Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Pd/Cu Cooperative Catalysis: An Efficient Synthesis of (3-

Isoindazolyl)allenes via Cross-coupling of 2-Alkynyl Azobenzenes

and Terminal Alkynes

Chuan Zhu,^a Chao Feng, *a Motoki Yamane*b

^aInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China. Email: iamcfeng@njtech.edu.cn

^bDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. Email: yamane@ntu.edu.sg

Table of Contents

S2	General Methods
S2	Synthesis of Starting Materials
S5	Synthesis of (3-Isoindazolyl)allenes
S13	Thermal Cyclization of Coumpound 4a
S14	Reference
S15	¹ H and ¹³ C NMR spectra

General Methods

NMR spectra were recorded in CDCl₃ with TMS for ¹H (400 MHz) and ¹³C (100 MHz). Melting points were uncorrected and were recorded on a digital melting point apparatus. High resolution mass spectra were performed on an electrospray ionization mass spectrometer. Flash column chromatography was performed using silica gel of 230-400 mesh with distilled solvents. Commercially available reagents and solvents were used without further purification.

Synthesis of Starting Materials

Preparation of 2-iodoazobenzenes 1a-e

Compounds **1a-e** were prepared by the literature method.¹

Preparation of 2-iodoazobenzenes 1f and 1g

Compound 1f was prepared by the literature method.¹

Following the literature procedure,¹ compound 1g was prepared. To a solution of ethyl 4aminobenzoate (10 mmol, 1.0 equiv) in 4 mL of MeCN/H₂O (1/3) was added concentrated HCl (20 mmol, 2.0 equiv). The reaction mixture was then cooled to -5-0 °C. To the cooled solution a solution of NaNO₂ (12 mmol, 1.2 equiv) in MeCN/H₂O (1/1) was added at -5-0 °C. Then the reaction mixture was allowed to stir at -5-0 °C for 30 min. This diazonium salt solution was added to a solution of 3-iodophenol (11 mmol, 1.1 equiv) and KOH (20 mmol, 2.0 equiv) in 20 mL of MeCN/H₂O (9:1) at -5-0 °C. Then the reaction mixture was warm to room temperature over 3 h and stirred at room temperature for an additional 3 h. The reaction mixture was then diluted with EtOAc and the aqueous layer acidified. The organic layer was washed with 10 mL×2 10% HCl solution, 10 mL \times 2 brine and 10 mL H₂O. The organic layer was dried over MgSO₄ and concentrated in vacuo to give a red solid. The red solid was dissolved in 100 mL DMF and Cs₂CO₃ (21 mmol, 2.1 equiv) and MeI (12 mmol, 1.2 equiv) were added. The mixture was allowed to stir at 30 °C for 24 h and then diluted with 10% HCl solution, and extracted with 20 mL \times 3 EtOAc. The combined organics were washed with 20 mL H₂O, 20 mL \times 2 0.5 M NaOH solution and 20 mL H₂O. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The solids were then recrystallized from an EtOH/H₂O mixture, to yield 2.65 g of dark red solid in 65% yield; mp 183-185 °C; ¹H NMR (400 MHz, CDCl₃) δ = 1.43 (t, 3H, J = 7.1 Hz), 3.89

(s, 3H), 4.42 (q, 2H, J = 7.1 Hz), 6.98 (dd, 1H, J = 2.4, 8.8 Hz), 7.56 (d, 1H, J = 2.4 Hz), 7.73 (d, 1H, J = 8.8 Hz), 7.98 (d, 2H, J = 8.8 Hz), 8.19 (d, 2H, J = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) $\delta = 14.3$, 55.9, 61.2, 106.2, 115.5, 118.0, 123.0, 124.0, 130.6, 132.0, 145.3, 154.8, 162.7, 166.0; ESI-HRMS: Found: m/z 411.0204. Calcd for C₁₆H₁₅IN₂O₃: (M+H)⁺ 411.0206.

General procedure for preparation of 2-alkynyl azobenzenes 3a-h.

The 2-iodoazobenzene **1** (1.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (28.1 mg, 0.04 mmol, 0.04 equiv), CuI (15.2 mg, 0.08 mmol, 0.08 equiv) and ^{*n*}BuNH₂ (497 μ L, 6.0 mmol, 6.0 equiv) were dissolved in 10 mL anhydrous THF under N₂. The mixture was immediately purged by N₂ three times. To resulting solution terminal alkyne **2** (1.2 mmol, 1.2 equiv) was added dropwise. The mixture was stirred at room temperature. After the reaction was completed according to TLC reaction control (2-7 h), NH₄Cl saturated aqueous solution (15 mL) was added. The organic layer was separated, and the aqueous layer was extracted twice with ethyl acetate (5 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate 100:1 to 50:1) to afford compounds **3a-h**.

1-phenyl-2-(2-(phenylethynyl)phenyl)diazene (3a). Yield 80% (226 mg); red solid; mp 53-55 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.34-7.39 (m, 3H), 7.41-7.47 (m, 2H), 7.48-7.56 (m, 3H), 7.58-7.62 (m, 2H), 7.69-7.77 (m, 2H), 8.02 (d, 2H, *J* = 7.2 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 86.8, 95.6, 116.2, 123.3, 123.4, 123.7, 128.36, 128.43, 128.9, 129.1, 130.5, 131.3, 131.6, 133.3, 152.8, 153.0; ESI-HRMS: Found: m/z 283.1240. Calcd for C₂₀H₁₄N₂: (M+H)⁺ 283.1235.

l-(4-methyl-2-(phenylethynyl)phenyl)-2-phenyldiazene (3b). Yield 78% (231 mg); red solid; mp 83-85 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.43 (s, 3H), 7.23 (dd, 1H, *J* = 1.2, 8.4 Hz), 7.35-7.39 (m, 3H), 7.45-7.55 (m, 4H), 7.56-7.62 (m, 2H), 7.69 (d, 1H, *J* = 8.4 Hz), 8.01 (d, 2H, *J* = 7.2 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 21.2, 87.0, 95.2, 115.9, 123.1, 123.5, 123.8, 128.3, 128.4, 129.1,

129.9, 131.0, 131.6, 133.6, 141.1, 151.1, 152.9; ESI-HRMS: Found: m/z 297.1399. Calcd for $C_{21}H_{16}N_2$: (M+H)⁺ 297.1392.

l-(*4*-(*tert-butyl*)-2-(*phenylethynyl*)*phenyl*)-2-*phenyldiazene* (**3***c*). Yield 75% (254 mg); red solid; mp 83-85 °C; ¹H NMR (400 MHz, CDCl₃) δ = 1.38 (s, 9H), 7.32-7.39 (m, 3H), 7.42-7.54 (m, 4H), 7.58-7.63 (m, 2H), 7.68-7.73 (m, 2H), 8.01 (d, 2H, *J* = 7.2 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 31.1, 35.0, 87.4, 94.9, 115.8, 122.8, 123.2, 123.4, 123.5, 126.4, 128.3, 129.0, 130.1, 131.0, 131.6, 151.0, 152.9, 154.1; ESI-HRMS: Found: m/z 339.1868. Calcd for C₂₄H₂₂N₂: (M+H)⁺ 339.1861.

1-(4-fluoro-2-(phenylethynyl)phenyl)-2-phenyldiazene (3d). Yield 65% (195 mg); red solid; mp 79-81 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.09-7.16 (m, 1H), 7.36-7.43 (m, 4H), 7.47-7.56 (m, 3H), 7.57-7.61 (m, 2H), 7.80 (dd, 1H, *J* = 3.4, 9.0 Hz), 7.99-8.02 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 85.7 (d, *J* = 3.1 Hz), 96.7, 116.4 (d, *J* = 23.0 Hz), 118.1 (d, *J* = 8.9 Hz), 119.4 (d, *J* = 23.7 Hz), 123.0, 123.2, 128.4, 128.8, 129.2 (d, *J* = 10.0 Hz), 131.3, 131.7, 149.6 (d, *J* = 3.1 Hz), 152.7, 162.4, 164.9; ESI-HRMS: Found: m/z 301.1151. Calcd for C₂₀H₁₃FN₂: (M+H)⁺ 301.1141.

1-(4-chloro-2-(phenylethynyl)phenyl)-2-phenyldiazene (3e). Yield 69% (220 mg); red solid; mp 88-90 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.35-7.41 (m, 4H), 7.49-7.62 (m, 5H), 7.68-7.75 (m, 2H), 7.98-8.04 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 85.5, 96.8, 117.4, 123.0, 123.3, 125.3, 128.4, 128.8, 129.2 (overlapped), 131.5, 131.7, 132.8, 136.4, 151.3, 152.7; ESI-HRMS: Found: m/z 317.0847. Calcd for C₂₀H₁₃ClN₂: (M+H)⁺ 317.0846.

1-(2-((4-methoxyphenyl)ethynyl)phenyl)-2-phenyldiazene (3f). Yield 55% (172 mg); red solid; mp 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ = 3.84 (s, 3H), 6.88-6.93 (m, 2H), 7.37-7.56 (m, 7H), 7.67-7.76 (m, 2H), 8.00-8.05 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 55.3, 85.6, 95.8, 114.0, 115.6, 116.1, 123.2, 124.0, 128.5, 129.1, 130.5, 131.2, 133.1, 133.2, 152.89, 152.91, 159.8; ESI-HRMS: Found: m/z 313.1343. Calcd for C₂₁H₁₆N₂O: (M+H)⁺ 313.1341.

1-(2-((4-chlorophenyl)ethynyl)phenyl)-2-phenyldiazene (3g). Yield 60% (190 mg); red solid; mp 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.31-7.37 (m, 2H), 7.41-7.47 (m, 2H), 7.47-7.58 (m, 5H), 7.67-7.72 (m, 1H), 7.73-7.77 (m, 1H), 7.97-8.04 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 87.8, 94.4, 116.2, 121.9, 123.2, 123.3, 128.7, 129.1 (overlapped), 130.5, 131.4, 132.8, 133.3, 134.4, 152.8, 153.1; ESI-HRMS: Found: m/z 317.0836. Calcd for C₂₀H₁₃ClN₂: (M+H)⁺ 317.0846.

1-(2-(pent-1-yn-1-yl)phenyl)-2-phenyldiazene (3h). Yield 50% (124 mg); red oil; ¹H NMR (400 MHz, CDCl₃) δ = 1.09 (t, 3H, *J* = 7.3 Hz), 1.61-1.76 (m, 2H), 2.50 (t, 2H, *J* = 6.8 Hz), 7.32-7.41 (m, 2H), 7.46-7.55 (m, 3H), 7.56-7.61 (m, 1H), 7.65-7.70 (m, 1H), 7.95-8.00 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 13.6, 21.8, 22.2, 77.9, 97.0, 115.9, 123.2, 124.6, 128.1, 129.0, 130.4, 131.1, 133.5, 152.9, 153.2; ESI-HRMS: Found: m/z 249.1387. Calcd for C₁₇H₁₆N₂: (M+H)⁺ 249.1392.

Compound **3i** was prepared by the literature method.¹

Synthesis of (3-Isoindazolyl)allenes

General procedure for preparation of (3-isoindazolyl)allene 4a-k and 4o-s

Compound **3** (0.25 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2$ (7.0 mg, 0.01 mmol, 0.04 equiv), CuI (3.8 mg, 0.02 mmol, 0.08 equiv) and Et₃N (108 µL, 0.75 mmol, 3.0 equiv) were dissolved in 2.5 mL anhydrous THF under N₂. The mixture was immediately purged by N₂ three times. To resulting solution terminal alkyne **2** (0.50 mmol) was added. The mixture was stirred at 40 °C. After the reaction was completed according to TLC reaction control (14-24 h). The solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate 50:1 to 20:1) to afford desire product.

3-(1,3-diphenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4a). Yield 40% (78 mg); pale yellow solid; mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ = 6.41 (s, 1H), 7.03-7.10 (m, 3H), 7.16-7.23 (m, 3H), 7.24-7.31 (m, 3H), 7.31-7.41 (m, 6H), 7.48 (d, 1H, J = 8.8 Hz), 7.54-7.61 (m, 2H), 7.81 (d, 1H, J = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 98.6, 103.0, 117.9, 120.6, 122.2, 122.6, 125.5, 126.82, 126.84, 127.2, 127.7, 127.9, 128.3, 128.72, 128.76, 129.0, 129.3, 132.4, 134.5, 140.2, 149.0, 209.5; ESI-HRMS: Found: m/z 385.1711. Calcd for C₂₈H₂₀N₂: (M+H)⁺ 385.1705.

2-phenyl-3-(1-phenyl-3-(p-tolyl)propa-1,2-dien-1-yl)-2H-indazole (**4b**). Yield 82% (82 mg); pale yellow solid; mp 119-121 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.30 (s, 3H), 6.38 (s, 1H), 6.94 (d, 2H, *J* = 8.0 Hz), 7.02 (d, 2H, *J* = 8.0 Hz), 7.03-7.09 (m, 1H), 7.21-7.29 (m, 3H), 7.29-7.40 (m, 6H), 7.47 (d, 1H, *J* = 8.4 Hz), 7.55-7.61 (m, 2H), 7.80 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 21.2, 98.4, 102.8, 117.9, 120.6, 122.2, 122.5, 125.5, 126.79, 126.83, 127.2, 127.8, 128.3, 128.7, 128.9, 129.3, 129.4, 129.5, 134.7, 137.7, 140.3, 149.0, 209.4; ESI-HRMS: Found: m/z 399.1867. Calcd for C₂₉H₂₂N₂: (M+H)⁺ 399.1861.

2-phenyl-3-(1-phenyl-3-(o-tolyl)propa-1,2-dien-1-yl)-2H-indazole (4c). Yield 62% (62 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 2.22 (s, 3H), 6.52 (s, 1H), 6.95-7.12 (m, 5H), 7.20-7.39 (m, 9H), 7.42 (d, 1H, *J* = 8.4 Hz), 7.53-7.60 (m, 2H), 7.80 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 19.8, 96.0, 102.1, 117.9, 120.7, 122.1, 122.4, 125.5, 126.2, 126.8 (overlapped), 127.7, 127.8, 127.9, 128.2, 128.7, 128.9, 129.4, 130.6, 130.7, 134.6, 135.4, 140.2, 149.0, 210.0; ESI-HRMS: Found: m/z 399.1865. Calcd for C₂₉H₂₂N₂: (M+H)⁺ 399.1861.

3-(3-(4-methoxyphenyl)-1-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4d). Yield 73% (76 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 3.77 (s, 3H), 6.38 (s, 1H), 6.74 (d, 2H, *J* = 8.8 Hz), 6.97 (d, 2H, *J* = 8.8 Hz), 7.06 (dd, 1H, *J* = 6.8, 8.4 Hz), 7.20-7.29 (m, 3H), 7.29-7.35 (m, 3H), 7.35-7.41 (m, 3H), 7.46 (d, 1H, *J* = 8.4 Hz), 7.54-7.60 (m, 2H), 7.80 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 55.3, 98.1, 102.8, 114.2, 117.9, 120.7, 122.2, 122.5, 124.5, 125.5, 126.79, 126.84, 127.8, 128.3, 128.5, 128.7, 129.0, 129.7, 134.8, 140.3, 149.0, 159.3, 209.2; ESI-HRMS: Found: m/z 415.1816. Calcd for C₂₉H₂₂N₂O: (M+H)⁺ 415.1810.

ethyl 3-(1,3-diphenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole-5-carboxylate (4e). Yield 66% (78 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 1.38 (t, 3H, *J* = 7.2 Hz), 4.36 (q, 2H, *J* = 7.2 Hz), 6.45 (s, 1H), 7.05-7.09 (m, 3H), 7.24-7.36 (m, 6H), 7.36-7.41 (m, 3H), 7.44 (d, 1H, *J* = 8.5 Hz), 7.54-7.58 (m, 2H), 7.81 (d, 1H, *J* = 8.8 Hz), 7.88 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 14.3, 60.9, 98.1, 103.5, 118.0, 120.4, 122.4, 122.6, 125.5, 126.88, 126.91, 127.0, 128.2, 128.5, 128.7, 128.9, 129.0, 129.5, 130.0, 133.9, 137.2, 140.1, 149.0, 166.1, 210.2; ESI-HRMS: Found: m/z 457.1908. Calcd for C₃₁H₂₄N₂O₂: (M+H)⁺ 457.1916.

3-(3-(4-nitrophenyl)-1-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4f). Yield: 70% (75 mg); pale yellow solid; mp 179-181 °C; ¹H NMR (400 MHz, CDCl₃) δ = 6.46 (s, 1H), 7.06-7.13 (m, 3H), 7.30-7.38 (m, 6H), 7.38-7.45 (m, 4H), 7.51-7.58 (m, 2H), 7.82 (d, 1H, *J* = 8.8 Hz), 8.04 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 97.4, 104.2, 118.1, 120.3, 122.7, 124.1, 125.6, 126.99, 127.03, 127.7, 128.1, 128.5, 128.6, 128.7, 129.1, 129.2, 133.4, 139.6, 140.2, 146.9, 149.1, 210.7; ESI-HRMS: Found: m/z 430.1564. Calcd for C₂₈H₁₉N₃O₂: (M+H)⁺ 430.1556.

3-(3-(naphthalen-2-yl)-1-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4g). Yield 82% (89 mg); pale yellow solid; mp 95-97 °C; ¹H NMR (400 MHz, CDCl₃) δ = 6.63 (s, 1H), 7.08-7.21 (m, 2H), 7.26-7.38 (m, 3H), 7.38-7.52 (m, 8H), 7.53-7.60 (m, 2H), 7.61-7.72 (m, 3H), 7.72-7.83 (m, 2H), 7.87 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 99.0, 103.2, 117.9, 120.6, 122.3, 122.6, 124.7, 125.6 (overlapped), 126.1, 126.3, 126.5, 126.9 (overlapped), 127.7, 127.8, 128.0, 128.4, 128.8, 129.0, 129.3, 129.9, 132.9, 133.5, 134.5, 140.3, 149.0, 210.1; ESI-HRMS: Found: m/z 435.1858. Calcd for C₃₂H₂₂N₂: (M+H)⁺ 435.1861.

2-phenyl-3-(1-phenyl-3-(thiophen-2-yl)propa-1,2-dien-1-yl)-2H-indazole (4h). Yield 79% (77 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 6.67 (s, 1H), 6.83-6.87 (m, 1H), 6. 92 (dd, 1H, *J* = 3.6, 5.2 Hz), 7.05-7.11 (m, 1H), 7.15-7.19 (m, 1H), 7.20-7.28 (m, 5H), 7.31-7.40 (m, 4H), 7.52 (d, 1H, *J* = 8.4 Hz), 7.58-7.63 (m, 2H), 7.80 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 92.6, 103.3, 117.9, 120.6, 122.3, 122.7, 125.4, 125.6, 126.3, 126.9, 127.1, 127.6, 128.0, 128.3, 128.7, 128.9, 129.0, 134.4, 136.0, 140.2, 149.0, 209.3; ESI-HRMS: Found: m/z 391.1272. Calcd for C₂₆H₁₈N₂S: (M+H)⁺ 391.1269.

2-phenyl-3-(1-phenylhexa-1,2-dien-1-yl)-2H-indazole (4i). Yield 50% (44 mg); pale yellow viscous oil; 1H NMR (400 MHz, CDCl₃) $\delta = 0.80$ (t, 3H, J = 7.2 Hz), 1.17-1.35 (m, 2H), 1.69-1.82 (m, 2H), 5.40 (t, 1H, J = 7.2 Hz), 6.99-7.06 (m, 1H), 7.17-7.25 (m, 2H), 7.26-7.30 (m, 3H), 7.30-7.42 (m, 5H), 7.55-7.61 (m, 2H), 7.80 (d, 1H, J = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) $\delta = 13.7$, 22.4, 30.0, 95.3, 98.8, 117.8, 120.8, 121.8, 122.3, 125.4, 126.6, 126.7, 127.2, 128.1, 128.5, 128.8, 130.4, 135.5, 140.3, 148.9, 206.9; ESI-HRMS: Found: m/z 351.1853. Calcd for C₂₅H₂₂N₂: (M+H)⁺ 351.1861.

2-phenyl-3-(1-phenyl-3-(trimethylsilyl)propa-1,2-dien-1-yl)-2H-indazole (4j). Yield 80% (76 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 0.15 (s, 9H), 5.36 (s, 1H), 7.09-7.15 (m, 1H), 7.20-7.28 (m, 3H), 7.28-7.35 (m, 2H), 7.37-7.47 (m, 4H), 7.52 (d, 1H, *J* = 8.4 Hz), 7.65-7.67 (m, 2H), 7.87 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = -0.8, 87.0, 92.5, 117.8, 120.8, 121.8, 122.6, 125.2, 125.9, 126.6, 126.8, 128.1, 128.6, 128.8, 130.0, 135.2, 140.3, 149.0, 209.8; ESI-HRMS: Found: m/z 381.1795. Calcd for C₂₅H₂₄N₂Si: (M+H)⁺ 381.1787.

3-(3-(cyclohex-1-en-1-yl)-1-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4k). Yield 65% (63 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 1.40-1.70 (m, 5H), 1.83-1.98 (m, 1H), 2.00-2.12 (m, 2H), 5.67 (t, 1H, *J* = 4.0 Hz), 6.07 (s, 1H), 7.02-7.09 (m, 1H), 7.16-7.29 (m, 5H), 7.29-7.41 (m, 4H), 7.46 (d, 1H, *J* = 8.4 Hz), 7.54-7.60 (m, 2H), 7.80 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 22.1, 22.4, 25.8, 25.9, 101.76, 101.82, 117.8, 120.7, 122.0, 122.5, 125.3, 126.6, 126.8, 127.5, 128.2, 128.6, 128.7, 128.8, 130.1, 131.0, 135.4, 140.3, 148.9, 208.4. ESI-HRMS: Found: m/z 389.2024. Calcd for C₂₈H₂₄N₂: (M+H)⁺ 389.2018.

3-(1,3-diphenylpropa-1,2-dien-1-yl)-5-methyl-2-phenyl-2H-indazole (4n). Yield 85% (85 mg); pale yellow solid; mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.35 (s, 3H), 6.40 (s, 1H), 7.03-7.07 (m, 2H), 7.17-7.29 (m, 8H), 7.29-7.39 (m, 5H), 7.52-7.59 (m, 2H), 7.70 (d, 1H, J = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 21.8, 98.4, 103.0, 117.6, 118.5, 122.8, 125.4, 126.7, 127.2, 127.6, 127.8, 128.16, 128.21, 128.66, 128.74, 128.9, 129.8, 131.7, 132.4, 134.5, 140.3, 148.0, 209.4; ESI-HRMS: Found: m/z 399.1859. Calcd for C₂₉H₂₂N₂: (M+H)⁺ 399.1861.

5-(*tert-butyl*)-3-(1,3-*diphenylpropa-1,2-dien-1-yl*)-2-*phenyl-2H-indazole* (4*o*). Yield 85% (94 mg); pale yellow solid; mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ = 1.26 (s, 9H), 6.51 (s, 1H), 7.13-7.16 (m, 2H), 7.17-7.27 (m, 6H), 7.27-7.37 (m, 6H), 7.46 (dd, 1H, *J* = 2.0, 9.2 Hz), 7.54-7.57 (m, 2H), 7.74 (d, 1H, *J* = 9.2 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 31.1, 34.8, 98.5, 103.2, 114.7, 117.4, 122.5, 125.4, 126.7, 126.9, 127.4, 127.7, 127.8, 128.1, 128.6, 128.75, 128.85, 129.0, 132.6, 134.4, 140.5, 144.9, 147.8, 209.4; ESI-HRMS: Found: m/z 441.2333. Calcd for C₃₂H₂₈N₂: (M+H)⁺ 441.2331.

3-(1,3-diphenylpropa-1,2-dien-1-yl)-5-fluoro-2-phenyl-2H-indazole (4p). Yield 74% (74 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 6.40 (s, 1H), 6.99-7.08 (m, 3H), 7.09-7.34 (m, 9H), 7.34-7.41 (m, 3H), 7.52-7.59 (m, 2H), 7.77 (dd, 1H, *J* = 4.8, 5.6 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 98.7, 102.7, 103.0 (d, *J* = 24.3 Hz), 118.5 (d, *J* = 28.9 Hz), 120.1 (d, *J* = 9.6 Hz), 121.9 (d, *J* = 11.9 Hz), 125.4, 126.7, 127.2, 127.8, 128.0, 128.5, 128.75, 128.85, 129.0, 132.2, 134.2, 140.1, 146.4, 157.2, 159.6, 209.5; ESI-HRMS: Found: m/z 403.1618. Calcd for C₂₈H₁₉FN₂: (M+H)⁺ 403.1611.

5-chloro-3-(1,3-diphenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4q). Yield 75% (79 mg); pale yellow solid; mp 142-144 °C; ¹H NMR (400 MHz, CDCl₃) δ = 6.42 (s, 1H), 7.00-7.08 (m, 2H), 7.13-7.24 (m, 3H), 7.24-7.34 (m, 6H), 7.34-7.42 (m, 3H), 7.45 (s, 1H), 7.52-7.61 (m, 2H), 7.73 (d, 1H, J = 9.2 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 98.8, 102.5, 119.2, 119.5, 122.9, 125.4, 126.7, 127.2, 127.83, 127.86, 128.1, 128.3, 128.6, 128.8, 128.9, 129.0, 129.2, 132.1, 134.1, 149.9, 147.3, 209.5; ESI-HRMS: Found: m/z 419.1310. Calcd for C₂₈H₁₉ClN₂: (M+H)⁺ 419.1315.

3-(1-(4-methoxyphenyl)-3-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4r). Yield 72% (75 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 3.78 (s, 3H), 6.36 (s, 1H), 6.78-6.85 (m, 2H), 6.99-7.10 (m, 3H), 7.14-7.22 (m, 3H), 7.22-7.28 (m, 2H), 7.30-7.42 (m, 4H), 7.48 (d, 1H , J = 8.4 Hz), 7.54-7.61 (m, 2H), 7.80 (d, 1H, J = 8.4 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 55.3, 98.6, 102.5, 114.2, 117.9, 120.7, 122.2, 122.5, 125.5, 126.6, 126.8, 127.2, 127.6, 128.1, 128.4,

128.7, 129.0, 129.6, 132.7, 140.3, 149.0, 159.4, 208.9; ESI-HRMS: Found: m/z 415.1801. Calcd for C₂₉H₂₂N₂O: (M+H)⁺ 415.1810.

3-(1-(4-chlorophenyl)-3-phenylpropa-1,2-dien-1-yl)-2-phenyl-2H-indazole (4s). Yield 73% (76 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 6.43 (s, 1H), 6.99-7.12 (m, 3H), 7.16-7.27 (m, 7H), 7.30-7.42 (m, 4H), 7.45 (d, 1H, J = 8.8 Hz), 7.51-7.59 (m, 2H), 7.80 (d, 1H, J = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 99.0, 102.2, 118.0, 120.4, 122.4, 122.5, 125.5, 126.9, 127.3, 127.9, 128.0, 128.5, 128.76, 128.79, 128.97, 129.04, 132.0, 133.0, 133.8, 140.1, 149.0, 209.5; ESI-HRMS: Found: m/z 419.1313. Calcd for C₂₈H₁₉ClN₂: (M+H)⁺ 419.1315.

One-pot procedure for the preparation of (3-isoindazolyl)allene from substituted 2-iodoazobenzene and terminal alkyne

The 1-(2-iodophenyl)-2-phenyldiazene **1a** (1.0 mmol, 1 equiv), $Pd(PPh_3)_2Cl_2$ (28.1 mg, 0.04 mmol, 0.04 equiv), CuI (15.2 mg, 0.08 mmol, 0.08 equiv) were dissolved in 10 mL Et₃N under N₂. The mixture was immediately purged by N₂ three times. To resulting solution phenylacetylene **2a** (3.0 mmol, 3.0 equiv) was added dropwise. The mixture was stirred at room temperature for overnight. Then the reaction mixture was concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate 50:1 to 20:1) to afford compound **4a** in 40% yield (154 mg).

The substituted 2-iodoazobenzene **1f/1g** (0.25 mmol, 1 equiv), $Pd(PPh_3)_2Cl_2$ (7.0 mg, 0.01 mmol, 0.04 equiv), CuI (3.8 mg, 0.02 mmol, 0.08 equiv) were dissolved in 2.5 mL Et₃N under N₂. The mixture was immediately purged by N₂ three times. To resulting solution phenylacetylene **2a** (0.75 mmol, 3.0 equiv) was added dropwise. The mixture was stirred at 50 °C for overnight. Then the reaction mixture was concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate 50:1 to 20:1) to afford desired product.

4-(3-(1,3-diphenylpropa-1,2-dien-1-yl)-5-methoxy-2H-indazol-2-yl)benzonitrile (41). Yield 49% (54 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 3.57 (s, 3H), 6.56 (d, 1H, *J* = 2.1 Hz), 6.60 (s, 1H), 7.02-7.08 (m, 1H), 7.15-7.22 (m, 2H), 7.22-7.33 (m, 8H), 7.60 (d, 2H, *J* = 8.4 Hz), 7.66 (d, 1H, *J* = 9.6 Hz), 7.74 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ = 55.2, 96.3, 98.8, 103.0, 111.4, 118.1, 119.4, 123.2, 123.3, 125.3, 126.8, 127.4, 128.1, 128.20, 128.25, 128.86, 128.94, 132.4, 132.8, 133.7, 143.7, 146.5, 155.8, 209.3; ESI-HRMS: Found: m/z 440.1760. Calcd for C₃₀H₂₁N₃O: (M+H)⁺ 440.1763.

ethyl 4-(3-(1,3-diphenylpropa-1,2-dien-1-yl)-5-methoxy-2H-indazol-2-yl)benzoate (4m). Yield 60% (73 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 1.41 (t, 3H, *J* = 7.2 Hz), 3.60 (s, 3H), 4.39 (q, 2H, *J* = 7.1 Hz), 6.55 (s, 1H), 6.59 (d, 1H, *J* = 2.4 Hz), 7.05 (dd, 1H, *J* = 2.4, 9.6 Hz), 7.08-7.37 (m, 10H), 7.53-7.75 (m, 3H), 8.02 (d, 2H, *J* = 8.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ = 14.3, 55.2, 61.2, 96.4, 98.6, 103.1, 119.4, 122.6, 123.1, 124.7, 126.8, 127.4, 127.8, 128.0, 128.1, 128.76, 128.84, 129.7, 130.3, 132.5, 134.0, 143.8, 146.2, 155.6, 165.8, 209.3; ESI-HRMS: Found: m/z 487.2021. Calcd for C₃₂H₂₆N₂O₃: (M+H)⁺ 487.2022.

Control reactions

Compound **3a** (71 mg, 0.25 mmol), CuI (3.8 mg, 0.02 mmol) and Et₃N (360 μ L, 2.5 mmol) were dissolved in 2.5 mL anhydrous THF under N₂. The mixture was immediately purged by N₂ three times. To resulting solution phenylacetylene **2a** (0.5 mmol) was added. The mixture was stirred at 40 °C for 24 h. The solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate 50:1 to 20:1) to afford **4a** and **4a'** in 49% and 30% yield respectively.

3-(1,2-diphenylcycloprop-2-en-1-yl)-2-phenyl-2H-indazole (4a'). Yield 30% (29 mg); pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ = 6.65 (s, 1H), 6.99-7.05 (m, 1H), 7.15-7.23 (m, 3H), 7.23-7.33 (m, 6H), 7.37-7.45 (m, 5H), 7.47-7.53 (m, 2H), 7.66 (d, 1H, *J* = 8.4 Hz), 7.75 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 27.7, 103.8, 117.8, 120.7, 121.1, 121.4, 121.9, 126.0,

126.1, 126.3, 126.4, 126.5, 128.4, 128.7, 128.75, 128.82, 129.3, 129.6, 139.0, 140.5, 145.4, 148.8; ESI-HRMS: Found: m/z 385.1712. Calcd for $C_{28}H_{20}N_2$: $(M+H)^+$ 385.1705.

Thermal Cyclization of Compound 4a

Compound **4a** (96 mg, 0.25 mmol) was dissolved in 2.5 mL anhydrous NMP in a 10 ml seal tube. The mixture was immediately purged by N₂ three times and then sitrred at 150 °C for 2 h. After the reaction was completed, the solvent was evaporated under vacuum. The crude residue was purified by column chromatography (hexane/ethyl acetate 20:1) on silica gel to afford 5-benzyl-6-phenylindazolo[2,3-*a*]quinolone **5** as a white solid; mp 197-199 °C; yield 53% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ = 4.33 (s, 2H), 6.51 (d, 1H, *J* = 8.5 Hz), 6.81-6.93 (m, 1H), 7.07 (d, 2H, *J* = 6.8 Hz), 7.10-7.26 (m, 3H), 7.37-7.45 (m, 3H), 7.45-7.58 (m, 4H), 7.69-7.79 (m, 1H), 7.86-7.97 (m, 2H), 9.06 (d, 1H, *J* = 8.4 Hz); ¹³C NMR (100MHz, CDCl₃) δ = 34.5, 116.3, 117.3, 117.6, 120.4, 121.5, 124.8, 126.0, 126.2, 126.5, 127.6, 128.0, 128.5, 128.6, 128.9, 129.0, 129.1, 129.4, 131.7, 131.9, 133.9, 136.6, 140.2, 149.4; ESI-HRMS: Found: m/z 385.1709. Calcd for C₂₈H₂₀N₂: (M+H)⁺ 385.1705.

Reference

1. Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2004, 69, 6979.

R 2004 R 2004 R 2005 R 2005

-2.431

8.019 8.019 8.019 8.005

Page 12, 2019 Page 2015 Pa

-8.023 -8.018 -8.0015 -7.737 -7.737 -7.737 -7.739 -7.739 -7.739 -7.594 -7.759 -7.559 -7.759 -

8.023 8.023 8.028 8.028 8.028 8.028 8.028 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.55 7.75 7.75 7.75 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.55 7.75 7.5

B 8037 B 8037 B 8016 B

Page 2020 Page 2

77,398 77,998 77,998 77,985 77,985 77,985 77,592 77,592 77,592 77,592 77,592 77,592 77,592 77,592 77,593 77,753 73,593 77,753 73,593 77,753 73,593 77,753 73,593 73,593 73,593 74,7537 74,7537 74,7537 74,7537 74,75577 74,755777 74,75577777775

77,280 77,780 77,755

-2.348

7,778 7,778 7,757 7,

\[
\begin{aligned}
\begim{aligned}
\begim{aligned}
\begim{ali

