Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Construction of the septahydroxylated ABC-ring system of dihydro-β-agarofurans: application of 6-*exo-dig* radical cyclization

Hiroki Fujisawa, Tomochika Ishiyama, Daisuke Urabe and Masayuki Inoue*

Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Fax: (+81)3-5841-0568 E-mail: inoue@mol.f.u-tokyo.ac.jp

Supporting Information 34 pages

Contents:	page
Experimental procedures	S2
¹ H and ¹³ C NMR spectra of newly synthesized compounds	S20

General methods.

All reactions sensitive to air or moisture were carried out in dry solvents under argon atmosphere, unless otherwise noted. THF, CH₂Cl₂, toluene, DMF and Et₂O were purified by Glass Contour solvent dispensing system (Nikko Hansen & Co., Ltd., Osaka, Japan). All other reagents were used as supplied unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed using E. Merck Silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed using 40-50 µm Silica Gel 60N (Kanto Chemical Co., Inc.). Melting points were measured on Yanaco MP-J3 micro melting point apparatus, and are uncorrected. Optical rotations were measured on a JASCO P-2200 Digital Polarimeter at room temperature using the sodium D line. Infrared (IR) spectra were recorded as a thin film on a KBr disk using JASCO FT/IR-4100 spectrometer. ¹H and ¹³C NMR spectra were recorded on JEOL JNM-ECX-500, JNM-ECA-500 or JNM-ECS-400 spectrometer at room temperature. Chemical shifts were reported in ppm on the δ scale relative to CHCl₃ (δ = 7.26 for ¹H NMR), C₆D₅H (δ = 7.16 for ¹H NMR) and CDCl₃ (δ = 77.0 for ¹³C NMR) as internal references. Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broaden peak. The numbering of compounds corresponds to that of dihydro-\beta-agarofurans. High resolution mass spectra were measured on JEOL JMS-T100LP (ESI-TOF).

Diels-Alder adducts 7. Et₃N (1.80 mL, 12.9 mmol) was added to a solution of dienophile 4 (4.82 g, 12.9 mmol) and diene **5** (1.44 g, 12.9 mmol) in CHCl₃ (26 mL) at room temperature. The reaction mixture was stirred at room temperature for 2 h and then concentrated. The residue was purified by flash column chromatography on silica gel (60 g, hexane/EtOAc 8/1) to afford a 2.4 : 1 mixture of *exo*-7 and *endo*-7 (5.13 g, 10.6 mmol) in 82% yield. For characterizations of *exo*-7 and *endo*-7, a small amount of the mixture was purified by flash column chromatography on silica gel. The structure of *exo*-7 and *endo*-7 were assigned as shown in page S4. *exo*-7: white solid; m.p. 121-125 °C; $[\alpha]_D^{27}$ 20 (*c* 1.2, CHCl₃); IR (film) v 2954, 2930, 2886, 2858, 1780, 1472, 1464, 1362, 1257, 1230, 1190, 1134, 1107, 1070, 1052, 941 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.085 (3H, s, *CH*₃ of TBS), 0.089 (6H, s, *CH*₃ of TBS x2), 0.15 (3H, s, *CH*₃ of TBS), 0.86 (9H, s, *t*-Bu of TBS), 0.91 (9H, s, *t*-Bu of TBS), 2.35 (1H, dd, *J* = 13.7, 3.6 Hz, H9a), 2.68 (1H, dd, *J* = 13.7, 1.8 Hz, H9b), 3.84 (1H, dd, *J* = 11.9, 4.1 Hz, H3a), 3.87 (1H, s, OH), 3.98 (1H, dd, *J* = 11.9, 4.1 Hz, H3b), 4.07 (1H, ddd, *J* = 5.5,

4.1, 4.1 Hz, H2), 4.73 (1H, d, J = 5.5 Hz, H1), 5.33 (1H, ddd, J = 5.0, 3.6, 1.8, 1.8 Hz, H8), 6.33 (1H, dd, J = 7.8, 1.8 Hz, H6), 6.50 (1H, dd, J = 7.8, 5.0 Hz, H7); ¹³C NMR (100 MHz, CDCl₃) δ -5.42, -5.35, -4.4, -4.1, 17.9, 18.3, 25.75, 25.80, 32.5, 53.0, 60.8, 69.0, 72.9, 76.4, 85.2, 132.5, 135.3, 173.1, 176.2; HRMS (ESI) calcd for C₂₃H₄₀O₇Si₂Na [M+Na]⁺ 507.2205, found 507.2180. *endo-7*: white solid; m.p. 124-130 °C; [α]_D²⁷ 15 (*c* 1.1, CHCl₃); IR (film) v 3462, 2953, 2931, 2888, 2858, 1760, 1469, 1391, 1362, 1255, 1192, 1133, 1071, 1006, 977, 940 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.09 (3H, s, *CH*₃ of TBS), 0.10 (3H, s, *CH*₃ of TBS), 0.12 (3H, s, *CH*₃ of TBS), 0.13 (3H, s, *CH*₃ of TBS), 0.90 (9H, s, *t*-Bu of TBS), 1.79 (1H, d, J = 13.3 Hz, H9a), 3.16 (1H, dd, J = 13.3, 4.6 Hz, H9b), 3.87 (1H, s, *OH*), 3.89 (1H, dd, J = 12.4, 3.7 Hz, H3a), 3.98 (1H, dd, J = 12.4, 2.5 Hz, H3b), 4.04 (1H, ddd, J = 6.0, 3.7, 2.5 Hz, H2), 4.72 (1H, d, J = 6.0 Hz, H1), 5.33 (1H, m, H8), 6.53 (1H, dd, J = 7.8, 5.3 Hz, H7), 6.59 (1H, dd, J = 7.8, 2.0 Hz, H6); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, -5.4, -5.2, -4.1, 18.1, 18.3, 25.8, 25.9, 32.5, 51.9, 60.8, 67.5, 74.0, 76.1, 84.5, 130.0, 136.9, 172.9, 174.5; HRMS (ESI) calcd for C₂₃H₄₀O₇Si₂Na [M+Na]⁺ 507.2205, found 507.2193.

Structural assignment of Diels-Alder adducts 7.

Treatment of a 2.4 : 1 mixture of *exo/endo* 7 at 140 °C gave compound 8 as a single product through the thermal CO₂ loss. This conversion confirmed the formation of 7, because other possible adducts *exo/endo*-S4, S5 and S6 should afford the different compounds S1, S2 and S3, respectively.

The structure of exo-7 was assigned by the following derivatization into tricycle S7.

Ketone 8. A 20 mL Pyrex vessel was charged with compound 7 (a 2.4 : 1 mixture, 5.13 g, 10.6 mmol) and chlorobenzene (10 mL). The solution was degassed by freeze-thaw procedure (x3), and then was heated at 140 °C with microwave at normal absorption. The reaction mixture was stirred at 140 °C for 1 h, cooled to room temperature and concentrated. The residue was purified by flash column chromatography on silica gel (100 g, hexane/EtOAc 18/1) to afford ketone 8 (4.67 g, 10.6 mmol) in 100% yield: white solid; m.p. 62-68 °C; $[\alpha]_D^{26}$ 35 (c 1.1, CHCl₃); IR (film) v 2954, 2931, 2888, 2858, 1781, 1720, 1470, 1391, 1256, 1165, 1144, 1118, 1096, 1066, 1008, 986, 941 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.03 (3H, s, CH₃) of TBS), 0.05 (3H, s, CH₃ of TBS), 0.07 (3H, s, CH₃ of TBS), 0.16 (3H, s, CH₃ of TBS), 0.87 (9H, s, *t*-Bu of TBS), 0.89 (9H, s, *t*-Bu of TBS), 2.62 (1H, brd, *J* = 19.7 Hz, H9a), 2.94 (1H, brd, J = 18.3 Hz, H6a), 2.97 (1H, brd, J = 19.7 Hz, H9b), 3.38 (1H, brd, J = 18.3 Hz, H6b), 3.77 (1H, dd, J = 11.9, 4.1 Hz, H3a), 3.84 (1H, dd, J = 11.9, 3.7 Hz, H3b), 4.14 (1H, ddd, J = 6.4, 4.1, 3.7 Hz, H2), 5.10 (1H, d, J = 6.4 Hz, H1), 5.80 (1H, d, J = 11.0 Hz, H6 or H7), 5.83 (1H, d, J = 11.0 Hz, H6 or H7); ¹³C NMR (100 MHz, CDCl₃) δ -5.50, -5.47, -5.0, -4.8, 17.9, 18.2, 25.6, 25.8, 28.4, 39.3, 60.2, 60.6, 68.2, 83.8, 123.3, 124.0, 172.5, 203.3; HRMS (ESI) calcd for C₂₂H₄₀O₅Si₂Na 463.2306 [M+Na]⁺, found 463.2285.

Enone 9. *m*-CPBA (77% purity, 3.56 g, 15.9 mmol) was added to a solution of ketone **8** (4.67 g, 10.6 mmol) in CH₂Cl₂ (106 mL) at room temperature. The reaction mixture was stirred at room temperature for 18 h, and then *m*-CPBA (77% purity, 1.56 g, 6.96 mmol) was added. The reaction mixture was stirred at room temperature for 4 h, and then saturated aqueous NaHCO₃ (40 mL) and saturated aqueous Na₂S₂O₃ (40 mL) were successively added. The resultant solution was extracted with CH₂Cl₂ (50 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was treated with silica gel (80 g) for 12 h at room temperature and eluted with EtOAc (1 L). Concentration of the solution afforded enone **9** (4.45 g, 9.74 mmol) in 92% yield. The C8-configuration was determined by the modified Mosher method as described page S6: white solid; m.p. 103-108 °C; $[\alpha]_D^{28}$ 0.41 (*c* 1.0, CHCl₃); IR (film) v 3484, 2954, 2931, 2888, 2859, 1774, 1684,

1470, 1408, 1390, 1363, 1325, 1257, 1235, 1142, 1121, 1069, 1034, 1011, 949 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ -0.04 (3H, s, *CH*₃ of TBS), 0.06 (3H, s, *CH*₃ of TBS), 0.08 (3H, s, *CH*₃ of TBS), 0.12 (3H, s, *CH*₃ of TBS), 0.86 (9H, s, *t*-Bu of TBS), 0.90 (9H, s, *t*-Bu of TBS), 2.18 (1H, dd, *J* = 13.7, 11.0 Hz, H9a), 2.19 (1H, d, *J* = 5.9 Hz, OH), 2.41 (1H, ddd, *J* = 13.7, 5.3, 1.8 Hz, H9b), 3.80 (1H, dd, *J* = 12.4, 3.7 Hz, H3a), 4.01 (1H, dd, *J* = 12.4, 1.8 Hz H3b), 4.17 (1H, ddd, *J* = 7.8, 3.7, 1.8 Hz, H2), 4.96 (1H, m, H8), 5.37 (1H, d, *J* = 7.8 Hz, H1), 6.13 (1H, dd, *J* = 10.5, 2.1 Hz, H6), 7.07 (1H, ddd, *J* = 10.5, 2.1, 1.8 Hz, H7); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, -5.4, -5.3, -4.5, 17.8, 18.2, 25.6, 25.7, 33.1, 58.4, 60.1, 64.5, 68.6, 83.3, 128.2, 154.8, 171.7, 192.0; HRMS (ESI) calcd for C₂₂H₄₀O₆Si₂Na [M+Na]⁺ 479.2256, found 479.2234.

Determination of the C8-configuration.

The C8-configuration of **8** was determined to be *S* by the modified Mosher method.^{S1} (*S*)and (*R*)-MTPA esters **S8** and **S9** were synthesized by treatment of **8** with (*R*)- and (*S*)-MTPACl, respectively.

Ketone 11. Isopropenylmagnesium bromide (0.5 M in THF, 55.0 mL, 27.5 mmol) was added to a solution of enone 9 (4.22 g, 9.24 mmol) in THF (92 mL) at -78 °C. The reaction mixture was warmed to 0 °C and stirred for 10 min, and then poured into pH 7 phosphate buffer (150 mL). The resultant solution was extracted with EtOAc (200 mL x3), and the

combined organic layers were dried over Na₂SO₄, filtered and concentrated to afford the crude ketone **10**, which was used in the next reaction without further purification.

TMSOTf (2.50 mL, 13.8 mmol) was added to a solution of the above crude ketone 10 and 2,6-lutidine (3.20 mL, 27.5 mmol) in CH₂Cl₂ (92 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 30 min, and then saturated aqueous NH₄Cl (100 mL) was added. The resultant solution was extracted with EtOAc (100 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (100 g, hexane/EtOAc 100/1) to afford ketone 11 (3.23 g, 5.66 mmol) in 61% yield over 2 steps. The C7-configuration was determined by the NOE correlation between α -H9 and H12 of **11**: white solid; m.p. 87.0-88.0 °C; $\left[\alpha\right]_{D}^{22}$ -4.6 (c 1.0, CHCl₃); IR (film) v 2954, 2931, 2895, 2858 1767, 1712, 1647, 1559, 1536, 1512, 1467, 1406, 1326, 1254, 1149, 1118, 1088, 1015 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.01 (3H, s, CH₃ of TBS), 0.04 (3H, s, CH₃ of TBS), 0.07 (3H, s, CH₃ of TBS), 0.13 (9H, s, CH₃ of TMS), 0.14 (3H, s, CH₃ of TBS), 0.86 (9H, s, *t*-Bu of TBS), 0.88 (9H, s, *t*-Bu of TBS), 1.82 (1H, ddd, *J* = 14.2, 4.1, 0.9 Hz, H9a), 1.85 (3H, s, H13), 2.41 (1H, dd, J = 14.2, 10.5 Hz, H9b), 2.69 (1H, dd, J = 16.0, 4.1 Hz, H6a), 2.94 (1H, m, H7), 3.11 (1H, dd, J = 16.0, 6.4 Hz, H6b), 3.77 (1H, dd, J = 12.4, 3.6 Hz, H3a), 3.96 (1H, dd, J = 12.4, 2.3 Hz, H3b), 4.09 (1H, ddd, J = 7.8, 3.6, 2.3 Hz, H2), 4.59 (1H, s, H12a), 4.79 (1H, ddd, J = 10.5, 8.7, 4.1 Hz, H8), 4.94 (1H, s, H12b) 5.24 (1H, d, J = 7.8 Hz, H1); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, -5.4, -5.0, -4.5, -0.1, 17.8, 18.2, 25.4, 25.70, 25.73, 31.3, 42.7, 46.2, 60.1, 60.8, 67.2, 67.8, 83.2, 114.1, 145.4, 172.9, 203.6; HRMS (ESI) calcd for $C_{28}H_{54}O_6Si_3Na 593.3120 [M+Na]^+$, found 593.3097.

n-BuLi (1.6 M in hexane, 18 mL, 29.0 mmol) was added to a solution of **Diol** 15. triisopropylsilyl acetylene (7.0 mL, 31 mmol) in THF (35 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 15 min, and then anhydrous CeCl₃ (0.6 M in THF, 48 mL, 29.0 mmol), which was prepared according to the reported procedure,^{S2} was added. The resultant mixture was at -78 °C for 1 h, and then a solution of ketone 11 (3.63 g, 6.36 mmol) The reaction mixture was warmed to 0 °C and stirred for 1 h, and in THF (5 mL) was added. then saturated aqueous NH₄Cl (100 mL) was added. The resultant solution was extracted with EtOAc (100 mL x3). The combined organic layers were dried over Na_2SO_4 , filtered The residue was purified by flash column chromatography on silica gel and concentrated. (60 g, hexane/EtOAc 100/1) to afford the unreacted ketone 11 (1.10 g, 1.93 mmol) and the crude alcohol 12, which was used in the next reaction without further purification.

PhSeCl (914 mg, 4.77 mmol) was added to a solution of the above crude alcohol **12** in CH₂Cl₂ (32 mL) at -20 °C. The reaction mixture was stirred at -20 °C for 10 min, and then saturated aqueous NaHCO₃ (15 mL) and saturated aqueous Na₂S₂O₃ (15 mL) were successively added. The resultant solution was extracted with EtOAc (20 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated to afford the crude selenide **13**, which was used in the next reaction without further purification. The C11-configuration was determined by the NOE correlation between α -H9 and H12 of the pure selenide **13**, which was obtained by PTLC purification of a small amount of the crude selenide **13**. Selenide **13**: ¹H NMR (400 MHz, C₆D₆) δ 0.13 (9H, s, CH₃ of TMS x3), 0.18 (3H, s, CH₃ of TBS), 0.19 (3H, s, CH₃ of TBS), 0.22 (3H, s, CH₃ of TBS), 0.36 (3H, s, CH₃ of TBS), 1.00 (9H, s, *t*-Bu of TBS), 1.05-1.08 (3H, m, CH of TIPS x 6), 1.47 (3H, s, H13), 1.90 (1H, dd, *J* = 14.6, 6.9 Hz,

H9a), 2.34 (1H, m, H7), 2.53 (1H, dd, J = 13.2, 5.0 Hz, H6a), 2.80 (1H, dd, J = 14.6, 11.0 Hz, H9b), 3.20 (1H, d, J = 11.4 Hz, H12a), 3.82 (1H, d, J = 13.2 Hz, H6b), 3.97 (1H, dd, J = 12.4, 8.2 Hz, H3a), 4.18-4.25 (3H, m, H2, H3 and H12b), 4.36 (1H, m, H8), 4.95 (1H, d, J = 7.8 Hz, H1), 7.57 (3H, m, aromatic), 7.58 (2H, m, aromatic); HRMS (ESI) calcd for C₄₅H₈₀O₆Si₄Na 931.4089 [M+Na]⁺, found 931.4106.

A solution of the above crude selenide 13, n-Bu₃SnH (4.5 mL, 17 mmol) and AIBN (522 mg, 3.18 mmol) in benzene (32 mL) was degassed by freeze-thaw procedure (x3). The reaction mixture was heated to reflux, stirred for 2 h, cooled to room temperature and concentrated to afford the crude 14, which was used in the next reaction without further purification.

Dowex-50W (2.4 g) was added to a solution of the above crude 14 in MeOH (32 mL) at room temperature. The reaction mixture was stirred at room temperature for 18 h, filtered and concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (50 g) and 50% (w/w) KF contained silica gel (50 g), hexane/EtOAc 3/1] to afford diol 15 (721 mg, 1.27 mmol) in 20% yield over 4 steps. The yield was calculated to be 29% over 4 steps based on the recovered ketone 11: white solid; m.p. 158.0-160.0 °C; $[\alpha]_D^{17}$ 32 (c 0.50, CHCl₃); IR (film) v 3438, 2940, 2864, 2170, 1756, 1463, 1386, 1364, 1255, 1191, 1149, 1120, 1066, 1008, 938 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 0.15 (3H, s, CH₃ of TBS), 0.21 (3H, s, CH₃ of TBS), 0.91 (9H, s, t-Bu of TBS), 1.05 (21H, br s, TIPS), 1.30 (3H, s, CH_3), 1.51 (3H, s, CH_3), 1.76 (1H, dd, J = 14.4, 6.6 Hz, H9a), 2.14 (1H, dd, J = 5.5, 3.2 Hz, H7), 2.47 (1H, dd, J = 13.0, 5.5 Hz, H6a), 2.55 (1H, dd, J = 14.4, 11.7 Hz, H9b), 3.33 (1H, d, J = 13.0 Hz, H6b), 3.77 (1H, dd, J = 12.4, 5.3 Hz, H3a), 3.98 (1H, dd, J = 12.4, 2.3 Hz, H3b), 4.02 (1H, ddd, J = 7.8, 5.3, 2.3 Hz, H2), 4.25 (1H, ddd, J = 11.7, 6.6, 3.2 Hz, H8), 4.89 (1H, d, J = 7.8 Hz, H1); ¹³C NMR (100 MHz, CDCl₃) δ -4.5, -3.4, 11.0, 18.0, 18.5, 24.7, 25.9, 29.5, 31.5, 38.6, 48.9, 55.0, 61.2, 69.9, 71.9, 79.3, 82.3, 84.0, 88.0, 106.8, 175.3; HRMS (ESI) calcd for $C_{30}H_{54}O_6Si_2Na$ 589.3351 [M+Na]⁺, found 589.3328.

Bromide 3a. MsCl (57 μ L, 740 μ mol) was added to a solution of diol **15** (691 mg, 1.22 mmol) and Et₃N (200 μ L, 1.44 mmol) in CH₂Cl₂ (12 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 5 min, and then saturated aqueous NH₄Cl (15 mL) was added. The resultant solution was extracted with EtOAc (10 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (15 g, CH₂Cl₂/EtOAc 35/1) to afford the crude mesylate **16** and the unreacted diol **15** (307 mg, 542 μ mol). According to the above procedure, the recovered diol **15** (307 mg, 542 μ mol) was mesylated by using MsCl (29 μ L, 370 μ mol) and Et₃N (106 μ L, 761 μ mol) in CH₂Cl₂ (5.5 mL). The residue was purified by flash column chromatography on silica gel (6 g, CH₂Cl₂/EtOAc 35/1) to give the crude mesylate **16** and the unreacted diol **15** (101 mg, 178 μ mol). The combined crude mesylate **16** was used in the next reaction without further purification.

LiBr (4.56 g, 52.5 mmol) was added to a solution of the above crude mesylate 16 in THF (11 mL) at room temperature. The reaction mixture was heated to reflux and stirred for 14 h. After the mixture was cooled to room temperature, saturated aqueous NaHCO₃ (12 mL) was The resultant solution was extracted with EtOAc (20 mL x3). added. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (15 g, hexane/EtOAc 6/1) to afford bromide 3a (622 mg, 987 μ mol) in 81% yield over 2 steps: white solid; m.p. 120.0-122.0 °C; $[\alpha]_D^{30}$ 23 (c 0.50, CHCl₃); IR (film) v 3437, 2941, 2892, 2864, 2169, 1774, 1463, 1387, 1366, 1318, 1294, 1256, 1221, 1192, 1149, 1119, 1065, 1037, 1009, 970, 922 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.18 (3H, s, CH₃ of TBS), 0.23 (3H, s, CH₃ of TBS), 0.92 (9H, s, t-Bu of TBS), 1.06 (21H, br s, TIPS), 1.30 (3H, s, CH₃), 1.50 (3H, s, CH₃), 1.75 (1H, dd, J = 14.2, 6.4 Hz, H9a), 2.14 (1H, dd, *J* = 5.3, 3.2 Hz, H7), 2.479 (1H, dd, *J* = 14.2, 11.4 Hz, H9b), 2.481 (1H, dd, *J* = 13,3, 5.3 Hz, H6a), 3.32 (1H, d, J = 13.3 Hz, H6b), 3.54 (1H, dd, J = 11.4, 7.1 Hz, H3a), 3.77 (1H, dd, *J* = 11.4, 2.7 Hz, H3b), 4.16 (1H, ddd, *J* = 7.1, 6.8, 2.7 Hz, H2), 4.27 (1H, ddd, *J* = 11.4, 6.4, 3.2 Hz, H8), 4.77 (1H, d, J = 6.8 Hz, H1); ¹³C NMR (100 MHz, CDCl₃) δ -4.2, -3.4, 11.1, 18.0, 18.6, 24.7, 25.9, 29.9, 31.0, 31.4, 38.8, 48.9, 55.6, 69.9, 75.1, 79.2, 81.3, 84.3, 88.6, 106.9, 174.6; HRMS (ESI) calcd for $C_{30}H_{53}BrO_5Si_2Na$ 651.2507 and 653.2487 [M+Na]⁺, found 651.2487 and 653.2467.

Enal 23. A solution of bromide **3a** (230 mg, 365 μ mol) and AIBN (30.0 mg, 182 μ mol) in benzene (34 mL) was degassed by freeze-thaw procedure (x3). The mixture was heated to reflux, and then a degassed solution of *n*-Bu₃SnH (980 μ L, 3.6 mmol) and AIBN (30.0 mg, 182 μ mol) in benzene (2.5 mL) by freeze-thaw procedure (x3) was added over 30 min. After the addition was completed, the reaction mixture was stirred at the reflux temperature for further 1 h. The mixture was cooled to room temperature and concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (5 g) and 50% (w/w) KF contained silica gel (5 g), hexane/EtOAc 10/1] to afford a 5.3 : 1.4 : 1 mixture of (*E*)-**2a**, (*Z*)-**2a**, and the 7-membered compound **30a**, which was used in

the next reaction without further purification. The combined yield of (E)-2a, (Z)-2a, and 30a was calculated to be 83% by ¹H NMR analysis of the crude mixture using CH₂Br₂ as an internal standard. For the structural confirmation of the products, see page S13.

Dess-Martin periodinane (276 mg, 651 μ mol) was added to a solution of the above crude mixture and NaHCO₃ (546 mg, 6.50 mmol) in CH₂Cl₂ (3.5 mL) at room temperature. The reaction mixture was stirred at room temperature for 1 h, and then saturated aqueous Na₂S₂O₃ (4 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g, hexane/EtOAc 20/1) to afford the crude **17**, which was used in the next reaction without further purification.

TBSOTf (1.4 mL, 6.1 mmol) was added to a solution of the above crude ketone **17** and Et_3N (1.7 mL, 12 mmol) in CH_2Cl_2 (3 mL) at room temperature. The reaction mixture was heated to reflux and stirred for 1 h. After the mixture was cooled to room temperature, pH 7 phosphate buffer (1.5 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g, hexane/EtOAc 50 /1) to afford the crude TBS-enol ether **18**, which was used in the next reaction without further purification.

m-CPBA (79.2 mg, 459 µmol) was added to a solution of the above TBS-enol ether **18** in CH₂Cl₂ (3 mL) at room temperature. The reaction mixture was stirred for 2 h at room temperature, and then saturated aqueous NaHCO₃ (1.5 mL) and saturated aqueous Na₂S₂O₃ (1.5 mL) were successively added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated to afford the crude ketone **19**, which was used in the next reaction without further purification. The β/α C9-diastereomeric ratio of the major compound (*E*)-**19** was determined to be 4.0 : 1 by the ¹H NMR analysis of the crude mixture.

A solution of the above crude **19** mixture in THF (1 mL), H₂O (1 mL) and AcOH (1 mL) was stirred for 24 h at room temperature, and then saturated aqueous NaHCO₃ (5 mL) was added. The resultant solution was extracted with EtOAc (10 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g, hexane/EtOAc 15/1) to afford the crude ketone **20**, which was used in the next reaction without further purification. The β/α C9-diastereomeric ratio of the major compound (*E*)-**20** was over 20 : 1 from the ¹H NMR analysis of the crude mixture.

NaBH₄ (31.6 mg, 836 μ mol) was added to a solution of the above crude ketone **20** and CeCl₃·7H₂O (311 mg, 834 μ mol) in MeOH (2.1 mL) at -78 °C. The reaction mixture was stirred for 5 min at -78 °C, and then saturated aqueous potassium sodium tartrate (3.0 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined

organic layers were dried over Na₂SO₄, filtered and concentrated to afford the crude diol **21**, which was used in the next reaction without further purification. The β/α C8-diastereomeric ratio of the major compound (*E*)-**21** was determined to be 5.9 : 1 by the ¹H NMR analysis of the crude mixture. The β -orientation of the *cis*-C8, 9-diol was established by the NOESY spectra of the target compound **1**. For the key NOESY correlations, see page S18.

PPTS (26.2 mg, 104 μ mol) was added to a solution of the above crude diol **21** and 2,2-dimethoxypropane (510 μ L, 4.2 mmol) in toluene (2.1 mL) at room temperature. The reaction mixture was heated to 80 °C and stirred for 2 h. After the mixture was cooled to room temperature, saturated aqueous NaHCO₃ (3 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (2 g, hexane/EtOAc 30/1) to afford the crude acetonide **22**, which was used in the next reaction without further purification.

Ozone was bubbled into a solution of the above crude acetonide 22 in EtOAc (5 mL) for 1.5 min at -78 °C. Excess ozone was removed by bubbling O₂ at -78 °C for 5 min, and then Me₂S (730 μ L, 9.8 mmol) was added. The reaction mixture was warmed to room temperature and stirred for 22 h. After toluene (5 mL) was added, the resultant mixture was concentrated at 20 °C. This procedure was repeated twice to remove excess Me₂S. the residue was purified by flash column chromatography on silica gel (0.25 g, hexane/EtOAc 15/1) to afford enal 23 (20.5 mg, 44.1 µmol) in 12% yield over 8 steps: 23 colorless oil; [α]_D²⁷ 9.4 (*c* 1.0, CHCl₃); IR (film) v 2931, 2858, 1789, 1706, 1469, 1382, 1369, 1327, 1303, 1262, 1214, 1139, 1096, 1064, 1037, 1011, 937 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.13 (3H, s, CH₃ of TBS), 0.14 (3H, s, CH₃ of TBS), 0.92 (9H, s, t-Bu of TBS), 1.33 (3H, s, CH₃), 1.37 $(3H, s, CH_3)$, 1.43 $(3H, s, CH_3)$, 1.66 $(3H, s, CH_3)$, 2.58 (1H, dd, J = 4.6, 2.7 Hz, H7), 2.65 (1H, d, J = 12.8 Hz, H6a), 3.07 (1H, dd, J = 12.8, 4.6 Hz, H6b), 4.34 (1H, d, J = 6.9 Hz, H9),4.57 (1H, dd, *J* = 6.9, 2.7 Hz, H8), 4.61 (1H, s, H1), 4.67 (1H, d, *J* = 5.9 Hz, H2), 7.08 (1H, d, J = 5.9 Hz, H3), 9.47 (1H, s, H15); ¹³C NMR (100 MHz, CDCl₃) δ -5.1, -4.5, 18.0, 24.5, 24.8, 24.9, 25.4, 28.2, 29.1, 46.1, 61.3, 71.9, 73.8, 75.2, 76.2, 82.5, 83.6, 110.5, 141.0, 149.3, 171.9, 191.1; HRMS (ESI) calcd for $C_{24}H_{36}O_7SiNa 487.2123 [M+Na]^+$, found 487.2125.

Structural assignment of 2a and 30a: Inseparable (*E*)-2a, (*Z*)-2a and 30a were oxidized into (*E*)-17, (*Z*)-17 and S10, respectively. Flash column chromatography of a small amount of the crude products gave pure (*E*)-17 and (*Z*)-17 along with the crude mixture of (*E*)-17 and S10. An inseparable 1 : 1.3 mixture of (*E*)-18 and S11 was synthesized from the crude mixture of (*E*)-17 and S10 by treatment with TBSOTf and Et₃N in refluxing CH₂Cl₂. The 6-membered ring structures of (*E*)-17 and (*Z*)-17 were elucidated by the 1D and 2D NMR experiments, and the stereochemistries of the vinyl silane of (*Z*)-17 was determined by the

NOE correlation between H3 and H15. The 7-membered ring formation was also established by the 1D and 2D NMR experiments of the mixture of (E)-18 and S11.

(*E*)-17: colorless oil; $[\alpha]_D^{25}$ 53 (*c* 0.15, CHCl₃); IR (film) v 2933, 2894, 2864, 1779, 1721, 1622, 1465, 1386, 1364, 1257, 1212, 1187, 1137, 1120, 1089, 1058, 1032, 997, 973 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.09 (3H, s, *CH*₃ of TBS), 0.10 (3H, s, *CH*₃ of TBS), 0.87 (9H, s, *t*-Bu of TBS), 1.05 (9H, d, *J* = 6.8 Hz, *CH*₃ of TIPS x3), 1.06 (9H, d, *J* = 6.8 Hz, *CH*₃ of TIPS x3), 1.13 (3H, m, *CH* of TIPS x3), 1.22 (3H, s, *CH*₃), 1.23 (3H, s, *CH*₃), 2.28 (1H, br d, *J* = 15.1 Hz, H6a), 2.55 (1H, d, *J* = 20.6 Hz, H9a), 2.73-2.80 (3H, m, H3a, H6b and H7), 2.85 (1H, d, *J* = 20.6 Hz, H9b), 2.99 (1H, dd, *J* = 15.1, 5.3 Hz, H3b), 4.56 (1H, d, *J* = 5.3 Hz, H2), 4.64 (1H, s, H1), 5.77 (1H, d, *J* = 1.8 Hz, H15); ¹³C NMR (100 MHz, CDCl₃) δ -4.9, -4.6, 12.2, 17.9, 18.7, 18.8, 25.6, 25.7, 29.1, 31.2, 35.9, 36.2, 57.9, 58.9, 80.8, 82.4, 86.1, 125.8, 147.6, 176.6, 208.6; HRMS (ESI) calcd for C₃₀H₅₂O₅Si₂Na 571.3245 [M+Na]⁺, found 571.3236. (*Z*)-17: colorless oil; $[\alpha]_D^{25}$ 29 (*c* 0.28, CHCl₃); IR (film) v 2949, 2929, 2863, 1772, 1722, 1608, 1465, 1389, 1367, 1257, 1202, 1180, 1122, 1085, 1059, 1024, 1002, 971 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.09 (3H, s, *CH*₃ of TBS), 0.11 (3H, s, *CH*₃ of TBS), 0.88 (9H, s, *t*-Bu of

TBS), 1.06-1.08 (21H, m, TIPS), 1.22 (3H, s, CH_3), 1.27 (3H, s, CH_3), 2.34 (1H, d, J = 12.1Hz, H6a), 2.60 (1H, dd, J = 12.1, 5.0 Hz, H6b), 2.62 (1H, d, J = 21.0 Hz, H9a), 2.75 (1H, d, J = 5.0 Hz, H7), 2.76 (1H, dd, J = 14.6, 5.5 Hz, H3a), 2.89 (1H, d, J = 21.0 Hz, H9b), 3.10 (1H, dd, J = 14.6, 1.7 Hz, H3b), 4.52 (1H, d, J = 5.5 Hz, H2), 4.68 (1H, s, H1), 5.50 (1H, d, J = 1.7 Hz, H15); ¹³C NMR (100 MHz, CDCl₃) δ -4.7, -4.4, 13.8, 17.9, 19.1, 19.4, 25.6, 26.1, 29.7, 29.8, 32.4, 35.8, 44.2, 58.1, 59.2, 80.6, 81.3, 85.5, 129.0, 147.8, 176.5, 208.2; HRMS (ESI) calcd for C₃₀H₅₂O₅Si₂Na 571.3245 [M+Na]⁺, found 571.3242. (*E*)-18: ¹H NMR (400 MHz, CDCl₃) δ 0.079 (3H, s, CH₃ of TBS), 0.085 (3H, s, CH₃ of TBS), 0.19 (3H, s, CH₃ of TBS), 0.22 (3H, s, CH₃ of TBS), 0.89 (9H, s, t-Bu of TBS), 0.93 (9H, s, t-Bu of TBS), 1.03-1.06 (21H, m, TIPS), 1.22 (3H, s, CH₃), 1.33 (3H, s, CH₃), 2.12 (1H, d, J = 11.4 Hz, H6a), 2.24 (1H, d, J = 4.6 Hz, H7), 2.52 (1H, dd, J = 11.4, 4.6 Hz, H6b), 2.72 (1H, dd, J = 15.1, 1.4 Hz, H3a), 2.93 (1H, dd, J = 15.1, 5.0 Hz, H3b), 4.48 (1H, d, J = 5.0 Hz, H2), 4.60 (1H, s, H9), 4.61 (1H, d, J = 1.4 Hz, H1), 5.74 (1H, brs, H15). **S11**: ¹H NMR (400 MHz, CDCl₃) δ 0.08 (3H, s, CH₃ of TBS), 0.09 (3H, s, CH₃ of TBS), 0.18 (3H, s, CH₃ of TBS), 0.20 (3H, s, CH₃ of TBS), 0.90 (9H, s, t-Bu of TBS), 0.93 (9H, s, t-Bu of TBS), 1.03-1.08 (21H, m, TIPS), 1.25 (3H, s, CH₃), 1.32 (3H, s, CH₃), 2.05 (1H, dd, J = 11.0, 4.1 Hz, H6a), 2.21 (1H, d, J = 4.1 Hz, H7), 2.42 (1H, ddd, J = 18.3, 2.8, 1.8 Hz, H3a), 2.82 (1H, dd, J = 18.3, 5.0 Hz, H3b), 2.84 (1H, d, J = 11.0 Hz, H6b), 4.52 (1H, s, H9), 4.53 (1H, dd, J = 5.0, 2.8 Hz, H2), 4.67 (1H, brs, H2), 4.67 (1H, bra, H2), 4.67 (1H, bra,H1), 5.66 (1H, d, J = 1.8 Hz, H4). The ¹³C NMR peaks at C4 and C15 of **S11** were deduced from the 2D NMR data of the mixture of (E)-18 and S11.

Alcohol 24. DIBAL-H (1.0 M in hexane, 64 µL, 64 µmol) was added to a solution of enal 23 (29.9 mg, 64.4 µmol) in CH₂Cl₂ (640 µL) at -78 °C. The reaction mixture was stirred at -78 °C for 5 min, and then saturated aqueous potassium sodium tartrate (3 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (1 g, hexane/EtOAc 2/1) to afford alcohol 24 (18.9 mg, 40.5 µmol) in 63% yield: colorless oil; $[\alpha]_D^{27}$ 6.6 (*c* 0.050, CHCl₃); IR (film) v 2977, 2931, 2861, 1781, 1469, 1381, 1258, 1212, 1124, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.11 (3H, s, CH₃ of TBS), 0.13 (3H, s, CH₃ of TBS), 0.91 (9H, s, *t*-Bu of TBS), 1.32 (3H, s, CH₃), 1.38 (3H, s, CH₃), 1.66 (3H, s, CH₃), 2.22 (1H, dd, *J* = 12.8, 4.6 Hz, H6a), 2.54 (1H, dd, *J* = 4.6, 2.8 Hz, H7), 2.72 (1H, d, *J* = 12.8 Hz, H6b), 4.15-4.19 (2H, m, H15),

4.34 (1H, d, J = 6.9 Hz, H9), 4.48 (1H, d, J = 6.0 Hz, H2), 4.53 (1H, s, H1), 4.56 (1H, dd, J = 6.9, 2.8 Hz, H8), 6.35 (1H, ddd, J = 6.0, 1.4, 1.4 Hz, H3); ¹³C NMR (125 MHz, CDCl₃) δ -5.1, -4.4, 18.0, 24.3, 24.8, 24.9, 25.4, 29.2, 29.3, 45.8, 60.51, 60.54, 61.5, 72.1, 73.9, 76.2, 82.3, 84.3, 110.4, 127.4, 142.4, 173.0; HRMS (ESI) calcd for C₂₄H₃₈O₇SiNa 489.2279 [M+Na]⁺, found 489.2281.

Xanthate 25. CS_2 (25 µL, 410 µmol) was added to a solution of alcohol 24 (18.9 mg, 40.5 μmol) and NaH (70% purity, 13.9 mg, 405 μmol) in THF (405 μL) at 0 °C. The reaction mixture was stirred at 0 °C for 13 min, and then MeI (25 µL, 410 µmol) was added. The reaction mixture was stirred at 0 °C for 1 h, and then saturated aqueous NH₄Cl (1.5 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g, hexane/EtOAc 15/1) to afford xanthate 25 (17.8 mg, 32.0 µmol) in 79% yield: colorless oil; IR (film) v 2924, 2852, 1771, 1460, 1382, 1258, 1213, 1064, 1004 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.12 (3H, s, CH₃ of TBS), 0.13 (3H, s, CH₃ of TBS), 0.91 (9H, s, t-Bu of TBS), 1.32 (3H, s, CH₃), 1.32 (3H, s, CH₃), 1.38 (3H, s, CH₃), 1.67 (3H, s, CH₃), 2.12 (1H, dd, J = 13.3, 4.6 Hz, H6a), 2.52-2.56 (1H, m, H7), 2.56 (3H, s, SCH₃), 2.76 (1H, d, J = 13.3 Hz, H6b), 4.34 (1H, d, J = 6.9 Hz, H9), 4.49 (1H, d, *J* = 6.4 Hz, H2), 4.53 (1H, s, H1), 4.56 (1H, dd, *J* = 6.9, 2.7 Hz, H8), 4.98 (1H, d, *J* = 13.8 Hz, H15a), 5.16 (1H, d, J = 13.8 Hz, H15b), 6.41 (1H, d, J = 6.4 Hz, H3); HRMS (ESI) calcd for $C_{26}H_{40}O_7S_2SiNa 579.1877 [M+Na]^+$, found 579.1870.

Tris-TBS ether 29. A solution of xanthate **25** (17.8 mg, 32.0 μ mol), *n*-Bu₃SnH (86 μ L, 320 μ mol) and AIBN (5.3 mg, 32 μ mol) in benzene (320 μ L) was degassed by freeze-thaw procedure (x3). The reaction mixture was heated to reflux, stirred for 2 h and then concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (1 g) and 50% (w/w) KF contained silica gel (1 g), hexane/EtOAc 10/1] to afford an inseparable 5.6 : 1 mixture of the *endo*-olefin **26** and the *exo*-olefin isomer, which was used in the next reaction without further purification.

TBAF (1.0 M in THF, 46 μ L, 46 μ mol) was added to a solution of the above crude mixture in THF (0.3 mL) at -20 °C. The reaction mixture was warmed to room temperature and stirred for 2 h, and then saturated aqueous NH₄Cl (3 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g, hexane/EtOAc 2/1) to afford the crude alcohol **27**, which was used in the next reaction without further purification.

LiAlH₄ (16.4 mg, 432 μ mol) was added to a solution of the above crude alcohol **27** in THF (0.3 mL) at room temperature. The reaction mixture was stirred at room temperature for 30 min. After the mixture was cooled to 0 °C, H₂O (5 drops) was added. The resultant solution was filtrated through a pad of Celite with EtOAc (30 mL). The filtrate was concentrated to afford the crude triol **28**, which was used in the next reaction without further purification.

TBSOTf (200 μ L, 870 μ mol) was added to a solution of the above crude triol **28** and 2,6-lutidine (200 μ L, 1.7 mmol) in CH₂Cl₂ (290 μ L) at room temperature. The reaction

mixture was stirred at room temperature for 30 min, and then pH 7 phosphate buffer (1.5 mL) was added. The resultant solution was extracted with EtOAc (5 mL x3), and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g, hexane/EtOAc 180/1 to 50/1) to afford tris-TBS ether **29** (11.1 mg, 16.2 μ mol) in 51% yield over 4 steps: colorless oil; $[\alpha]_D^{27}$ -2.8 (*c* 0.18, CHCl₃); IR (film) v 2953, 2931, 2897, 2857, 1469, 1365, 1300, 1254, 1210, 1165, 1123, 1098, 1060, 1043, 923 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ -0.01 (3H, s, CH₃ of TBS), 0.00 (3H, s, CH₃ of TBS), 0.03 (3H, s, CH₃ of TBS), 0.06 (3H, s, CH₃ of TBS), 0.09 (3H, s, CH₃ of TBS), 0.11 (3H, s, CH₃ of TBS), 0.89 (9H, s, t-Bu of TBS), 0.91 (9H, s, t-Bu of TBS), 0.93 (9H, s, t-Bu of TBS), 1.25 (3H, s, CH₃), 1.30 (3H, s, CH₃), 1.32 (3H, s, CH₃), 1.55 (3H, s, CH₃), 1.78 (3H, s, H15), 1.98 (1H, dd, J = 12.4, 4.6 Hz, H6a), 2.36 (1H, dd, J = 3.7, 2.3 Hz, H7), 3.41 (1H, d, J = 12.4 Hz, H6b), 4.01 (1H, d, J = 11.4 Hz, H14a), 4.18 (1H, d, J = 11.4 Hz, H14b), 4.18 (1H, d, J = 6.4 Hz, H9), 4.21-4.25 (1H, m, H2), 4.22 (1H, s, H1), 4.48 (1H, dd, J = 6.4, 2.3 Hz, H8), 5.62 (1H, m, H3); ¹³C NMR (125 MHz, CDCl₃) δ -5.4, -5.0, -4.9, -4.7, -2.5, -2.2, 18.1, 18.2, 18.4, 19.1, 24.3, 24.5, 26.16, 26.25, 26.32, 26.6, 28.4, 29.7, 46.8, 51.1, 61.1, 68.2, 73.7, 74.7, 76.1, 78.8, 87.2, 108.2, 128.2, 135.0; HRMS (ESI) calcd for C₃₆H₇₀O₆Si₃Na 705.4372 [M+Na]⁺, found 705.4387.

Compound 1. OsO₄ (0.5 M in pyridine, 64 µL, 32 µmol) was added to a solution of tris-TBS ether **29** (2.2 mg, 3.2 µmol) in pyridine (0.26 mL) at room temperature. The reaction mixture was warmed to 50 °C and stirred for 40 h. After the mixture was cooled to room temperature, EtOAc (0.25 mL) and saturated aqueous NaHSO₃ (1 mL) were successively added. The mixture was stirred for 18 h, and the resultant solution was extracted with EtOAc (5 mL x3). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g, hexane/EtOAc 50/1 to 15/1) to afford **1** (1.6 mg, 2.2 µmol) in 69% yield. The stereochemistry of the α-oriented *cis*-C3, 4-diol and β-oriented *cis*-C8, 9-diol were elucidated by the NOESY experiment of **1**: colorless oil; $[\alpha]_D^{26}$ 3.7 (*c* 0.21, CHCl₃); IR (film) v 3442, 2929, 2857, 1469, 1378, 1256, 1213, 1108, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.02 (3H, s, CH₃ of TBS), 0.04 (3H, s, CH₃ of TBS), 0.08 (3H, s, CH₃ of TBS), 0.12 (3H, s,

CH₃ of TBS), 0.15 (6H, s, CH₃ of TBS x2), 0.93 (27H, s, *t*-Bu of TBS x 3), 0.131 (3H, s, CH₃), 0.135 (3H, s, CH₃), 1.36 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.53 (3H, s, CH₃), 2.14 (1H, dd, J = 12.4, 3.2 Hz, H6a), 2.29 (1H, m, H7), 3.04 (1H, s, OH), 3.38 (1H, d, J = 12.4 Hz, H6b), 3.54 (1H, dd, J = 11.4, 2.8 Hz, H3), 3.94 (1H, d, J = 7.3 Hz, H9), 4.01 (1H, d, J = 4.1 Hz, H1), 4.08 (1H, dd, J = 4.1, 2.8 Hz, H2), 4.10 (1H, d, J = 12.4 Hz, H14a), 4.24 (1H, d, J = 11.4 Hz, OH), 4.46 (1H, br d, J = 7.3, H8), 4.60 (1H, d, J = 12.4 Hz, H14b); ¹³C NMR (125 MHz, CDCl₃) δ -5.2, -4.6, -4.3, -4.2, -4.0, -2.5, 18.07, 18.14, 18.5, 23.1, 24.2, 24.6, 26.3, 26.5, 26.6, 26.8, 29.0, 29.7, 44.8, 52.4, 59.0, 69.6, 74.5, 74.7, 77.9, 79.1, 80.2, 81.5, 96.2, 108.4; HRMS (ESI) calcd for C₃₆H₇₂O₈Si₃Na 739.4427 [M+Na]⁺, found 739.4449.

References

- S1 Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
- S2 (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392. (b) Takeda, N.; Imamoto, T. Org. Synth. 1999, 76, 228.

 PPM

 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5

 PPM

 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [111111]
 [11111]

