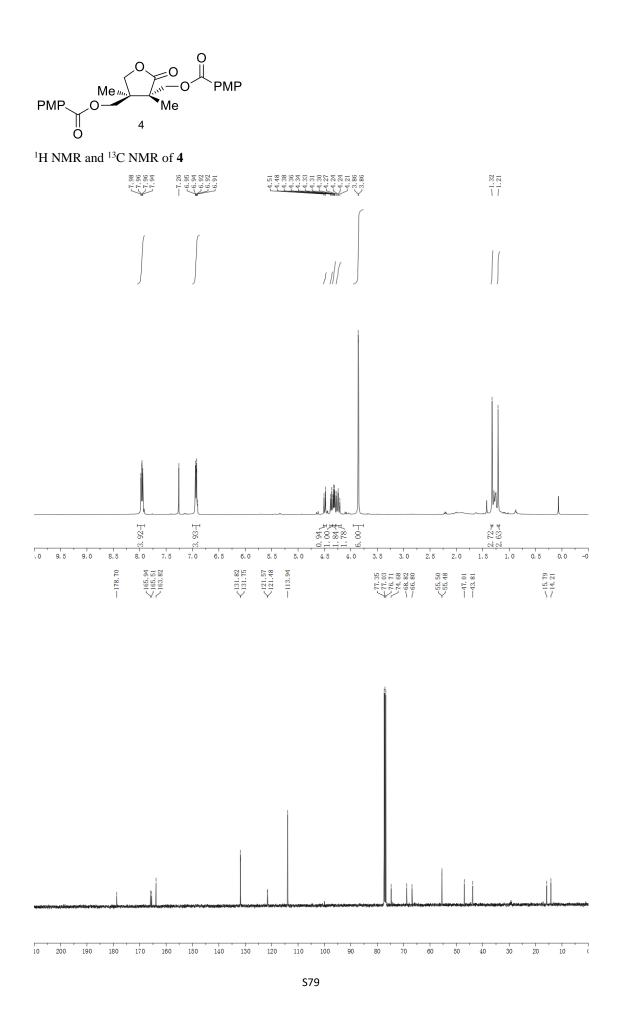
V			74.333	Det.A Ch1
50-			74.3	
-				
-				
-				
-				
25-				
1				
]				
0				_
0	25	50	75	
U	20	50	15	mi

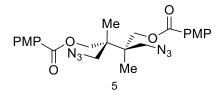
39555

Height % 53.194 46.806

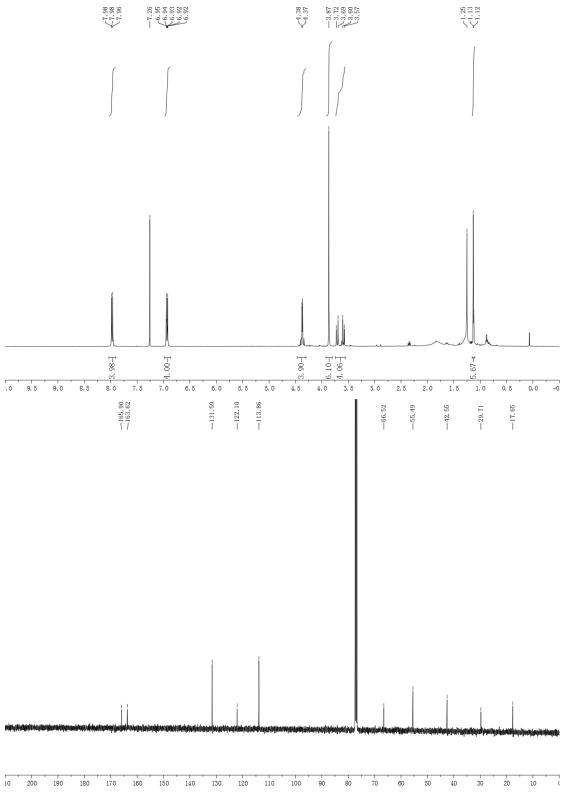
100.000

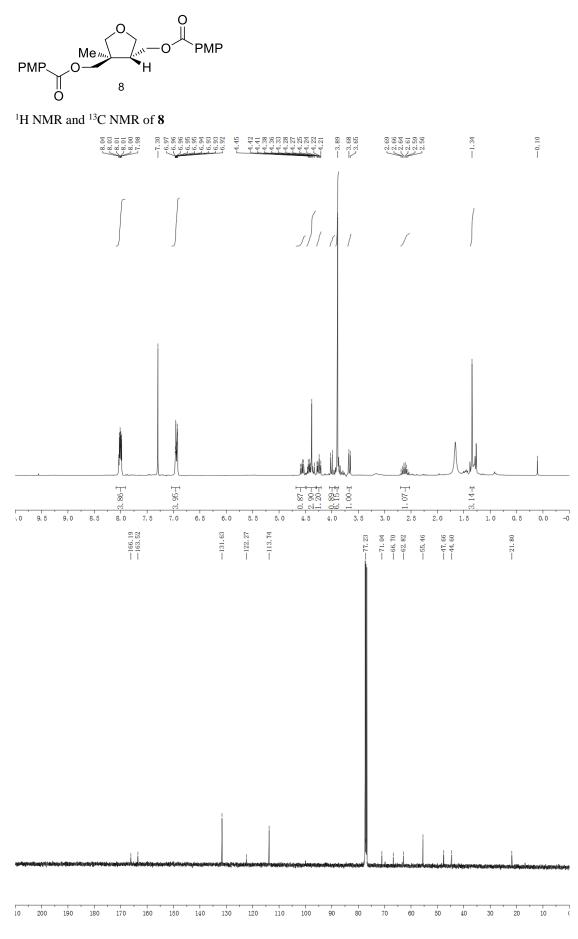

Area % 52.554 47.446

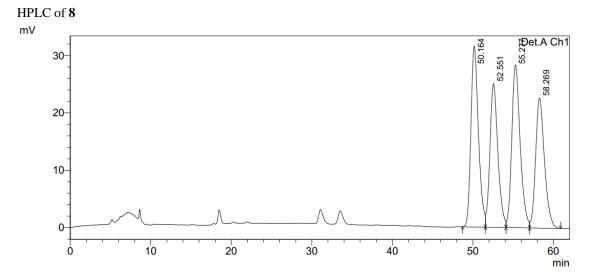

100.000


Detector A	A Ch1	254nm

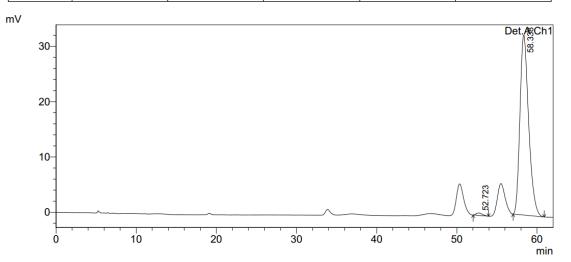
Total

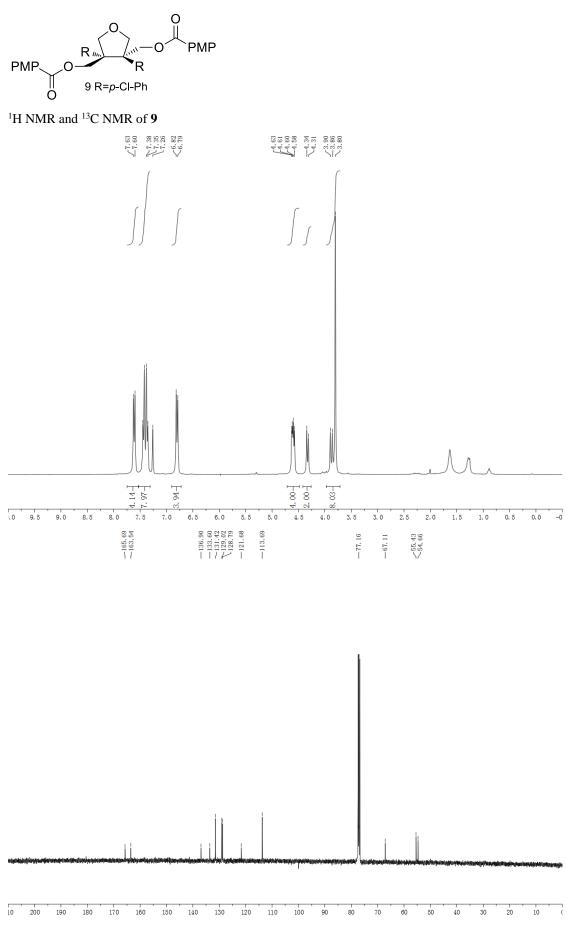

Peak#	Ret. Time	Area	Height	Area %	Height %
1	74.333	6447149	55326	100.000	100.000
Total		6447149	55326	100.000	100.000

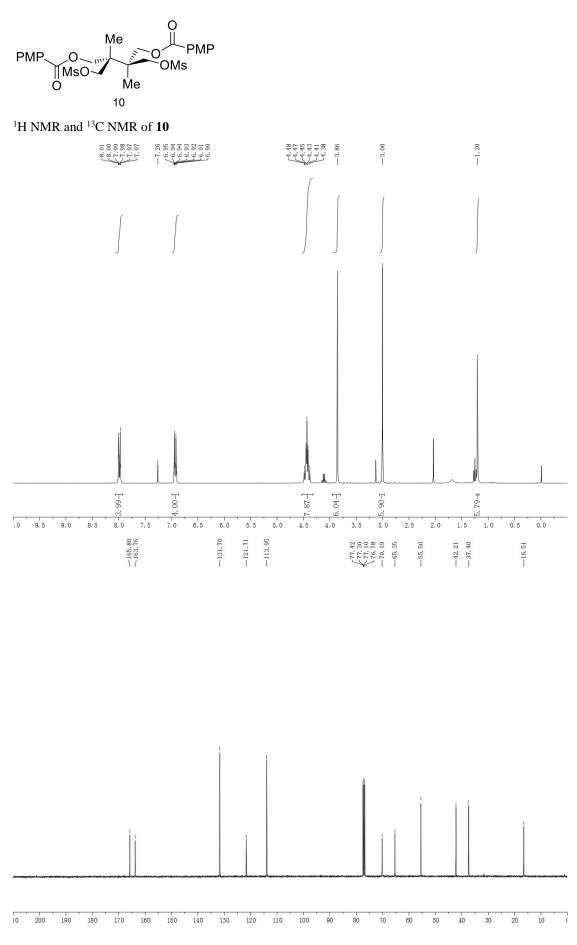




¹H NMR and ¹³C NMR of **5**




Detector A Ch1 254nm


Peak#	Ret. Time	Area	Height	Area %	Height %
1	50.164	2034234	31542	26.961	29.295
2	52.551	1719091	25043	22.784	23.258
3	55.277	2057640	28388	27.271	26.365
4	58.269	1734157	22700	22.984	21.082
Total		7545123	107673	100.000	100.000

Detector	A	Ch1	254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	52.723	24141	451	0.975	1.365
2	58.338	2450693	32556	99.025	98.635
Total		2474834	33006	100.000	100.000

