Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information

Luminescence sensing of weakly-hydrated anions in aqueous solution by self-assembled europium(III) complexes

Takuya Sagami, a Yuhei O. Tahara, b.c Makoto Miyata, b Hiroyuki Miyake and Satoshi Shinoda a,*

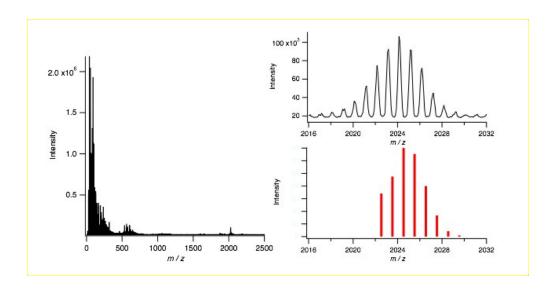
^a Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan. E-mail: shinodas@sci.osaka-cu.ac.jp, Tel: +81-6-6605-3139

^b Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan

^c The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan

1. Experimental

Synthesis of ligand 2


1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, 400 mg, 1.00 mmol), *O*-(7-azabenzotriazol-1-yl)-*N*,*N*,*N*'*N*'-tetramethyluronium hexafluorophosphate (HATU, 1.66 g, 4.4 mmol) and 1-hydroxy-7-azabenzotriazole (HOAt, 271 mg, 2.00 mmol) were dissolved in dry CH₂Cl₂/DMF (4:1) solvent (15 ml). The suspension was cooled to 0 °C using an ice bath and then *N*,*N*-diisopropylethylamine (DIPEA, 1.62 g, 12.5 mmol) was added. The mixture was stirred for 30 min under the N₂ atmosphere. Solid cholesterylamine (2.35 g, 6.09 mmol) was added and the solution was further stirred for 30 min at 0 °C, then stirred for 168 h at room temperature. The solution was diluted with CH₂Cl₂ (25 ml) and washed with 1 mol/L KOH (25 ml). From the water phase, the product was extracted with CH₂Cl₂ (10 ml × 6), and all CH₂Cl₂ solution was combined, dried over anhydrous K₂CO₃, and evaporated. The crude orange solid was reprecipitated from CH₂Cl₂/MeOH repeatedly. Finally, the solid was washed with a small amount of pentane to yield white solid (902 mg, 0.50 mmol, 49%).

¹H NMR (CDCl₃, 300 MHz, 298K) δ 0.68 (s, 12H), 0.80-2.30 (m, 160H), 2.73 (s, 16H, NC<u>H</u>₂C<u>H</u>₂N), 3.06 (s, 8H, NC<u>H</u>₂CO), 3.60-3.80 (m, br, 4H), 5.32 (d, 4H, J = 3.4 Hz), 6.77 (d, 2.4H, J = 8.3 Hz, amide); Anal. Calcd. for C₁₂₄H₂₀₈N₈O₄•2.3 H₂O: C, 77.71; H, 11.18; N, 5.85. Found: C, 77.40 (– 0.31%); H, 11.33 (+0.15%); N, 6.15 (+0.30%), HRMS (FAB, pos.): m/z = 1874.6403, [C₁₂₄H₂₀₈N₈O₄ + H]⁺ requires 1874.6391.

Synthesis of [2Eu]Cl₃

Suspension of ligand 2 (90 mg) and EuCl $_3$ •6H $_2$ O (0.95 equiv.) in dry EtOH (7 ml) was sealed in glass tube, followed by heating to 120 °C for 30 min under 50-120 W microwave irradiation. After removing the solvent, the residue was recrystallized from CH $_2$ Cl $_2$ / 1,4-dioxane. The obtained solid was recrystallized from CH $_2$ Cl $_2$ / CH $_3$ CN to give yellowish xerogel-like solid. When the solid was strongly-colored, it was stirred with 30 mg of activated charcoal overnight in CH $_2$ Cl $_2$ / MeOH before recrystalization.

Yield: 78%. Anal. Calcd. for $C_{124}H_{208}Cl_3EuN_8O_4$ •7 H_2O : C, 65.92; H, 9.90; N, 4.96, Found: C, 65.87 (-0.05%); H, 9.78 (-0.12%); N, 5.09 (+0.13%); MS (FAB, pos.): m/z = 2024 [M-3Cl-2H]⁺.

Measurements

Negative-staining EM. The solution of [2Eu]Cl₃ in 20 wt% EtOH-H₂O was placed on a carbon-coated EM (200 mesh, treated with glow discharger) grid and left standing for 1 min at room temperature. The particles on the grid were negatively stained with 10 μl of 3% La(OAc)₃, dried under the incandescent lamp for 3 min after removal of excess stain with a filter paper, and observed by a transmission electron microscope (JEM1010, JEOL, Akishima, Japan) at 80 kV acceleration voltage. EM images were captured by a FastScan-F214 (T) charge-coupled device (CCD) camera (TVIPS, Gauting, Germany).

Dynamic light scattering (DLS). The solution of [2Eu]Cl₃ in 20 wt% EtOH-H₂O was put in a rectangular 1-cm pyrex cell. Light scattering measurements were performed at 25 °C on Malvern Zetasizer Nano ZS. Average data of 4 measurements per one sample was used.

Luminescence (phosphorescence) spectra and decay profiles were obtained with Perkin-Elmer LS-55 fluorophotometer (Xe flash lamp) at room temperature. Absorption spectra were measured on a JASCO V-670 spectrometer. Circular dichroism spectra were obtained with a JASCO J-820 spectropolarimeter. ¹H NMR spectra were measured with JEOL AV-300.

Microwave synthesis were done on CFM Discover Bench Mate (2450 MHz).

2. Luminescence lifetime measurements

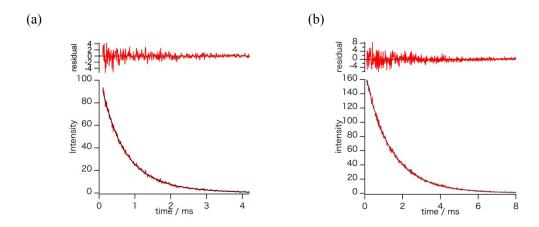


Table. Emission lifetime $(\tau / \text{ms})^a$ and hydration number (q)

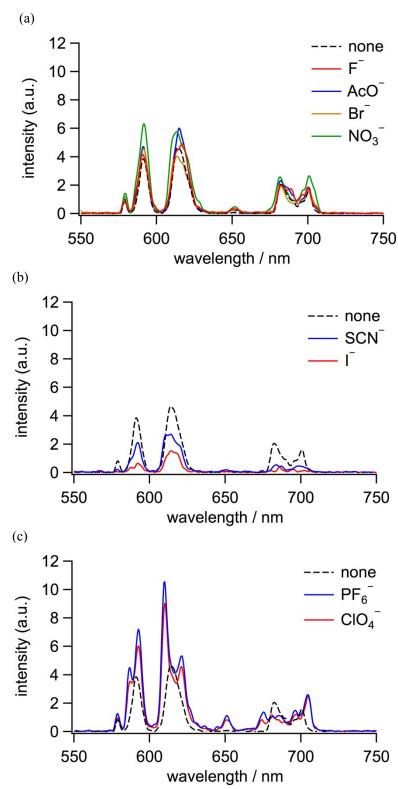
$ au_{\rm H}$ (20 wt% EtOH-H ₂ O)	τ _D (20 % EtOD-D ₂ O)	q^{b}	q ^c
0.545 ± 0.041	1.031 ± 0.086	0.40 ± 0.23	0.29 ± 0.19
1.06 ± 0.15	1.80± 0.17	-0.17± 0.12	-0.28 ± 0.17

Fig. S1 Emission decay profiles and lifetimes of [**2**Eu]Cl₃ in (a) 20 wt% EtOH-H₂O and (b) in 20 % EtOD-D₂O solvent. [**2**Eu]Cl₃: 5.0×10^{-5} M, bis-tris: 2.5×10^{-3} M, pH 7.0 (HCl), $\lambda_{\rm ex}$ = 260 nm, $\lambda_{\rm em}$ = 615 nm 25 °C, 1-cm quartz cell.

$$q = 1.2 \times [\frac{1}{\tau_H} - \frac{1}{\tau_D} - (0.25 + 0.07 \times N_{amide})]$$
 in H₂O

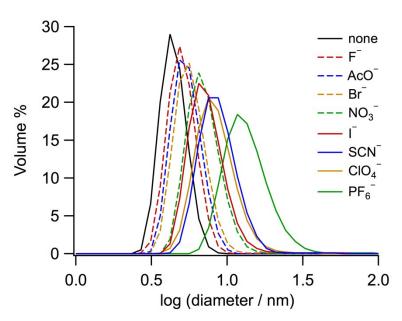
^cThe q values were calculated using the equation*

$$q = 1.2 \times \left[\frac{1}{\tau_H} - \frac{1}{\tau_D} - (0.32 + 0.075 \times N_{amide})\right]$$
 in EtOH/H₂O = 20/80 (v/v)


, where N_{amide} is the number of amide bonds coordinating to the europium(III) center (N = 4 in our system), although the solvent effect in the self-assembly does not correctly match with the one used in the estimation of the parameters in this equation.

^a Average value of 4 or 5 measurements.

^b The q values were calculated using the equation[#]


[#] A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams and M. Woods, J. Chem. Soc., Perkin Trans. 2, 1999, 493.

^{*} P. Dissanayake, Y. Mei and M. J. Allen, *ACS Catal.*, 2011, **1**, 1203; D. J. Averill and M. J. Allen, *Inorg. Chem.*, 2014, **53**, 6257.

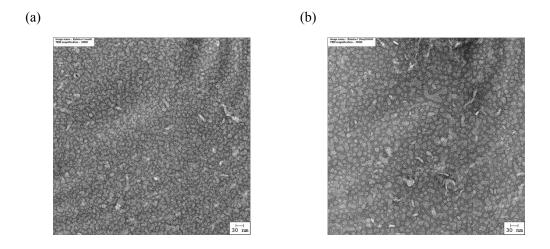


Fig. S2 Luminescence spectra of [**2**Eu]Cl₃ in the presence of 20 equiv. of NaX (X = anion). Black lines indicate the reference spectra without addition of anions., (a) X = F⁻, AcO⁻, Br⁻ and NO₃⁻, (b) X= SCN⁻ and I⁻ and (c) X = ClO₄⁻ and PF₆⁻. [**2**Eu]Cl₃: 5.0×10^{-5} M, [NaX]: 1.0×10^{-3} M in 20 wt% EtOH-H₂O (bistris: 2.5×10^{-3} M, pH = 7.0 (HCl), 25 °C, $2\lambda_{ex}$ = 260 nm, 1-cm quartz cell.

3. Characterization of nano particles

Fig. S3 Size distribution of [**2**Eu]Cl₃ in the presence of 20 equiv. of NaX by DLS measurements. $X = AcO^-$, Br^- , NO_3^- , I^- , SCN^- , ClO_4^- , and PF_6^- . [**2**Eu]Cl₃: 5.0×10^{-5} M and NaX: 1.0×10^{-3} M in 20 wt% EtOH- H_2O (buffer: 2.5×10^{-3} M bis-tris, pH 7.0 (HCl)), 25 °C, 1-cm rectangular cell.

Fig. S4 TEM image (negative staining with 3% La(OAc)₃ aqueous solution) of (a) [**2**Eu]Cl₃ only and (b) in the presence of 20 equiv. of NaClO₄. [**2**Eu]Cl₃: 5×10^{-5} M and NaClO₄: 1.0×10^{-3} M in 20 wt% EtOH-H₂O (buffer: 2.5×10^{-3} M bis-tris, pH 7.0 (HCl)), 25 °C.

4. Induced ciruclar dichroism of guest anions

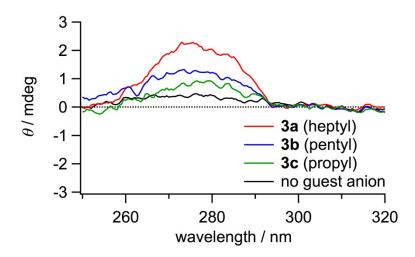
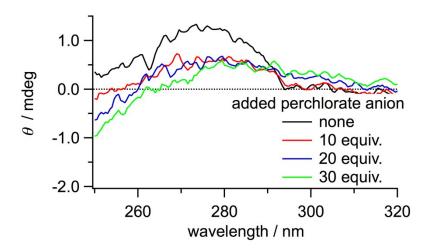



Fig. S5 Circular dichroism spectra of [2Eu]Cl₃ with guest sensitizers 3a–3c. [2Eu]Cl₃: 5.0×10^{-5} M, [3a–3c]: 5.0×10^{-5} M in 20 wt% EtOH-H₂O, bis-tris: 2.5×10^{-3} M, pH = 7.0 (HCl), 25 °C, 1-cm quartz cell.

Fig. S6 Circular dichroism spectra of [**2**Eu]Cl₃ in the presence of guest sensitizers adding 0–30 eq of NaClO₄. [**2**Eu]Cl₃: 5.0×10^{-5} M and sensitizer (**3b**): 5.0×10^{-5} M in 20 wt% EtOH-H₂O (buffer: 2.5×10^{-3} M bis-tris, pH 7.0 (HCl)), 25 °C, 1-cm quartz cell.