Supporting Information for: "Intermolecular Anharmonicity in Molecular Crystals: Interplay between Experimental Low-Frequency Dynamics and Quantum Quasi-Harmonic Simulations of Solid Purine"

Michael T. Ruggiero, J. Axel Zeitler, and Alessandro Erba

1 Computational Details

A developmental version of the CRYSTAL14 software package was used for all simulations [1]. The all-electron def2-SVP basis set [2] was used and the Perdew-Burke-Ernzerhof (PBE) density functional adopted [3], as corrected for dispersion forces by means of the D3 correction by Grimme [4].

1.1 Structural Relaxation

The simulations were initialised from the experimental atomic coordinates and lattice parameters determined from single crystal X-ray diffraction (SCXRD) structures. A full structural relaxation of both atomic positions and lattice parameters was performed by means of the computational strategy described below. A quasi-Newton scheme for energy minimisation is implemented in the CRYSTAL program [5], which is based on the calculation of analytical energy gradients at each optimisation step [6–9]. The initial guess for the Hessian matrix of energy second derivatives is obtained through a classical force-field model as proposed by Schlegel [10]. During the optimisation, the Hessian is updated from the gradients by means of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [11–14]. At each cycle, a Newton step is evaluated, which, by default, is constrained to lie within the quadratic region of the potential energy hyper-surface by a "trust radius" technique, as proposed by Simons and Nichols [15]. Convergence of the optimisation process is checked on both gradient components and nuclear displacements with convergence thresholds on their root-mean-square set to 0.00001 and 0.00004 a.u., respectively. The optimised lattice parameters are **a** = 15.434 Å, **b** = 9.184 Å and **c** = 3.558 Å.

1.2 Basis Set

To investigate the effect of a larger basis set on the simulated structure, the triple- ζ 6-311G(2d,2p) basis set [16] was used. The result of this calculation did not significantly reduce the contraction of the unit cell, producing deviations of -0.24%, -1.83%, and -0.87% for the **a**, **b**, and **c** axes, respectively. Given the significantly increased computational cost of the larger basis set, the def2-SVP basis set was used for all simulations.

2 Single Crystal X-ray Diffraction Details

Single crystals of purine were grown via sublimation of the as-received sample. The material was placed into a Sigma-Aldrich sublimation apparatus and evacuated using a standard laboratory vacuum pump. A cold finger was filled with solid carbon dioxide and the sample heated to 450 K under vacuum, and

within a few hours needle-like crystals of purine had formed on the cold finger. SCXRD experiments were performed at three temperatures (100 K, 200 K, and 300 K) on a Bruker KAPPA APEX DUO diffractometer with Mo K_{α} radiation, and full structural determinations were completed. The structures were solved using direct methods using the SHELXTL software,[17] with all non-hydrogen atoms first refined anisotropically followed by identification of the hydrogen atoms and isotropic refinement.

References

- R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, Ph. D'Arco, Y. Noël, M. Causá, M. Rérat and B. Kirtman, Int. J. Quantum Chem., 2014, 114, 1287–1317.
- [2] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- [3] J. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- [4] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [5] B. Civalleri, Ph. D'Arco, R. Orlando, V. R. Saunders and R. Dovesi, 2001, 348, 131-138.
- [6] K. Doll, Comput. Phys. Commun., 2001, 137, 74-88.
- [7] K. Doll, V. Saunders and N. Harrison, Int. J. Quantum Chem., 2001, 82, 1-13.
- [8] K. Doll, R. Dovesi and R. Orlando, Theor. Chem. Acc., 2004, 112, 394-402.
- [9] K. Doll, R. Dovesi and R. Orlando, Theor. Chem. Acc., 2006, 115, 354-360.
- [10] H. B. Schlegel, Theoret. Chim. Acta, 1984, 66, 333-340.
- [11] C. G. Broyden, IMA J. Appl. Math., 1970, 6, 76.
- [12] R. Fletcher, Comput. J., 1970, 13, 317.
- [13] D. Goldfarb, Mathematics of Computation, 1970, 24, 23.
- [14] D. F. Shanno, Mathematics of Computation, 1970, 24, 647.
- [15] J. Simons and J. Nichols, Int. J. Quantum Chem., 1990, 38, 263-276.
- [16] R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, The Journal of Chemical Physics, 2008, 72, 650-654.
- [17] G. M. Sheldrick, Acta Cryst. C., 2015, 71, 3-8.