Supporting Information

A bidirectional synthesis of spiroacetals via $\mathbf{R h}$ (II)-catalysed $\mathbf{C}-\mathbf{H}$ insertion

Romain J. Lepage, ${ }^{a}$ Jonathan M. White ${ }^{b}$ and Mark J. Coster ${ }^{a}$
${ }^{a}$ Griffith Institute for Drug Discovery (GRIDD), Griffith University, Don Young Rd, Nathan, Queensland 4111, Australia, and ${ }^{b}$ School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia

m.coster@griffith.edu.au

Contents:

General Experimental Details S-2
Experimental Procedures and Characterisation Data S-2 - S-8
X-ray Crystallography S-9 - S-10
NMR Spectra S-11 - S-25
Chiral HPLC traces for 16 S-26 - S-27
References S-28

General Experimental Details

All reactions were performed under an atmosphere of nitrogen unless otherwise indicated. Temperatures quoted as $-78{ }^{\circ} \mathrm{C},-60{ }^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ were obtained by cooling the reaction vessel in bath of dry ice/acetone/water. Anhydrous solvents were dried on molecular sieves prior to use. All other reagents and solvents were used as purchased from commercial suppliers unless otherwise noted. Reaction progress was monitored by thin layer chromatography (TLC) on aluminum backed silica gel plates, visualising with UV light, and plates were developed using vanillin or potassium permanganate. Flash chromatography was performed using silica gel ($230-400$ mesh). NMR spectra were acquired on Varian INOVA or Bruker Avance III HD NMR spectrometers at 500 MHz and 125 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to the residual forms of the solvent with one less deuterium than the perdeuterated solvent $\left(\mathrm{CHCl}_{3}=7.26 \mathrm{ppm}\right){ }^{13} \mathrm{C}$ NMR spectra were referenced to the internal perdeuterated solvent resonance $\left(\mathrm{CDCl}_{3}=77.16 \mathrm{ppm} \& \mathrm{C}_{6} \mathrm{D}_{6}=\right.$ $128.06 \mathrm{ppm})$. Coupling constants (J) are in Hz . The multiplicities of the signals are described using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet $\mathrm{q}=\mathrm{quadruplet}, \mathrm{br}=$ broad. Low resolution electrospray mass spectra (LRESIMS) were recorded on an Agilent 6120 quadrupole LCMS system. High resolution mass spectra (HRMS) were acquired on a Bruker Bruker QTOF MaXis II ETD.

Experimental Procedures and Charcterisation Data

1-bromo-2-[(2-bromoethoxy)methoxy]ethane (8) ${ }^{1}$

2-Bromoethanol ($17.0 \mathrm{~mL}, 240 \mathrm{mmol}, 2 \mathrm{eq}$) and paraformaldehyde ($3.60 \mathrm{~g}, 120 \mathrm{mmol}, 1 \mathrm{eq}$) were dissolved in toluene (20 mL) in a round-bottom flask equipped with a Dean-Stark apparatus. Concentrated sulfuric acid (1 drop, cat.) was added and the mixture was refluxed for 1.5 h , until approximately the expected amount of water has been collected. After cooling, sodium bicarbonate (approx. 2 g) was added and the mixture was filtered. The filtrate was directly purified by flash chromatography ($95: 5, \mathrm{PS} / \mathrm{EtOAc}$) to provide $\mathbf{8}(24.10 \mathrm{~g}, 92 \mathrm{mmol}$, 77%) as a colourless oil: $\mathrm{R}_{\mathrm{f}} 0.60\left(95: 5 \mathrm{PS}_{\mathrm{Et}}^{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.78(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 3.92\left(4 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.51\left(4 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 95.60\left(\mathrm{OCH}_{2} \mathrm{O}\right), 68.29\left(\mathrm{BrCH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{O}\right), 30.82\left(\mathrm{BrCH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{O}\right)$.

1-iodo-2-[(2-iodoethoxy)methoxy]ethane (9)

1-bromo-2-[(2-bromoethoxy)methoxy]ethane ($16.0 \mathrm{~g}, 61 \mathrm{mmol}, 1 \mathrm{eq}$) and sodium iodide $(18.8 \mathrm{~g}, 122 \mathrm{mmol}, 2.05 \mathrm{eq})$ were dissolved in acetone $(40 \mathrm{~mL})$ and heated to reflux for 3 h . Acetone was evaporated under vacuum, water/ $\mathrm{Et}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ was added and layers were separated. Organic layer was washed with brine and dried over magnesium sulfate. Organic layer was filtered and solvent was evaporated, to yield 9 ($20.04 \mathrm{~g}, 56.3 \mathrm{mmol}, 92 \%$) as an orange-brown oil: $\mathrm{R}_{\mathrm{f}} 0.60$ (95:5 PS/Et ${ }_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.77(2 \mathrm{H}$, s, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 3.86\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.29\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 95.26\left(\mathrm{OCH}_{2} \mathrm{O}\right), 69.12\left(\mathrm{ICH}_{2} \underline{C H}_{2} \mathrm{O}\right), 3.14\left(\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.

General Procedure for nucleophilic substitution

Diiodo compound (1eq) and alkyl acetoacetate sodium salt (3.5 eq) were dissolved in DME ($0.75-1 \mathrm{M}$) and then heated to reflux for 16 h (overnight). The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) /$ water $(1: 1 \mathrm{v} / \mathrm{v})$ and extracted with ethyl acetate (3 times). The organic layer was washed with brine and dried over magnesium sulfate, then filtered and solvent was removed in vacuo. The crude residue was purified by flash chromatography (90:10, $\mathrm{PS} / \mathrm{EtOAc})$ to yield the desired compound.

Methyl 2-\{2-[(3-acetyl-4-methoxy-4-oxobutoxy)methoxy]ethyl\}-3-oxobutanoate (11a)

Reaction of 1,7-diiodo-3,5-dioxaheptane ($6.00 \mathrm{~g}, 16.85 \mathrm{mmol}$) and methyl acetoacetate sodium salt ($8.28 \mathrm{~g}, 60 \mathrm{mmol}$) in DME (15 mL) according to the General Procedure, provided the title compound ($5.797 \mathrm{~g}, 11.44 \mathrm{mmol}, 68 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.15$ (90:10 PS/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}(\mathrm{O})\right), 3.64(2 \mathrm{H}, \mathrm{t}, J$ $\left.=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.23\left(6 \mathrm{H}, \mathrm{s},(\mathrm{CO}) \mathrm{CH}_{3}\right), 2.11(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.78\left(\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}\right), 170.19(\mathrm{C}(\mathrm{O}) \mathrm{OMe}), 95.35$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.35\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 56.58\left(\mathrm{CH}_{3} \mathrm{OC}(\mathrm{O})\right), 52.60 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}\right), 29.26$ $\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{CH}\right), 28.32\left(\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}_{3}\right) ; \mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z} 355.14\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI +) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{8}$ 355.1363, found 355.1363.

Ethyl 2-\{2-[(3-acetyl-4-ethoxy-4-oxobutoxy)methoxy]ethyl\}-3-oxobutanoate (11b)

Reaction of 1,7-diiodo-3,5-dioxaheptane ($6.00 \mathrm{~g}, 16.85 \mathrm{mmol}$) and ethyl acetoacetate sodium salt ($8.97 \mathrm{~g}, 60 \mathrm{mmol}$) in DME (20 mL) according to the General Procedure, provided the title compound ($4.604 \mathrm{~g}, 12.79 \mathrm{mmol}, 76 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.29(90: 10 \mathrm{PS} / \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.19\left(4 \mathrm{H}, \mathrm{app} \mathrm{dtt}, J_{l}=10.8 \mathrm{~Hz}, J_{2}=6.6\right.$ $\left.\mathrm{Hz}, J_{3}=3.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.62\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.51\left(4 \mathrm{H}\right.$, app hept, $J_{1}=$ $\left.5.2 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.25\left(6 \mathrm{H}, \mathrm{s},(\mathrm{CO}) \mathrm{CH}_{3}\right), 2.12\left(4 \mathrm{H}, \mathrm{dt}, J_{1}=11.3 \mathrm{~Hz}, J_{2}=\right.$ $\left.6.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.27\left(6 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.70\left(\underline{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 169.51(\underline{\mathrm{C}}(\mathrm{O}) \mathrm{OEt}), 95.14\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.19\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 61.39$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} \mathrm{OC}(\mathrm{O})\right), 56.61\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 29.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 28.07\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 14.04$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right.$); MS (ESI +) m/z 383.16 ([M + Na] $\left.{ }^{+}, 100\right)$; HRMS (ESI +) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{8}$ 383.1676, found 383.1680.
tert-Butyl 2-(2-\{[3-acetyl-4-(tert-butoxy)-4-oxobutoxy]methoxy\}ethyl)-3-oxobutanoate (11c)

Reaction of 1,7 -diiodo-3,5-dioxaheptane $(6.00 \mathrm{~g}, 16.85 \mathrm{mmol})$ and tert-butyl acetoacetate sodium salt ($10.8 \mathrm{~g}, 60 \mathrm{mmol}$) in DME $15(\mathrm{~mL})$ according to the General Procedure, provided the title compound ($3.636 \mathrm{~g}, 8.74 \mathrm{mmol}, 52 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.44$ ($90: 10 \mathrm{PS} / \mathrm{EtOAc}$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.54-3.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \underline{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.24\left(6 \mathrm{H}, \mathrm{s},(\mathrm{CO}) \mathrm{CH}_{3}\right), 2.08\left(4 \mathrm{H}\right.$, app p, $\left.J=6.7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.46(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COC}(\mathrm{O})\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.22\left(\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}\right), 168.82(\underline{\mathrm{C}}(\mathrm{O}) \mathrm{O} t-\mathrm{Bu})$, $95.31\left(\mathrm{OCH}_{2} \mathrm{O}\right), 82.09\left(\mathrm{C}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.46\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 57.93\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}\right), 29.15$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 28.19\left(\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}_{3}\right), 28.06\left(\mathrm{C}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z} 408.92([\mathrm{M}+\mathrm{Na}$ $-30]^{+}, 100$); HRMS (ESI +) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{8} 439.2302$, found 439.2307.

General Procedure for Diazo Transfer

The bis β-ketoester (1 eq) and pABSA (2.4 eq) were dissolved in acetonitrile (0.15 M). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath) and DBU (2.4 eq) was added dropwise. The reaction was allowed to warm to room temperature and stirred for 24 h . The reaction was quenched with $\mathrm{Et}_{2} \mathrm{O} /$ water ($1: 1 \mathrm{v} / \mathrm{v}$) and extracted with ethyl acetate (3 times). The organic layer was washed with brine and dried over magnesium sulfate, then filtered and solvent was evaporated under vacuum. The crude residue was purified by flash chromatography (90:10, $\mathrm{PS} / \mathrm{EtOAc}$) to yield the desired compound.

Methyl 2-diazo-4-[(3-diazo-4-methoxy-4-oxobutoxy)methoxy]butanoate (12a)

The bis β-ketoester 11a ($2.70 \mathrm{~g}, 8.10 \mathrm{mmol}$) with p-ABSA ($4.66 \mathrm{~g}, 19.4 \mathrm{mmol}$) in acetonitrile $(80 \mathrm{~mL})$ according to the diazo transfer procedure provided the title compound ($1.388 \mathrm{~g}, 4.63$ mmol, 57%) as a bright yellow oil: $\mathrm{R}_{\mathrm{f}} 0.68$ ($70: 30 \mathrm{PS} / \mathrm{EtOAc}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.77\left(6 \mathrm{H}, \mathrm{s},(\mathrm{CO}) \mathrm{OCH}_{3}\right), 3.68\left(4 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)\right)$, $2.56\left(4 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)\right) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 95.57\left(\mathrm{CH}_{2}\right), 66.28$ $\left(\mathrm{CH}_{2}\right)$, $52.09\left(\mathrm{CH}_{3}\right), 24.34\left(\mathrm{CH}_{2}\right), \mathrm{OC}(\mathrm{O}) \mathrm{C}\left(\mathrm{N}_{2}\right)$ and $\mathrm{OC}(\mathrm{O}) \underline{\mathrm{C}}\left(\mathrm{N}_{2}\right)$ not detected.

Ethyl 2-diazo-4-[(3-diazo-4-ethoxy-4-oxobutoxy)methoxy]butanoate (12b)

The bis β-ketoester 11b ($3.50 \mathrm{~g}, 8.4 \mathrm{mmol}$) with p-ABSA ($4.84 \mathrm{~g}, 20.16 \mathrm{mmol}$) in acetonitrile $(85 \mathrm{~mL})$ according to the diazo transfer procedure provided the title compound $(1.560 \mathrm{~g}, 4.06$ $\mathrm{mmol}, 48 \%$) as a bright yellow oil: $\mathrm{R}_{\mathrm{f}} 0.53$ (85:15 PS/EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.22\left(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz},(\mathrm{CO}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.68(4 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)\right), 2.56\left(4 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)\right), 1.27(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.(\mathrm{CO}) \mathrm{OCH} \mathrm{H}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 95.61\left(\mathrm{CH}_{2}\right), 66.32\left(\mathrm{CH}_{2}\right), 60.97\left(\mathrm{CH}_{2}\right)$, $24.35\left(\mathrm{CH}_{2}\right), 14.67\left(\mathrm{CH}_{3}\right), \mathrm{O} \underline{(\mathrm{O}) \mathrm{C}\left(\mathrm{N}_{2}\right) \text { and } \mathrm{OC}(\mathrm{O}) \underline{\mathrm{C}}\left(\mathrm{N}_{2}\right) \text { not detected. }}$

Tert-butyl 4-\{[4-(tert-butoxy)-3-diazo-4-oxobutoxy]methoxy\}-2-diazobutanoate (12c)

The bis β-ketoester (11c) $(2.70 \mathrm{~g}, 8.1 \mathrm{mmol})$ with p-ABSA ($4.66 \mathrm{~g}, 19.4 \mathrm{mmol})$ in acetonitrile (80 mL) according to the diazo transfer procedure provided the title compound ($1.388 \mathrm{~g}, 4.63 \mathrm{mmol}, 57 \%$) as a bright yellow oil: $\mathrm{R}_{\mathrm{f}} 0.45$ ($95: 5 \mathrm{PS} / \mathrm{EtOAc}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.67\left(4 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)\right), 2.51(4 \mathrm{H}, \mathrm{t}$, $J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}_{2}\right)$), $1.48\left(18 \mathrm{H}, \mathrm{s},(\mathrm{CO}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $95.41\left(\mathrm{CH}_{2}\right), 81.19\left(\mathrm{C}_{\text {quat }}\right), 66.15\left(\mathrm{CH}_{2}\right), 28.39\left(\mathrm{CH}_{3}\right), 24.15\left(\mathrm{CH}_{2}\right), \mathrm{OC}(\mathrm{O}) \mathrm{C}\left(\mathrm{N}_{2}\right)$ and $\mathrm{OC}(\mathrm{O}) \underline{\mathrm{C}}\left(\mathrm{N}_{2}\right)$ not detected.

Rhodium-catalysed C-H insertion reaction

Diazo compound (1 eq) was dissolved in dry toluene (0.1 M) under argon atmosphere, then the solution was degassed by bubbling argon under vigorous stirring at $-78{ }^{\circ} \mathrm{C}$ (dry ice in acetone). Rhodium catalyst ($0.5 \mathrm{~mol} \%$) was added quickly. The mixture was progressively warmed until $0{ }^{\circ} \mathrm{C}$ was reached. The solvent was removed in vacuo and the crude mixture was purified by flash chromatography (85:15, PS/EtOAc) to yield the desired compounds.

13a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 4.05(2 \mathrm{H}, \mathrm{td}, J=8.5,3.8 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{td}, J=$ $8.4,7.3 \mathrm{~Hz}), 3.73(6 \mathrm{H}, \mathrm{s}), 3.59(2 \mathrm{H}, \mathrm{dd}, J=10.3,9.1 \mathrm{~Hz}), 2.53(2 \mathrm{H}, \mathrm{ddt}, J=12.4,10.4,8.7$ $\mathrm{Hz}), 2.12(2 \mathrm{H}$, dddd, $J=12.6,9.0,7.3,3.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.21$ $\left(\mathrm{C}_{\text {carbox }}\right), 112.45\left(\mathrm{C}_{\text {spiro }}\right), 66.99\left(\mathrm{CH}_{2}\right), 52.11\left(\mathrm{CH}_{3}\right), 49.58(\mathrm{CH}), 26.50\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ $267.15\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI +) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{6} 267.0839$, found 267.0836.

14a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 4.04-3.96(2 \mathrm{H}, \mathrm{m}), 3.93-3.86(2 \mathrm{H}, \mathrm{m}), 3.76$ $(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=9.7,8.1 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=8.0,6.5 \mathrm{~Hz}), 2.54(1 \mathrm{H}$, dtd, $J=12.5,8.2,6.2 \mathrm{~Hz}), 2.35(1 \mathrm{H}$, dtd, $J=12.4,7.8,6.5 \mathrm{~Hz}), 2.23-2.12(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.63\left(\mathrm{C}_{\text {carbox }}\right), 170.40\left(\mathrm{C}_{\text {carbox }}\right), 114.01\left(\mathrm{C}_{\text {spiro }}\right), 66.90\left(\mathrm{CH}_{2}\right)$, $65.92\left(\mathrm{CH}_{2}\right), 52.26\left(\mathrm{CH}_{3}\right), 51.99\left(\mathrm{CH}_{3}\right), 51.87(\mathrm{CH}), 47.82(\mathrm{CH}), 27.96\left(\mathrm{CH}_{2}\right), 27.53\left(\mathrm{CH}_{2}\right)$; MS (ESI +) $m / z 267.15\left([M+N a]^{+}, 100\right) ;$ HRMS $(E S I+) m / z$ calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{6}$ 267.0839, found 267.0836.

13b: ${ }^{1} \mathrm{H}$ NMR (Chloroform- $\left.d, 500 \mathrm{MHz}\right) \delta 4.24(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $4.05(2 \mathrm{H}, \mathrm{td}, J=8.6,4.0 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{td}, J=8.3,7.3 \mathrm{~Hz}), 3.59(2 \mathrm{H}, \mathrm{dd}, J=10.3,9.0 \mathrm{~Hz})$, $2.53(2 \mathrm{H}, \mathrm{ddt}, J=12.5,10.4,8.7 \mathrm{~Hz}), 2.11(2 \mathrm{H}, \mathrm{dddd}, J=12.6,9.0,7.3,3.9 \mathrm{~Hz}), 1.27(6 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.77\left(\mathrm{C}_{\text {carbox }}\right), 112.63\left(\mathrm{C}_{\text {spiro }}\right), 67.04\left(\mathrm{CH}_{2}\right)$, $60.87\left(\mathrm{CH}_{2}\right), 49.74(\mathrm{CH}), 26.51\left(\mathrm{CH}_{2}\right), 14.45\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z} 295.11\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, 100); HRMS (ESI +) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{6}$ 295.1152, found 295.1152.

14b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 4.22(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}$), $4.18-4.07(2 \mathrm{H}, \mathrm{m})$, $3.99(2 \mathrm{H}, \mathrm{td}, J=8.4,5.5 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{dtd}, J=8.7,7.7,7.1,5.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=9.7$, $7.9 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.54(1 \mathrm{H}, \mathrm{dtd}, J=12.0,8.0,6.2 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dq}, J=12.3$, $7.8 \mathrm{~Hz}), 2.22-2.08(2 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.00\left(\mathrm{C}_{\text {carbox }}\right), 170.04\left(\mathrm{C}_{\text {carbox }}\right), 114.10\left(\mathrm{C}_{\text {spiro }}\right), 66.80\left(\mathrm{CH}_{2}\right), 65.92\left(\mathrm{CH}_{2}\right)$, $61.14\left(\mathrm{CH}_{2}\right), 60.87\left(\mathrm{CH}_{2}\right), 52.00(\mathrm{CH}), 49.90(\mathrm{CH}), 28.12\left(\mathrm{CH}_{2}\right), 27.55\left(\mathrm{CH}_{2}\right), 14.31\left(\mathrm{CH}_{3}\right)$, $14.22\left(\mathrm{CH}_{3}\right)$; MS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z} 295.11\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI +) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{6}$ 295.1152, found 295.1152.

13c: ${ }^{1} \mathrm{H}$ NMR (Chloroform- $\left.d, 500 \mathrm{MHz}\right) \delta 4.04(2 \mathrm{H}, \mathrm{td}, J=8.5,4.1 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{q}, J=8.2$ $\mathrm{Hz}), 3.49(2 \mathrm{H}, \mathrm{dd}, J=10.1,9.1 \mathrm{~Hz}), 2.49(2 \mathrm{H}, \mathrm{ddt}, J=12.6,10.3,8.6 \mathrm{~Hz}), 2.05(2 \mathrm{H}$, dddd, J $=11.7,9.1,7.3,4.1 \mathrm{~Hz}), 1.47(18 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.85\left(\mathrm{C}_{\text {carbox }}\right)$, $112.95\left(\mathrm{C}_{\text {spiro }}\right), 80.87\left(\mathrm{C}_{\mathrm{q}}\right), 66.83\left(\mathrm{CH}_{2}\right), 50.40(\mathrm{CH}), 28.13\left(\mathrm{CH}_{2}\right), 26.36\left(\mathrm{CH}_{3}\right)$; MS (ESI +) $m / z 351.10\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS $(\mathrm{ESI}+) m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{6} 351.1778$, found 351.1769 .

14c: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 3.98(1 \mathrm{H}, \mathrm{td}, J=8.2,6.3 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{td}, J=$ $8.1,1.9 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{td}, J=8.0,6.1 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{ddd}, J=10.9,8.3,5.6 \mathrm{~Hz}), 2.53-2.45$ $(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{dtd}, J=12.2,10.7,7.9 \mathrm{~Hz}), 2.13-2.02(2 \mathrm{H}, \mathrm{m}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.75 .00\left(\mathrm{C}_{\text {carbox }}\right), 169.40\left(\mathrm{C}_{\text {carbox }}\right), 114.19\left(\mathrm{C}_{\text {spiro }}\right), 81.20$ $\left(\mathrm{C}_{\mathrm{q}}\right), 81.07\left(\mathrm{C}_{\mathrm{q}}\right), 66.31\left(\mathrm{CH}_{2}\right), 66.03\left(\mathrm{CH}_{2}\right), 53.04(\mathrm{CH}), 49.02(\mathrm{CH}), 29.70\left(\mathrm{CH}_{2}\right), 28.65$ $\left(\mathrm{CH}_{2}\right), 28.20\left(\mathrm{CH}_{3}\right), 27.50\left(\mathrm{CH}_{3}\right)$; MS (ESI +) m/z $351.10\left([\mathrm{M}-200]^{+}, 100\right) ;$ HRMS (ESI +) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{6} 351.1778$, found 351.1769.

bromobenzoate (16)

A mixture of spiroacetals $\mathbf{1 3 b}, \mathbf{1 4 b}$ and $\mathbf{1 5 b}$ was dissolved in dry THF (0.15 M) under argon atmosphere. Lithium aluminium hydride powder (8 eq) was dissolved in the same volume of dry THF under argon atmosphere. Both solutions were cooled to $0{ }^{\circ} \mathrm{C}$ and the spiroacetal solution was added dropwise to the LiAlH_{4} solution with vigorous stirring. The resultant mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4} \bullet 10 \mathrm{H}_{2} \mathrm{O}$, filtered and solvent was removed in vacuo. The residue was dissolved in DCM (0.05 M), cooled to $0{ }^{\circ} \mathrm{C}$, and p-bromobenzoic acid (4 eq), DMAP (cat.) and EDC (2.2 eq) were added. The mixture was allowed to warm to room temperature and stirred overnight. The reactionmicture was quenched with saturated $\mathrm{NaHCO}_{3} /$ water ($1: 1 \mathrm{v} / \mathrm{v}$) and extracted with ethyl acetate (3 times). The organic layers were combined, dried over MgSO_{4}, the solvent removed in vacuo and the crude residue was purified by flash chromatography (95:5 to 85:15, PS/EtOAc), to yield the title compound.

$\mathrm{R}_{\mathrm{f}} 0.43$ (85:15 PS/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83\left(4 \mathrm{H}, \mathrm{dt}, J=8.6,1.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{g}}\right)$, $7.55\left(4 \mathrm{H}, \mathrm{dt}, J=8.6,1.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}\right), 4.49\left(2 \mathrm{H}, \mathrm{dd}, J=11.1,7.1 \mathrm{~Hz}, \mathrm{H}^{\mathrm{d}}\right.$ or $\left.\mathrm{H}^{\mathrm{e}}\right), 4.42(2 \mathrm{H}, \mathrm{dd}, J=$ $11.1,6.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{d}}$ or $\left.\mathrm{H}^{\mathrm{e}}\right), 4.05(2 \mathrm{H}, \mathrm{td}, J=8.8,3.3 \mathrm{~Hz}), 3.83(2 \mathrm{H}, \mathrm{dt}, J=8.5,7.4 \mathrm{~Hz}), 2.74$ ($2 \mathrm{H}, \mathrm{ddt}, J=11.1,8.4,6.8 \mathrm{~Hz}$), $2.17(2 \mathrm{H}$, dddd, $J=11.9,8.4,7.3,3.3 \mathrm{~Hz}$), $1.95(2 \mathrm{H}, \mathrm{ddt}, J=$ $12.0,11.1,8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.75(\mathrm{ArC}(\mathrm{O}) \mathrm{O}), 131.94\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.15$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 129.11\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.33\left(\mathrm{C}_{\mathrm{Ar}}\right), 112.69\left(\mathrm{C}_{\text {spiro }}\right), 66.23\left(\mathrm{CH}_{2}\right), 64.74\left(\mathrm{CH}_{2}\right), 43.51(\mathrm{CH})$, $28.66\left(\mathrm{CH}_{2}\right)$; HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NaO}_{6} 574.9675$, found 574.9664.

X-ray Crystallography

Intensity data were collected with an Oxford Diffraction SuperNova CCD diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, the temperature during data collection was maintained at 130.0(1) using an Oxford Cryosystems cooling device. The structure was solved by direct methods and difference Fourier synthesis. ${ }^{2}$ Thermal ellipsoid plots were generated using the program ORTEP- 3^{3} integrated within the WINGX ${ }^{4}$ suite of programs.

Figure S1. Thermal ellipsoid plot for 16. Ellipsoids are at the 30\% probability level.

Crystal data for 16. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{6}, M=554.22, T=130.0 \mathrm{~K}, \lambda=1.54184$, Orthorhombic, space group $\mathrm{P} 22_{1} 2_{1}, a=6.0088(1) b=14.4880(1), c=25.2409(2) \AA, V=2197.36(2) \AA^{3}, \mathrm{Z}$ $=4, \mathrm{D}_{\mathrm{c}}=1.675 \mathrm{mg} \mathrm{M}^{-3} \mu(\mathrm{Cu}-\mathrm{K} \alpha) 5.007 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1112$, crystal size $0.55 \times 0.27 \times 0.22$ $\mathrm{mm}^{3}, 15254$ reflections measured, 4594 independent reflections $[\mathrm{R}(\mathrm{int})=0.0272]$, the final R was $0.0259[\mathrm{I}>2 \sigma(\mathrm{I})]$ and $w \mathrm{R}\left(\mathrm{F}^{2}\right)$ was 0.0703 (all data), Flack parameter -0.012(7). CCDC deposit code 1519781.

NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of $\mathbf{8}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum $(125 \mathrm{MHz})$ of $\mathbf{8}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{9}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{9}$ in CDCl_{3}

$$
\stackrel{\tilde{\partial}}{\dot{1}}
$$

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 1}$ a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of 11a in CDCl_{3}
~~ํ)

สัส

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 1 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 1 c}$ in CDCl_{3}

[^0]$\stackrel{\text { ※̃ }}{\text { ® }}$
$\stackrel{\sim}{\infty}$

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of 12a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{1 2 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 2 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{1 2 b}$ in CDCl_{3}
\[

$$
\begin{aligned}
& \text { 苋 } \\
& \stackrel{\circ}{\circ} \\
& \stackrel{\text { ल }}{\substack{\text { N }}}
\end{aligned}
$$
\]

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 2 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{1 2 c}$ in CDCl_{3}
${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 3 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum（ 125 MHz ）of 13a in CDCl_{3}
$\stackrel{y}{8}$
労
ฐ̊
言量
$\stackrel{\stackrel{\circ}{4}}{1}$

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 4 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum $(125 \mathrm{MHz})$ of $\mathbf{1 4 a}$ in CDCl_{3}
高号

ぶ๓
～～N
$\stackrel{8}{8}$
${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 3 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{1 3 b}$ in CDCl_{3}
$\stackrel{\text { ® }}{\substack{\text { © } \\ \mid}}$
$\stackrel{\text { ® }}{\cong}$

$\stackrel{\text { 营 }}{\text { | }}$

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 4 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum（ 125 MHz ）of $\mathbf{1 4 b}$ in CDCl_{3}
8 芯
$=1 /$

$\stackrel{\text {～～～}}{\sim}$

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{1 3 c}$ in CDCl_{3}

నిల్లిలn Nom
in im
$\underbrace{\text { M }}$

ab \qquad M"H
 Whlun

\qquad

${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of $\mathbf{1 3 c}$ in CDCl_{3}

$\overbrace{1}^{m}$

90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									f1 (ppm)									

${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of a mixture of $\mathbf{1 4 c}$ and $\mathbf{1 3 c}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum (125 MHz) of a mixture of $\mathbf{1 4 c}$ and $\mathbf{1 3 c}$ in CDCl_{3}资品

$\sim^{\infty}{ }^{\infty}$
${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of $\mathbf{1 6}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum $(125 \mathrm{MHz})$ of $\mathbf{1 6}$ in CDCl_{3}.

[^1]
Chiral HPLC traces for 16

From $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ reaction (Table 1, entry 7)

```
Data File C:\CHEM32\1\DATA\SEQ_1 2016-06-07 16-48-36\032-0201.D 
\begin{tabular}{|c|c|c|}
\hline Acq. Operator & Sam & Seq. Line : 2 \\
\hline Acq. Instrument & Instrument 1 & Location : Vial 32 \\
\hline Injection Date & 6/7/2016 5:00:41 PM & \(I_{n j}=1\) \\
\hline
\end{tabular}
Acq. Method : C:\CHEM32\1\DATA\SEQ_1 2016-06-07 16-4B-36\RL_ADH_GRAD_95-5_TO_85-15.M
Last changed : 6/7/2016 4:41:35 PM by Sam
Analysis Method : C:\CHEM32\1\METHODS\COSTER\ROMAIN\RL,ADH95-5.M
Last changed : 6/7/2016 3:46:13 PM by Sam
    |(M,
```



```
            Area Percent Report
\begin{tabular}{lccc} 
Sorted By & \(:\) & Signal & \\
Multiplier: & \(:\) & 1.0000 \\
Dilution: & \(:\) & 1.0000 \\
Use Kultiplier \(E\) & Dilution Factor with ISTDs
\end{tabular}
```

Signal 1: NWD1 A, Sig=205,30 Ref=360,100

$\begin{gathered} \text { Peak } \\ \ddagger \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area f
1	1.125	VV	0.1849	29.60130	1.97475	0.0885
2	1.329	VV	0.1474	55.71087	4.72935	0.1665
3	1.543		0.1183	55.03669	6.95596	0.1645
4	1.680	VV	0.1146	61.96097	6.65387	0.1851

From $\mathrm{Rh}_{2}(S \text {-PTAD) })_{4}$ reaction (Table 1, entry 8)

References

(1) Mazurek, W. and Moritz, A.G. Macromolecules, 1991, 24, 3261.
(2) Sheldrick, G.M., Acta Cryst. 2008, A64, 112.
(3) Farrugia, L. J.; J. Appl. Cryst. 1997, 30, 565.
(4) Farrugia, L. J.; J. Appl. Cryst. 1999, 32, 837.

[^0]: ${ }^{13} \mathrm{C}$ NMR spectrum $(125 \mathrm{MHz})$ of $\mathbf{1 1} \mathbf{c}$ in CDCl_{3}

[^1]:

