Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Oxidase-mimic activity of the nitrogen-doped Fe₃C@C composites

Hankun Yang,¹ Lei Su,^{1,*} Jingyu Xiao,¹ Ting Feng,² Qingye Lv,³ Xueji Zhang^{1,*}

- ² School of metallurgical and ecological engineering, University of Science and Technology Beijing, Beijing 100083, China.
- ³ Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada.

¹ Beijing Key Laboratory of Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

^{*} Corresponding Author. E-mails: sulei@ustb.edu.cn; zhangxueji@ustb.edu.cn.

Experimental Section

Preparation of PB cubes

PB nanocubes were prepared according to a previous literature. ^[1] Briefly, 38 g polyvinylpyrrolidone (PVP, K30) and 1.15 g K_4 Fe(CN)₆ were dissolved in 500 mL of HCl solution (0.1 M) under magnetic stirring. When the solution became clear, the bottle was placed into an electric oven and heated at 80 °C for 24 h. The obtained blue product was filtered by using 0.45 μ m nylon membrane and washed several times with deionized water and absolute ethanol, then dried in a vacuum oven at 60 °C for 12 h.

Preparation of Fe₃C microboxes

The as-prepared blue product was pyrolyzed in a horizontally tubular furnace in Ar atmosphere at 550 °C for 6 h. The heating rate was 2 °C min⁻¹. The as-prepared black product was treated with 0.50 M $\rm H_2SO_4$ for 24 h to remove the α -Fe and iron oxides possibly generated during the pyrolysis process, then washed with deionized water for five times and dried at 60 °C overnight.

Apparatus

The crystalline phases of the products were determined using X-ray diffraction (XRD) (ARL XTRA, Thermo Electron Co.) with Cu Kα radiation. The morphologies of the products were observed using a field emission scanning electron microscopy (SEM, Supra 55, Zeiss, Oberkochen, Germany) and a field emission transmission electron microscopy (TEM, JEM-2100F, JEOL, Tokyo, Japan). Elemental compositions were analyzed using X-ray photoelectron spectroscopy (XPS) (AXIS ULTRA DLD, Kratos, SHIMADZU) with a monochromic Al Ka (1486.6 eV) as the X-ray source. UV-vis absorption spectra were recorded on a Shimadzu UV-1800 spectrometer.

References

[1] L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, X. W. Lou, *Journal of the American Chemical Society* 2012, *134*, 17388.

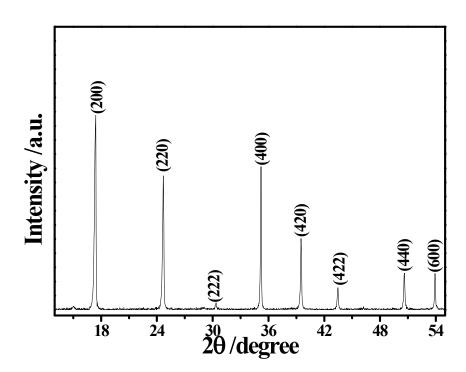


Figure S1. XRD pattern of the as-synthesized PB.

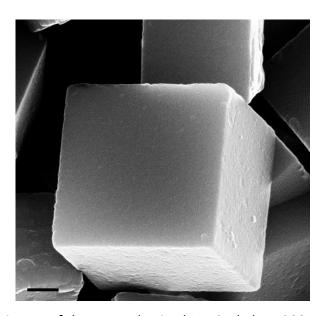
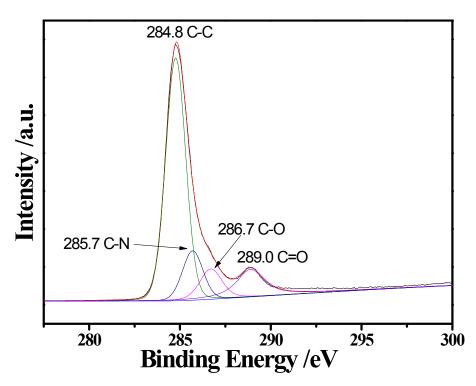
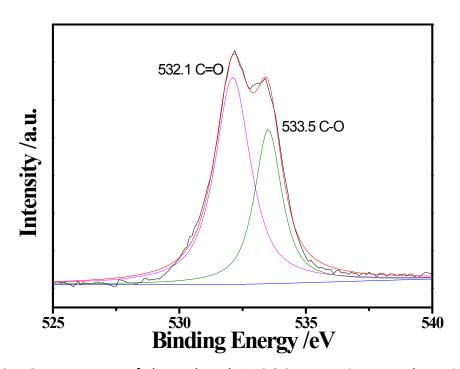




Figure S2. FE-SEM image of the as-synthesized PB. Scale bar: 200 nm.

Figure S3. C1s spectrum of the N-doped Fe $_3$ C@C composites together with their corresponding fits.

Figure S4. O1s spectrum of the N-doped Fe $_3$ C@C composites together with their corresponding fits.