Construction of the septahydroxylated ABC-ring system of dihydro- β-agarofurans: application of 6-exo-dig radical cyclization

Hiroki Fujisawa, Tomochika Ishiyama, Daisuke Urabe and Masayuki Inoue*

Graduate School of Pharmaceutical Sciences
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Fax: (+81)3-5841-0568
E-mail: inoue@mol.f.u-tokyo.ac.jp

Supporting Information 34 pages
Contents:
page

Experimental procedures $\quad \mathrm{S} 2$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of newly synthesized compounds \quad S20

General methods.

All reactions sensitive to air or moisture were carried out in dry solvents under argon atmosphere, unless otherwise noted. THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, DMF and $\mathrm{Et}_{2} \mathrm{O}$ were purified by Glass Contour solvent dispensing system (Nikko Hansen \& Co., Ltd., Osaka, Japan). All other reagents were used as supplied unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed using E. Merck Silica gel 60 F254 pre-coated plates $(0.25 \mathrm{~mm})$. Flash chromatography was performed using 40-50 $\mu \mathrm{m}$ Silica Gel 60N (Kanto Chemical Co., Inc.). Melting points were measured on Yanaco MP-J3 micro melting point apparatus, and are uncorrected. Optical rotations were measured on a JASCO P-2200 Digital Polarimeter at room temperature using the sodium D line. Infrared (IR) spectra were recorded as a thin film on a KBr disk using JASCO FT/IR-4100 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JNM-ECX-500, JNM-ECA-500 or JNM-ECS-400 spectrometer at room temperature. Chemical shifts were reported in ppm on the δ scale relative to $\mathrm{CHCl}_{3}\left(\delta=7.26\right.$ for ${ }^{1} \mathrm{H}$ NMR $), \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left(\delta=7.16\right.$ for ${ }^{1} \mathrm{H}$ NMR $)$ and $\mathrm{CDCl}_{3}(\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR) as internal references. Signal patterns are indicated as s , singlet; d , doublet; t , triplet; q, quartet; m, multiplet; br, broaden peak. The numbering of compounds corresponds to that of dihydro- β-agarofurans. High resolution mass spectra were measured on JEOL JMS-T100LP (ESI-TOF).

Diels-Alder adducts 7. $\mathrm{Et}_{3} \mathrm{~N}(1.80 \mathrm{~mL}, 12.9 \mathrm{mmol})$ was added to a solution of dienophile $\mathbf{4}$ $(4.82 \mathrm{~g}, 12.9 \mathrm{mmol})$ and diene $5(1.44 \mathrm{~g}, 12.9 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(26 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 2 h and then concentrated. The residue was purified by flash column chromatography on silica gel (60 g , hexane/EtOAc 8/1) to afford a 2.4 : 1 mixture of exo-7 and endo-7 ($5.13 \mathrm{~g}, 10.6 \mathrm{mmol}$) in 82% yield. For characterizations of exo-7 and endo-7, a small amount of the mixture was purified by flash column chromatography on silica gel. The structure of exo-7 and endo-7 were assigned as shown in page S4. exo-7: white solid; m.p. $121-125^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27} 20\left(c 1.2, \mathrm{CHCl}_{3}\right.$); IR (film) $v 2954,2930,2886,2858,1780,1472,1464,1362,1257,1230,1190,1134,1107,1070,1052$, $941 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.085\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.089\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS x2), $0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), 0.86 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 0.91 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 2.35 ($1 \mathrm{H}, \mathrm{dd}, J=13.7,3.6 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}$), $2.68(1 \mathrm{H}, \mathrm{dd}, J=13.7,1.8 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.84$ ($1 \mathrm{H}, \mathrm{dd}, J=11.9$, $4.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=11.9,4.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.07(1 \mathrm{H}, \mathrm{ddd}, J=5.5$,
$4.1,4.1 \mathrm{~Hz}, \mathrm{H} 2), 4.73(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H} 1), 5.33(1 \mathrm{H}, \mathrm{dddd}, J=5.0,3.6,1.8,1.8 \mathrm{~Hz}, \mathrm{H} 8)$, $6.33(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, \mathrm{H} 6), 6.50(1 \mathrm{H}, \mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, \mathrm{H} 7) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-5.42,-5.35,-4.4,-4.1,17.9,18.3,25.75,25.80,32.5,53.0,60.8,69.0,72.9,76.4$, 85.2, 132.5, 135.3, 173.1, 176.2; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 507.2205$, found 507.2180. endo-7: white solid; m.p. $124-130{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27} 15\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (film) v $3462,2953,2931,2888,2858,1760,1469,1391,1362,1255,1192,1133,1071,1006,977$, $940 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $)$, $0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.90(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.91(9 \mathrm{H}, \mathrm{s}$, t-Bu of TBS $), 1.79(1 \mathrm{H}, \mathrm{d}, ~ J=13.3 \mathrm{~Hz}, \mathrm{H9a}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=13.3,4.6 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.87(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=12.4,2.5 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.04(1 \mathrm{H}$, ddd, $J=6.0,3.7,2.5 \mathrm{~Hz}, \mathrm{H} 2), 4.72(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 1), 5.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 6.53(1 \mathrm{H}, \mathrm{dd}, J$ $=7.8,5.3 \mathrm{~Hz}, \mathrm{H} 7), 6.59(1 \mathrm{H}, \mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}, \mathrm{H} 6) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.5$, $-5.4,-5.2,-4.1,18.1,18.3,25.8,25.9,32.5,51.9,60.8,67.5,74.0,76.1,84.5,130.0,136.9$, 172.9, 174.5; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$507.2205, found 507.2193.

Structural assignment of Diels-Alder adducts 7.

Treatment of a 2.4:1 mixture of exo/endo 7 at $140^{\circ} \mathrm{C}$ gave compound $\mathbf{8}$ as a single product through the thermal CO_{2} loss. This conversion confirmed the formation of 7, because other possible adducts exo/endo-S4, S5 and S6 should afford the different compounds S1, S2 and S3, respectively.

The structure of exo-7 was assigned by the following derivatization into tricycle $\mathbf{S 7}$.

Ketone 8. A 20 mL Pyrex vessel was charged with compound 7 (a $2.4: 1$ mixture, 5.13 g , $10.6 \mathrm{mmol})$ and chlorobenzene (10 mL). The solution was degassed by freeze-thaw procedure (x 3), and then was heated at $140{ }^{\circ} \mathrm{C}$ with microwave at normal absorption. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and concentrated. The residue was purified by flash column chromatography on silica gel (100 g , hexane/EtOAc $18 / 1)$ to afford ketone $\mathbf{8}(4.67 \mathrm{~g}, 10.6 \mathrm{mmol})$ in 100% yield: white solid; m.p. $62-68{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}$ 35 (c 1.1, CHCl_{3}); IR (film) v 2954, 2931, 2888, 2858, 1781, 1720, 1470, 1391, 1256, 1165, $1144,1118,1096,1066,1008,986,941 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), 0.87 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 0.89 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $2.62(1 \mathrm{H}, \mathrm{brd}, J=19.7 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 2.94(1 \mathrm{H}$, brd, $J=18.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.97(1 \mathrm{H}$, brd, $J=19.7 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.38(1 \mathrm{H}, \operatorname{brd}, J=18.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b})$, $3.77(1 \mathrm{H}, \mathrm{dd}, J=11.9,4.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 3.84(1 \mathrm{H}, \mathrm{dd}, J=11.9,3.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.14(1 \mathrm{H}, \mathrm{ddd}, J=$ $6.4,4.1,3.7 \mathrm{~Hz}, \mathrm{H} 2), 5.10(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H} 1), 5.80(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H} 6$ or H7), 5.83 (1H, d, $J=11.0 \mathrm{~Hz}, \mathrm{H} 6$ or H7); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.50,-5.47,-5.0,-4.8,17.9$, 18.2, 25.6, 25.8, 28.4, 39.3, 60.2, 60.6, 68.2, 83.8, 123.3, 124.0, 172.5, 203.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} 463.2306[\mathrm{M}+\mathrm{Na}]^{+}$, found 463.2285.

Enone 9. m-CPBA (77% purity, $3.56 \mathrm{~g}, 15.9 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{8}$ $(4.67 \mathrm{~g}, 10.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(106 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 18 h , and then m-CPBA (77% purity, $1.56 \mathrm{~g}, 6.96 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 4 h , and then saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$ were successively added. The resultant solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \mathrm{x} 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was treated with silica gel (80 g) for 12 h at room temperature and eluted with EtOAc (1 L). Concentration of the solution afforded enone $9(4.45 \mathrm{~g}, 9.74 \mathrm{mmol})$ in 92% yield. The C8-configuration was determined by the modified Mosher method as described page S6: white solid; m.p. $103-10{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{28} 0.41$ (c 1.0, CHCl_{3}); IR (film) v 3484, 2954, 2931, 2888, 2859, 1774, 1684,
$1470,1408,1390,1363,1325,1257,1235,1142,1121,1069,1034,1011,949 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.86(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 0.90 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 2.18 ($1 \mathrm{H}, \mathrm{dd}, J=13.7,11.0 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 2.19(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{OH}), 2.41$ ($1 \mathrm{H}, \mathrm{ddd}, J=13.7,5.3$, $1.8 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=12.4,1.8 \mathrm{~Hz} \mathrm{H} 3 \mathrm{~b}), 4.17$ ($1 \mathrm{H}, \mathrm{ddd}, J=7.8,3.7,1.8 \mathrm{~Hz}, \mathrm{H} 2$), $4.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 5.37(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1), 6.13(1 \mathrm{H}$, dd, $J=10.5,2.1 \mathrm{~Hz}, \mathrm{H} 6), 7.07(1 \mathrm{H}, \mathrm{ddd}, J=10.5,2.1,1.8 \mathrm{~Hz}, \mathrm{H} 7) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.5,-5.4,-5.3,-4.5,17.8,18.2,25.6,25.7,33.1,58.4,60.1,64.5,68.6,83.3,128.2$, 154.8, 171.7, 192.0; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 479.2256$, found 479.2234.

Determination of the C8-configuration.

The C8-configuration of $\mathbf{8}$ was determined to be S by the modified Mosher method. ${ }^{S 1}$ (S)and (R)-MTPA esters $\mathbf{S 8}$ and $\mathbf{S 9}$ were synthesized by treatment of $\mathbf{8}$ with (R) - and (S)-MTPACl, respectively.

Ketone 11. Isopropenylmagnesium bromide (0.5 M in THF, $55.0 \mathrm{~mL}, 27.5 \mathrm{mmol}$) was added to a solution of enone $9(4.22 \mathrm{~g}, 9.24 \mathrm{mmol})$ in THF $(92 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 10 min , and then poured into pH 7 phosphate buffer (150 mL). The resultant solution was extracted with EtOAc ($200 \mathrm{~mL} x 3$), and the
combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude ketone $\mathbf{1 0}$, which was used in the next reaction without further purification.

TMSOTf ($2.50 \mathrm{~mL}, 13.8 \mathrm{mmol}$) was added to a solution of the above crude ketone $\mathbf{1 0}$ and 2,6-lutidine ($3.20 \mathrm{~mL}, 27.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(92 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added. The resultant solution was extracted with $\mathrm{EtOAc}(100 \mathrm{~mL} \mathrm{x} 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (100 g , hexane/EtOAc 100/1) to afford ketone 11 (3.23 $\mathrm{g}, 5.66 \mathrm{mmol}$) in 61% yield over 2 steps. The C7-configuration was determined by the NOE correlation between α - H 9 and H 12 of 11: white solid; m.p. 87.0-88.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-4.6$ (c 1.0, CHCl_{3}); IR (film) v 2954, 2931, 2895, 2858 1767, 1712, 1647, 1559, 1536, 1512, 1467, 1406, 1326, 1254, 1149, 1118, 1088, $1015 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TMS), 0.14 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.86(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.88(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.82(1 \mathrm{H}, \mathrm{ddd}, J=$ $14.2,4.1,0.9 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 1.85(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 13), 2.41(1 \mathrm{H}, \mathrm{dd}, J=14.2,10.5 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 2.69(1 \mathrm{H}, \mathrm{dd}$, $J=16.0,4.1 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.11(1 \mathrm{H}, \mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 3.77(1 \mathrm{H}, \mathrm{dd}$, $J=12.4,3.6 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=12.4,2.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.09(1 \mathrm{H}, \mathrm{ddd}, J=7.8,3.6,2.3$ Hz, H2), 4.59 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 12 \mathrm{a}$), 4.79 (1 H , ddd, $J=10.5,8.7,4.1 \mathrm{~Hz}, \mathrm{H} 8$), 4.94 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 12 \mathrm{~b}$) $5.24(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,-5.4,-5.0,-4.5,-0.1,17.8$, 18.2, 25.4, 25.70, 25.73, 31.3, 42.7, 46.2, 60.1, 60.8, 67.2, 67.8, 83.2, 114.1, 145.4, 172.9, 203.6; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na} 593.3120[\mathrm{M}+\mathrm{Na}]^{+}$, found 593.3097.

Diol 15. n-BuLi (1.6 M in hexane, $18 \mathrm{~mL}, 29.0 \mathrm{mmol}$) was added to a solution of triisopropylsilyl acetylene ($7.0 \mathrm{~mL}, 31 \mathrm{mmol}$) in THF (35 mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min , and then anhydrous $\mathrm{CeCl}_{3}(0.6 \mathrm{M}$ in THF, 48 mL , 29.0 mmol), which was prepared according to the reported procedure, ${ }^{\mathrm{S} 2}$ was added. The resultant mixture was at $-78^{\circ} \mathrm{C}$ for 1 h , and then a solution of ketone $\mathbf{1 1}(3.63 \mathrm{~g}, 6.36 \mathrm{mmol})$ in THF (5 mL) was added. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc ($100 \mathrm{~mL} x 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (60 g , hexane/EtOAc 100/1) to afford the unreacted ketone $\mathbf{1 1}(1.10 \mathrm{~g}, 1.93 \mathrm{mmol})$ and the crude alcohol 12, which was used in the next reaction without further purification.
$\mathrm{PhSeCl}(914 \mathrm{mg}, 4.77 \mathrm{mmol})$ was added to a solution of the above crude alcohol $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 10 min , and then saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ were successively added. The resultant solution was extracted with EtOAc ($20 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude selenide 13, which was used in the next reaction without further purification. The C11-configuration was determined by the NOE correlation between $\alpha-\mathrm{H} 9$ and H 12 of the pure selenide 13, which was obtained by PTLC purification of a small amount of the crude selenide 13. Selenide 13: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TMS x 3), 0.18 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.00(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.05-1.08(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ of TIPS x3), 1.12-1.16 ($18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$ of TIPS x 6), $1.47(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 13), 1.90(1 \mathrm{H}, \mathrm{dd}, J=14.6,6.9 \mathrm{~Hz}$,

H9a), $2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 2.53(1 \mathrm{H}, \mathrm{dd}, J=13.2,5.0 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=14.6,11.0 \mathrm{~Hz}$, H9b), $3.20(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H} 12 \mathrm{a}), 3.82(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=12.4$, $8.2 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 4.18-4.25(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3$ and H12b), 4.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$), 4.95 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{H} 1), 7.57\left(3 \mathrm{H}, \mathrm{m}\right.$, aromatic), $7.58\left(2 \mathrm{H}, \mathrm{m}\right.$, aromatic); HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}$ $931.4089[\mathrm{M}+\mathrm{Na}]^{+}$, found 931.4106 .

A solution of the above crude selenide $\mathbf{1 3}, n-\mathrm{Bu}_{3} \mathrm{SnH}(4.5 \mathrm{~mL}, 17 \mathrm{mmol})$ and AIBN (522 $\mathrm{mg}, 3.18 \mathrm{mmol}$) in benzene (32 mL) was degassed by freeze-thaw procedure (x3). The reaction mixture was heated to reflux, stirred for 2 h , cooled to room temperature and concentrated to afford the crude $\mathbf{1 4}$, which was used in the next reaction without further purification.

Dowex-50W (2.4 g) was added to a solution of the above crude $14 \mathrm{in} \mathrm{MeOH}(32 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 18 h , filtered and concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (50 g) and $50 \%(\mathrm{w} / \mathrm{w}) \mathrm{KF}$ contained silica gel (50 g), hexane/EtOAc 3/1] to afford diol $\mathbf{1 5}$ ($721 \mathrm{mg}, 1.27 \mathrm{mmol}$) in 20% yield over 4 steps. The yield was calculated to be 29% over 4 steps based on the recovered ketone 11: white solid; m.p. $158.0-160.0{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{17} 32$ (c $0.50, \mathrm{CHCl}_{3}$); IR (film) v $3438,2940,2864,2170,1756$, 1463, 1386, 1364, 1255, 1191, 1149, 1120, 1066, 1008, $938 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.91(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.05\left(21 \mathrm{H}, \mathrm{br}\right.$ s, TIPS), $1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.76(1 \mathrm{H}, \mathrm{dd}, J=14.4,6.6 \mathrm{~Hz}$, H9a), 2.14 ($1 \mathrm{H}, \mathrm{dd}, J=5.5,3.2 \mathrm{~Hz}, \mathrm{H} 7$), 2.47 (1 H , dd, $J=13.0,5.5 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$), 2.55 ($1 \mathrm{H}, \mathrm{dd}, J$ $=14.4,11.7 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.33(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=12.4,5.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a})$, $3.98(1 \mathrm{H}, \mathrm{dd}, J=12.4,2.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.02(1 \mathrm{H}, \mathrm{ddd}, J=7.8,5.3,2.3 \mathrm{~Hz}, \mathrm{H} 2), 4.25(1 \mathrm{H}$, ddd, $J=11.7,6.6,3.2 \mathrm{~Hz}, \mathrm{H} 8), 4.89(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.5$, $-3.4,11.0,18.0,18.5,24.7,25.9,29.5,31.5,38.6,48.9,55.0,61.2,69.9,71.9,79.3,82.3,84.0$, 88.0, 106.8, 175.3; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na} 589.3351[\mathrm{M}+\mathrm{Na}]^{+}$, found 589.3328.

Bromide 3a. $\mathrm{MsCl}(57 \mu \mathrm{~L}, 740 \mu \mathrm{~mol})$ was added to a solution of diol $15(691 \mathrm{mg}, 1.22$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L}, 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added. The resultant solution was extracted with $\operatorname{EtOAc}(10 \mathrm{~mL} x 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel $\left(15 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 35 / 1\right)$ to afford the crude mesylate 16 and the unreacted diol $15(307 \mathrm{mg}, 542 \mu \mathrm{~mol})$. According to the above procedure, the recovered diol 15 (307 mg , $542 \mu \mathrm{~mol}$) was mesylated by using $\mathrm{MsCl}(29 \mu \mathrm{~L}, 370 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(106 \mu \mathrm{~L}, 761 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$. The residue was purified by flash column chromatography on silica gel $\left(6 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 35 / 1\right)$ to give the crude mesylate $\mathbf{1 6}$ and the unreacted diol $\mathbf{1 5}(101 \mathrm{mg}, 178 \mu \mathrm{~mol})$. The combined crude mesylate 16 was used in the next reaction without further purification.
$\mathrm{LiBr}(4.56 \mathrm{~g}, 52.5 \mathrm{mmol})$ was added to a solution of the above crude mesylate $\mathbf{1 6}$ in THF $(11 \mathrm{~mL})$ at room temperature. The reaction mixture was heated to reflux and stirred for 14 h . After the mixture was cooled to room temperature, saturated aqueous $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc ($20 \mathrm{~mL} x 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (15 g , hexane/EtOAc $6 / 1$) to afford bromide 3a ($622 \mathrm{mg}, 987 \mu \mathrm{~mol}$) in 81% yield over 2 steps: white solid; m.p. $120.0-122.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{30} 23$ (c $0.50, \mathrm{CHCl}_{3}$); IR (film) v 3437, 2941, 2892, 2864, 2169, 1774, 1463, 1387, 1366, 1318, 1294, 1256, 1221, 1192, 1149, 1119, 1065, 1037, 1009, $970,922 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.92(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.06(21 \mathrm{H}$, br s, TIPS), $1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.75(1 \mathrm{H}, \mathrm{dd}, J=14.2,6.4 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 2.14$ ($1 \mathrm{H}, \mathrm{dd}, J=5.3,3.2 \mathrm{~Hz}, \mathrm{H} 7$), $2.479(1 \mathrm{H}, \mathrm{dd}, J=14.2,11.4 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 2.481(1 \mathrm{H}, \mathrm{dd}, J=13,3$, $5.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 3.32(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=11.4,7.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 3.77(1 \mathrm{H}$, dd, $J=11.4,2.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.16(1 \mathrm{H}$, ddd, $J=7.1,6.8,2.7 \mathrm{~Hz}, \mathrm{H} 2), 4.27(1 \mathrm{H}, \operatorname{ddd}, J=11.4$, $6.4,3.2 \mathrm{~Hz}, \mathrm{H} 8), 4.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H} 1) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.2,-3.4,11.1$, $18.0,18.6,24.7,25.9,29.9,31.0,31.4,38.8,48.9,55.6,69.9,75.1,79.2,81.3,84.3,88.6$,
106.9, 174.6; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{53} \mathrm{BrO}_{5} \mathrm{Si}_{2} \mathrm{Na} 651.2507$ and $653.2487[\mathrm{M}+\mathrm{Na}]^{+}$, found 651.2487 and 653.2467 .

Enal 23. A solution of bromide 3a ($230 \mathrm{mg}, 365 \mu \mathrm{~mol}$) and AIBN ($30.0 \mathrm{mg}, 182 \mu \mathrm{~mol}$) in benzene (34 mL) was degassed by freeze-thaw procedure (x3). The mixture was heated to reflux, and then a degassed solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(980 \mu \mathrm{~L}, 3.6 \mathrm{mmol})$ and $\mathrm{AIBN}(30.0 \mathrm{mg}$, $182 \mu \mathrm{~mol}$) in benzene (2.5 mL) by freeze-thaw procedure (x3) was added over 30 min . After the addition was completed, the reaction mixture was stirred at the reflux temperature for further 1 h . The mixture was cooled to room temperature and concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (5 g) and $50 \%(\mathrm{w} / \mathrm{w}) \mathrm{KF}$ contained silica gel (5 g), hexane/EtOAc 10/1] to afford a $5.3: 1.4: 1$ mixture of $(E) \mathbf{- 2 a},(Z)-\mathbf{2 a}$, and the 7-membered compound 30a, which was used in
the next reaction without further purification. The combined yield of $(E)-\mathbf{2 a},(Z) \mathbf{- 2 a}$, and 30a was calculated to be 83% by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. For the structural confirmation of the products, see page S13.

Dess-Martin periodinane ($276 \mathrm{mg}, 651 \mu \mathrm{~mol}$) was added to a solution of the above crude mixture and $\mathrm{NaHCO}_{3}(546 \mathrm{mg}, 6.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 1 h , and then saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(4 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g , hexane/EtOAc 20/1) to afford the crude 17, which was used in the next reaction without further purification.

TBSOTf ($1.4 \mathrm{~mL}, 6.1 \mathrm{mmol}$) was added to a solution of the above crude ketone $\mathbf{1 7}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature. The reaction mixture was heated to reflux and stirred for 1 h . After the mixture was cooled to room temperature, pH 7 phosphate buffer (1.5 mL) was added. The resultant solution was extracted with EtOAc (5 $\mathrm{mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g , hexane/EtOAc $50 / 1)$ to afford the crude TBS-enol ether 18, which was used in the next reaction without further purification.
m-CPBA ($79.2 \mathrm{mg}, 459 \mu \mathrm{~mol}$) was added to a solution of the above TBS-enol ether $\mathbf{1 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 2 h at room temperature, and then saturated aqueous $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(1.5 \mathrm{~mL})$ were successively added. The resultant solution was extracted with EtOAc (5 mL $x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude ketone 19 , which was used in the next reaction without further purification. The β / α C9-diastereomeric ratio of the major compound (E)-19 was determined to be $4.0: 1$ by the ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture.

A solution of the above crude $\mathbf{1 9}$ mixture in THF (1 mL), $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{AcOH}(1 \mathrm{~mL})$ was stirred for 24 h at room temperature, and then saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc (10 mL x 3), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (4 g , hexane/EtOAc $15 / 1$) to afford the crude ketone 20, which was used in the next reaction without further purification. The β / α C9-diastereomeric ratio of the major compound (E)-20 was over $20: 1$ from the ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture.
$\mathrm{NaBH}_{4}(31.6 \mathrm{mg}, 836 \mu \mathrm{~mol})$ was added to a solution of the above crude ketone 20 and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(311 \mathrm{mg}, 834 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2.1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 min at $-78{ }^{\circ} \mathrm{C}$, and then saturated aqueous potassium sodium tartrate (3.0 mL) was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined
organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude diol 21, which was used in the next reaction without further purification. The $\beta / \alpha \mathrm{C} 8$-diastereomeric ratio of the major compound (E)-21 was determined to be $5.9: 1$ by the ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture. The β-orientation of the cis-C8, 9 -diol was established by the NOESY spectra of the target compound 1. For the key NOESY correlations, see page S18.

PPTS ($26.2 \mathrm{mg}, 104 \mu \mathrm{~mol}$) was added to a solution of the above crude diol 21 and 2,2-dimethoxypropane ($510 \mu \mathrm{~L}, 4.2 \mathrm{mmol}$) in toluene $(2.1 \mathrm{~mL})$ at room temperature. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 2 h . After the mixture was cooled to room temperature, saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc (5 mL x 3), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (2 g , hexane/EtOAc 30/1) to afford the crude acetonide 22, which was used in the next reaction without further purification.

Ozone was bubbled into a solution of the above crude acetonide 22 in EtOAc (5 mL) for 1.5 min at $-78{ }^{\circ} \mathrm{C}$. Excess ozone was removed by bubbling O_{2} at $-78^{\circ} \mathrm{C}$ for 5 min , and then $\mathrm{Me}_{2} \mathrm{~S}(730 \mu \mathrm{~L}, 9.8 \mathrm{mmol})$ was added. The reaction mixture was warmed to room temperature and stirred for 22 h . After toluene (5 mL) was added, the resultant mixture was concentrated at $20^{\circ} \mathrm{C}$. This procedure was repeated twice to remove excess $\mathrm{Me}_{2} \mathrm{~S}$. the residue was purified by flash column chromatography on silica gel (0.25 g , hexane/EtOAc $15 / 1)$ to afford enal $23(20.5 \mathrm{mg}, 44.1 \mu \mathrm{~mol})$ in 12% yield over 8 steps: $\mathbf{2 3}$ colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27} 9.4$ (c 1.0, CHCl_{3}); IR (film) v 2931, 2858, 1789, 1706, 1469, 1382, 1369, 1327, 1303, $1262,1214,1139,1096,1064,1037,1011,937 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$ of TBS), $0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.92\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), $1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J=4.6,2.7 \mathrm{~Hz}, \mathrm{H} 7), 2.65$ ($1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 4.34(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H} 9)$, $4.57(1 \mathrm{H}, \mathrm{dd}, J=6.9,2.7 \mathrm{~Hz}, \mathrm{H} 8), 4.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 4.67(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{H} 2), 7.08(1 \mathrm{H}, \mathrm{d}$, $J=5.9 \mathrm{~Hz}, \mathrm{H} 3), 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.5,18.0,24.5,24.8$, $24.9,25.4,28.2,29.1,46.1,61.3,71.9,73.8,75.2,76.2,82.5,83.6,110.5,141.0,149.3,171.9$, 191.1; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SiNa} 487.2123$ [M+Na] ${ }^{+}$, found 487.2125 .

Structural assignment of 2a and 30a: Inseparable (E)-2a, (Z)-2a and 30a were oxidized into $(E)-\mathbf{1 7},(Z)-\mathbf{1 7}$ and $\mathbf{S 1 0}$, respectively. Flash column chromatography of a small amount of the crude products gave pure $(E)-\mathbf{1 7}$ and $(Z)-\mathbf{1 7}$ along with the crude mixture of $(E)-\mathbf{1 7}$ and S10. An inseparable 1:1.3 mixture of $(E) \mathbf{- 1 8}$ and $\mathbf{S 1 1}$ was synthesized from the crude mixture of (E) - $\mathbf{1 7}$ and $\mathbf{S 1 0}$ by treatment with TBSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The 6 -membered ring structures of $(E)-17$ and $(Z)-17$ were elucidated by the 1 D and 2 D NMR experiments, and the stereochemistries of the vinyl silane of $(Z)-17$ was determined by the

NOE correlation between H 3 and H 15 . The 7-membered ring formation was also established by the 1D and 2D NMR experiments of the mixture of $(E) \mathbf{- 1 8}$ and $\mathbf{S 1 1}$.

(E)-2a : (Z)-2a : 30a $=5.3: 1.4: 1$

(E)-17: colorless oil; $[\alpha]_{D}^{25} 53\left(c 0.15, \mathrm{CHCl}_{3}\right)$; IR (film) v 2933, 2894, 2864, 1779, 1721, 1622, 1465, 1386, 1364, 1257, 1212, 1187, 1137, 1120, 1089, 1058, 1032, 997, $973 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.87(9 \mathrm{H}, \mathrm{s}$, t-Bu of TBS), $1.05\left(9 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of TIPS x3), $1.06\left(9 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of TIPS x3), $1.13\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of TIPS x3), $1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.28(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=$ $15.1 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.55(1 \mathrm{H}, \mathrm{d}, J=20.6 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 2.73-2.80(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 6 \mathrm{~b}$ and H7), $2.85(1 \mathrm{H}$, d, $J=20.6 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=15.1,5.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.56(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{H} 2), 4.64$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$), $5.77(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H} 15)$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9,-4.6,12.2$, 17.9, 18.7, 18.8, 25.6, 25.7, 29.1, 31.2, 35.9, 36.2, 57.9, 58.9, 80.8, 82.4, 86.1, 125.8, 147.6, 176.6, 208.6; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} 571.3245$ [M+Na] ${ }^{+}$, found 571.3236. (Z)-17: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25} 29$ (c $0.28, \mathrm{CHCl}_{3}$); IR (film) v 2949, 2929, 2863, 1772, 1722, 1608, 1465, 1389, 1367, 1257, 1202, 1180, 1122, 1085, 1059, 1024, 1002, $971 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.88(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of

TBS), 1.06-1.08 ($21 \mathrm{H}, \mathrm{m}$, TIPS), $1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1$ Hz, H6a), $2.60(1 \mathrm{H}, \mathrm{dd}, J=12.1,5.0 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 2.62(1 \mathrm{H}, \mathrm{d}, J=21.0 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 2.75(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}, \mathrm{H} 7), 2.76(1 \mathrm{H}, \mathrm{dd}, J=14.6,5.5 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 2.89(1 \mathrm{H}, \mathrm{d}, J=21.0 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{~b}), 3.10(1 \mathrm{H}$, dd, $J=14.6,1.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.52(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H} 2), 4.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 5.50(1 \mathrm{H}, \mathrm{d}, J=1.7$ $\mathrm{Hz}, \mathrm{H} 15) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.7,-4.4,13.8,17.9,19.1,19.4,25.6,26.1,29.7$, $29.8,32.4,35.8,44.2,58.1,59.2,80.6,81.3,85.5,129.0,147.8,176.5,208.2$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} 571.3245[\mathrm{M}+\mathrm{Na}]^{+}$, found 571.3242. (E)-18: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.079\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.085\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.89(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.93(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 1.03-1.06 $(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}), 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.24$ $(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{H} 7), 2.52(1 \mathrm{H}, \mathrm{dd}, J=11.4,4.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=15.1,1.4 \mathrm{~Hz}$, H3a), $2.93(1 \mathrm{H}, \mathrm{dd}, J=15.1,5.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 4.48(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H} 2), 4.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9)$, $4.61(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H} 1), 5.74(1 \mathrm{H}, \mathrm{brs}, \mathrm{H} 15) . \quad$ S11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ of TBS), $0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.90(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.93(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $1.03-1.08(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}), 1.25$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.05(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.1 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.21(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$, H7), $2.42(1 \mathrm{H}, \mathrm{ddd}, J=18.3,2.8,1.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=18.3,5.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 2.84$ $(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 4.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 4.53(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.8 \mathrm{~Hz}, \mathrm{H} 2), 4.67$ (1 H , brs, $\mathrm{H} 1), 5.66(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H} 4)$. The ${ }^{13} \mathrm{C}$ NMR peaks at C 4 and C 15 of $\mathbf{S} 11$ were deduced from the 2D NMR data of the mixture of (E) - $\mathbf{1 8}$ and $\mathbf{S 1 1}$.

23

24

Alcohol 24. DIBAL-H (1.0 M in hexane, $64 \mu \mathrm{~L}, 64 \mu \mathrm{~mol}$) was added to a solution of enal $23(29.9 \mathrm{mg}, 64.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(640 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min , and then saturated aqueous potassium sodium tartrate (3 mL) was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (1 g , hexane/EtOAc 2/1) to afford alcohol 24 (18.9 mg , $40.5 \mu \mathrm{~mol})$ in 63% yield: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27} 6.6$ (c $0.050, \mathrm{CHCl}_{3}$); IR (film) v 2977, 2931, 2861, 1781, 1469, 1381, 1258, 1212, 1124, $1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.11$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ of TBS), $0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.91\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), $1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.22(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a})$, $2.54(1 \mathrm{H}, \mathrm{dd}, J=4.6,2.8 \mathrm{~Hz}, \mathrm{H} 7), 2.72(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 4.15-4.19(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 15)$,
$4.34(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H} 9), 4.48(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 2), 4.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 4.56(1 \mathrm{H}, \mathrm{dd}, J=$ $6.9,2.8 \mathrm{~Hz}, \mathrm{H} 8), 6.35(1 \mathrm{H}$, ddd, $J=6.0,1.4,1.4 \mathrm{~Hz}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1$, $-4.4,18.0,24.3,24.8,24.9,25.4,29.2,29.3,45.8,60.51,60.54,61.5,72.1,73.9,76.2,82.3$, 84.3, 110.4, 127.4, 142.4, 173.0; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{SiNa} 489.2279[\mathrm{M}+\mathrm{Na}]^{+}$, found 489.2281.

Xanthate 25. $\mathrm{CS}_{2}(25 \mu \mathrm{~L}, 410 \mu \mathrm{~mol})$ was added to a solution of alcohol $24(18.9 \mathrm{mg}, 40.5$ $\mu \mathrm{mol})$ and $\mathrm{NaH}(70 \%$ purity, $13.9 \mathrm{mg}, 405 \mu \mathrm{~mol})$ in THF $(405 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 13 min , and then MeI ($25 \mu \mathrm{~L}, 410 \mu \mathrm{~mol}$) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.5 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g , hexane/EtOAc $15 / 1$) to afford xanthate $25(17.8 \mathrm{mg}, 32.0 \mu \mathrm{~mol})$ in 79% yield: colorless oil; IR (film) v 2924, 2852, 1771, 1460, 1382, $1258,1213,1064,1004 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), 0.13 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.91\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), $1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.38$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{dd}, J=13.3,4.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.52-2.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7)$, $2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.76(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 4.34(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H} 9), 4.49(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}, \mathrm{H} 2), 4.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 4.56(1 \mathrm{H}, \mathrm{dd}, J=6.9,2.7 \mathrm{~Hz}, \mathrm{H} 8), 4.98(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}$, H15a), $5.16(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{H} 15 \mathrm{~b}), 6.41(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H} 3)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{SiNa} 579.1877[\mathrm{M}+\mathrm{Na}]^{+}$, found 579.1870 .

Tris-TBS ether 29. A solution of xanthate $\mathbf{2 5}(17.8 \mathrm{mg}, 32.0 \mu \mathrm{~mol}), n-\mathrm{Bu}_{3} \mathrm{SnH}(86 \mu \mathrm{~L}, 320$ $\mu \mathrm{mol})$ and $\operatorname{AIBN}(5.3 \mathrm{mg}, 32 \mu \mathrm{~mol})$ in benzene $(320 \mu \mathrm{~L})$ was degassed by freeze-thaw procedure (x3). The reaction mixture was heated to reflux, stirred for 2 h and then concentrated. The residue was purified by flash column chromatography [a column consecutively packed with silica gel (1 g) and $50 \%(\mathrm{w} / \mathrm{w}) \mathrm{KF}$ contained silica gel (1 g), hexane/EtOAc 10/1] to afford an inseparable 5.6:1 mixture of the endo-olefin 26 and the exo-olefin isomer, which was used in the next reaction without further purification.

TBAF (1.0 M in THF, $46 \mu \mathrm{~L}, 46 \mu \mathrm{~mol}$) was added to a solution of the above crude mixture in THF $(0.3 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 2 h , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g , hexane/EtOAc $2 / 1$) to afford the crude alcohol 27, which was used in the next reaction without further purification.
$\mathrm{LiAlH}_{4}(16.4 \mathrm{mg}, 432 \mu \mathrm{~mol})$ was added to a solution of the above crude alcohol 27 in THF $(0.3 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 30 min. After the mixture was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ (5 drops) was added. The resultant solution was filtrated through a pad of Celite with EtOAc (30 mL). The filtrate was concentrated to afford the crude triol 28, which was used in the next reaction without further purification.

TBSOTf ($200 \mu \mathrm{~L}, 870 \mu \mathrm{~mol}$) was added to a solution of the above crude triol 28 and 2,6-lutidine $(200 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(290 \mu \mathrm{~L})$ at room temperature. The reaction
mixture was stirred at room temperature for 30 min , and then pH 7 phosphate buffer (1.5 mL) was added. The resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g , hexane/EtOAc $180 / 1$ to $50 / 1$) to afford tris-TBS ether $29(11.1 \mathrm{mg}, 16.2 \mu \mathrm{~mol})$ in 51% yield over 4 steps: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}-2.8$ (c $0.18, \mathrm{CHCl}_{3}$); IR (film) v 2953, 2931, 2897, 2857, 1469, 1365, 1300, 1254, 1210, 1165, 1123, $1098,1060,1043,923 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), 0.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ of TBS), $0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.89(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 0.91 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 0.93 $\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), $1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 1.98(1 \mathrm{H}, \mathrm{dd}, J=12.4,4.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=3.7,2.3 \mathrm{~Hz}$, H7), $3.41(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}), 4.01(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H} 14 \mathrm{a}), 4.18(1 \mathrm{H}, \mathrm{d}, J=11.4$ $\mathrm{Hz}, \mathrm{H} 14 \mathrm{~b}), 4.18(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H} 9), 4.21-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 4.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 4.48(1 \mathrm{H}$, dd, $J=6.4,2.3 \mathrm{~Hz}, \mathrm{H} 8), 5.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4,-5.0,-4.9$, $-4.7,-2.5,-2.2,18.1,18.2,18.4,19.1,24.3,24.5,26.16,26.25,26.32,26.6,28.4,29.7,46.8$, 51.1, 61.1, 68.2, 73.7, 74.7, 76.1, 78.8, 87.2, 108.2, 128.2, 135.0; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na} 705.4372[\mathrm{M}+\mathrm{Na}]^{+}$, found 705.4387.

Compound 1. $\mathrm{OsO}_{4}(0.5 \mathrm{M}$ in pyridine, $64 \mu \mathrm{~L}, 32 \mu \mathrm{~mol})$ was added to a solution of tris-TBS ether $29(2.2 \mathrm{mg}, 3.2 \mu \mathrm{~mol})$ in pyridine $(0.26 \mathrm{~mL})$ at room temperature. The reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred for 40 h . After the mixture was cooled to room temperature, EtOAc (0.25 mL) and saturated aqueous $\mathrm{NaHSO}_{3}(1 \mathrm{~mL})$ were successively added. The mixture was stirred for 18 h , and the resultant solution was extracted with EtOAc ($5 \mathrm{~mL} x 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (0.5 g , hexane/EtOAc $50 / 1$ to $15 / 1$) to afford $1(1.6 \mathrm{mg}, 2.2 \mu \mathrm{~mol})$ in 69% yield. The stereochemistry of the α-oriented cis-C3, 4-diol and β-oriented cis-C8, 9 -diol were elucidated by the NOESY experiment of 1: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26} 3.7$ (c $0.21, \mathrm{CHCl}_{3}$); IR (film) $v 3442,2929,2857,1469,1378,1256,1213,1108,1039 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.12(3 \mathrm{H}, \mathrm{s}$,
CH_{3} of TBS $), 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS x2), $0.93(27 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS x 3$), 0.131(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.135\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}$, dd, $J=12.4,3.2 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}), 2.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.38(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}$, H6b), $3.54(1 \mathrm{H}, \mathrm{dd}, J=11.4,2.8 \mathrm{~Hz}, \mathrm{H} 3), 3.94(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H} 9), 4.01(1 \mathrm{H}, \mathrm{d}, J=4.1$ $\mathrm{Hz}, \mathrm{H} 1), 4.08(1 \mathrm{H}, \mathrm{dd}, J=4.1,2.8 \mathrm{~Hz}, \mathrm{H} 2), 4.10(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 14 \mathrm{a}), 4.24(1 \mathrm{H}, \mathrm{d}, J=$ $11.4 \mathrm{~Hz}, \mathrm{OH}), 4.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.3, \mathrm{H} 8), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 14 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2,-4.6,-4.3,-4.2,-4.0,-2.5,18.07,18.14,18.5,23.1,24.2,24.6,26.3,26.5$, 26.6, 26.8, 29.0, 29.7, 44.8, 52.4, 59.0, 69.6, 74.5, 74.7, 77.9, 79.1, 80.2, 81.5, 96.2, 108.4; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na} 739.4427[\mathrm{M}+\mathrm{Na}]^{+}$, found 739.4449.

References

S1 Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
S2 (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392. (b) Takeda, N.; Imamoto, T. Org. Synth. 1999, 76, 228.

exo-7

exo-7

endo－7

endo－7

8

9

\qquad
\qquad
\qquad
\qquad -1

9

11

15

15

(E)-17

(E)-17

(Z)-17

(Z)-17

(E)-18

S11
$(E)-18: \mathbf{S 1 1}=1: 1.3$

23

2
$\stackrel{\text { en }}{\substack{\text { en }}}$ "1

23

24

$\begin{array}{llllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0\end{array}$

