Chiral Crotyl Geminal Bis(silane): A Useful Reagent for Asymmetric Sakurai Allylation by Selective Desilylation-Enabled Chirality Transfer

Zhiwen Chu,^a Kai Wang,^a Lu Gao,^a and Zhenlei Song^{*a, b}

Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, P. R. China.

E-mail: zhenleisong@scu.edu.cn

Supporting Information

Table of Contents

1. GeneralMethods	S2
2. General Procedure and Spectral Data	
2.1. Synthesis of (±)-1a to (±)-1e	S2-S6
2.2. Synthesis of (S)-1a	
2.3. Synthesis of 2a-2j	
2.4. Synthesis of 3a-3j	S16-S22
2.5 One-pot Synthesis of 3k-3m	S22-S24
2.6. Functionalization of 3d	
2.7. Determining the absolute configuration of (S)-1a	
3. ¹ H and ¹³ C NMR Spectral Copies	
4. HPLC copies	S120-S146

1. General Methods

Commercial reagents were used without any purification. All reactions were performed using common anhydrous, inert atmosphere techniques. Reactions were monitored by thi*n*-layer chromatography (TLC) using aluminium-backed silica gel plates (HSGF-254). TLC spots were viewed under ultraviolet light and by heating the plate after treatment with a staining solution of KMnO₄ stains, H₃PO₄·12MoO₃/EtOH stains, H₂SO₄ (conc.)/anisaldehyde/EtOH stains. Product purifications were performing using Silica Gel (200-300 mesh) for column chromatography. ¹H NMR spectra were recorded at 400 MHz (Varian) and 600 MHz (Agilent), and ¹³C NMR spectra were recorded at 100 MHz (Varian) and 150 MHz (Agilent) using CDCl₃ (except where noted) with TMS or residual solvent as standard. Infrared spectra were obtained using KCl plates on a VECTOR22. High-resolution mass spectral analyses performed on Waters Q-TOF. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column (250 × 4.6 mm), Chiralpak OD-H Column (250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was examined in CHCl₃ solution at 20 °C. Pentane, Toluene, CH₂Cl₂, CHCl₃, and Et₃N were distilled from CaH₂. Et₂O and THF were distilled from sodium.

2. Experimental Procedures and Spectral Data of Products

2.1. Synthesis of (±)-1a to (±)1e

Preparation of (±)-S1

To a solution of 4 (10.0 g, 64.1 mmol) in Et_2O (500 mL) was added Red-Al (19.0 mL, 96.2 mmol) dropwise at 0 °C. After stirring for 8 h, I_2 (24.4 g, 96.2 mmol) was added at -20 °C. The resultant mixture was stirred at room temperature overnight before quenching with sat aq NH₄Cl (200 mL)

and extracted with Et₂O (3 × 200 mL). The combined extracts were washed with sat aq Na₂S₂O₃ (20 mL). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded (±)-**S1**(15.7 g, 86%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.19 (d, *J* =6.4 Hz, 1H), 4.56 (q, *J* =6.4 Hz, 1H), 2.40 (s, 1H), 1.26 (t, *J* =6.4 Hz, 3H), 0.17 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 150.2, 111.9, 74.0, 21.4, 1.6; IR (liquid film) cm⁻¹ 3326m, 2963m, 1249s, 1062m, 888s, 838s, 754m; HRMS (ESI-TOF, m/z) calcd for C₇H₁₅IOSi (M+Na)⁺: 292.9839, found 292.9838.

Preparation of 5

To a solution of (±)-**S1** (15.7 g, 55.1 mmol), Et₃N (23.0 mL, 165.3 mmol) and DMAP (673 mg, 5.5 mmol) in CH₂Cl₂ (200 mL) was added Ph₂MeSiCl (10.3 mL, 60.6mmol) at 0°C. After stirring for 1 h at room temperature, the reaction was quenched with sat aq NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-1.0% of EtOAc/petroleum ether) afforded **5** (26.4 g, 99%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* =7.2 Hz, 4H), 7.37-7.43 (m, 6H), 6.21 (d, *J* = 6.8 Hz, 1H), 4.71 (q, *J* = 6.4 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H), 0.69 (s, 3H), 0.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 136.3, 136.2, 134.4, 134.0, 129.8, 129.6, 127.8, 127.7, 109.6, 76.1, 22.3, -1.7, -2.4; IR (liquid film) cm⁻¹ 2959w, 1428m, 1250m, 1119s, 1076s, 839m, 731s; HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₇IOSi₂ (M+Na)⁺:489.0537, found 489.0539.

Preparation of 6

To a solution of **5** (2.0 g, 4.3 mmol) in dry THF (50 mL) was added *t*-BuLi (6.6 mL of 1.3 M solution in pentane, 8.6 mmol) at -78°C under argon atmosphere. The reaction was allowed to proceed for 30 min at -78°C. The the pale yellow solution was warmed to room temperature and stirred for another 30 min before quenching with sat aq NH₄Cl (60 mL) and extraction with ether (3 × 60 mL). The combined organic layers were dried over anhydrous NaSO₄, filtered and concentrated under vacuo. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded **6** (1.38 g, 95%) as a colorless liquid.¹H NMR (400 MHz, CDCl₃) δ 7.55 (m, 4H), 7.39 (m, 6H), 6.72 (d, *J* = 8.8 Hz, 1H), 4.20 (dq, *J*₁ = 8.8 Hz, *J*₂ = 6.0 Hz, 1H), 1.28 (s, 1H), 0.94 (d, *J* = 6.0 Hz, 3H), 0.71 (s, 3H), 0.10 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 161.9, 138.3, 137.9, 137.7, 134.8, 134.7, 129.3, 129.2, 128.0, 127.9, 68.9, 21.5, 0.52, 0.15; IR (liquid film) cm⁻¹ 2960m, 1569w, 1428s, 1248s, 1109s, 1052m, 940w, 909s, 858s, 792s; HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₈OSi₂ (M+Na)⁺: 363.1571, found 363.1570.

Preparation of (±)-1a

A solution of **6** (2.0 g, 5.88 mmol), 1,1,1-triethoxyethane (4.31 mL, 23.5 mmol), propionic acid (4.8 μ L, 0.0647 mmol) in dry toluene (30 mL) was refluxed at 140 °C for 15 h in seal tube. The mixture was concentrated in vacuo at 50 °C to remove toluene. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-0.5% of EtOAc/petroleumether) afforded pure (±)-1a (2.29 g, 95%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 6.8 Hz, 2H), 7.63 (d, *J* = 6.8 Hz, 2H), 7.36 (m, 1H), 7.33 (d, *J* = 6.8 Hz, 4H), 5.8 (d, *J* = 15.6 Hz, 1H), 5.28 (dq, *J*₁ = 6.4 Hz, *J*₂ = 15.6 Hz, 2H), 3.86 (dq, *J*₁ = 7.2 Hz, *J*₂ = 3.6 Hz, 2H), 2.74 (d, *J* = 14.8Hz, 1H), 2.64 (d, *J* = 14.8 Hz, 1H), 1.83 (d, *J* = 6.4 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H), 0.81 (s, 3H), -0.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.9, 137.2, 136.6, 135.6, 135.5, 135.4, 132.2, 128.9, 128.8, 127.4, 127.4, 127.3, 120.6, 60.0, 36.3, 24.7, 18.7, 13.9, -0.7, -2.8; IR (liquid film) cm⁻¹ 2927m, 2955m,

1738s, 1428m, 1368w, 1251s, 1176s, 1105m, 840s; HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₆O₂Si₂ (M+Na)⁺:433.1990, found 433.1996.

Preparation of (±)-1b

(±)-1b: Using the same procedure as that used for (±)-1a afforded (±)-1b (120 mg, 96%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.0 Hz, 2H), 7.33 (m, 1H), 7.32 (d, *J* = 6.0 Hz, 2H), 5.59 (d, *J*=15.6 Hz, 1H), 5.03 (dq, *J*₁=6.0 Hz, *J*₂=15.6 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 2.45 (s, 2H), 1.72 (d, *J* = 6.0 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.40 (s, 3H), 0.38 (s, 3H), 0.01 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 173.3, 138.1, 135.0, 132.5, 128.8, 127.2, 119.8, 60.1, 36.3, 24.1, 18.7, 14.1, -0.7, -1.9, -2.6; IR (liquid film) cm⁻¹ 2955w, 2917w, 1738m, 1428w, 1368w, 1249m, 1174m, 1109m, 1036m, 989m, 836s, 823s; HRMS (ESI-TOF, m/z) calcd for C₁₄H₃₀O₂Si₂(M+Na)⁺: 371.1833, found 371.1826.

Preparation of (±)-1c

(±)-1c: Using the same procedure as that used for (±)-1a afforded (±)-1c (150 mg, 95%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.54 (d, *J* = 15.2 Hz, 1H), 5.06 (dq, *J*₁ =15.2 Hz, *J*₂ =6.0 Hz, 1H), 4.08 (q, *J*₁ =4.4 Hz, *J*₂ =7.2 Hz, 2H), 2.61 (d, *J* =16.0 Hz, 1H), 2.57, (d, *J* =16.0 Hz, 1H), 1.68 (d, *J* = 7.2 Hz, 3H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 8.0 Hz, 9H), 0.69 (q, *J* = 8.0 Hz, 6H), 0.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 133.3, 118.5, 60.1, 36.2, 25.0, 18.6, 14.1, 8.5, 3.9, -0.4; IR (liquid film) cm⁻¹ 2953m, 2878m, 1739s, 1368w, 1336w, 1247s, 1164s, 1037m, 1009m, 991m, 836s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₃₆O₂Si₂(M+Na)⁺:351.2146, found 351.2146.

Preparation of (±)-1d

(±)-1d:Using the same procedure as that used for (±)-1a afforded (±)-1d (250 mg, 95%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.68 (d, *J* = 15.2 Hz, 1H), 5.00 (dq, *J*₁ =6.4 Hz, *J*₂ =15.2 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 2.78 (d, *J* =15.2 Hz, 1H), 1.69 (d, *J* = 6.4 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.88 (s, 9H), 0.13 (s, 3H), 0.10 (s, 9H), 0.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 134.6, 117.2, 60.1, 36.9, 28.4, 25.9, 20.8, 18.6, 14.1, 0.04, -4.0, -4.3; IR (liquid film) cm⁻¹ 2932m, 2856m, 1738s, 1474w, 1250s, 1161s, 1068m, 1038w, 986m, 819s, 798s; HRMS (ESI-TOF, m/z) calcd for C₁₃H₃₀OSi₂ (M+Na)⁺:351.2146, found 351.2144.

Preparation of (±)-1e

(±)-1e:Using the same procedure as that used for (±)-1a afforded (±)-1e (50mg , 90%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* =6.8, 2H), 7.32 (m, 1H), 7.31 (d, *J* =6.8 Hz, 2H), 5.64 (d, *J* =15.6 Hz, 2H), 5.00 (dq, *J*₁ =6.4 Hz, *J*₂ =15.6 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 2.54 (d, *J* =15.6 Hz, 1H), 2.48 (d, *J* =15.6 Hz, 1H), 1.71 (d, *J* =6.4 Hz, 3H), 1.22 (d, *J* =7.2 Hz, 3H), 0.91 (t, *J* =8.0 Hz, 9H), 0.61 (q, *J* =8.0 Hz, 6H), 0.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 173.4, 138.5, 135.1, 133.1, 128.7,127.1, 119.0, 60.1, 36.4, 25.5, 18.6, 14.1, 8.5, 4.0, -1.3, -2.1; IR (liquid film) cm⁻¹ 2954s, 2877s, 1740s, 1427w, 1248m, 1174s, 1109m, 1037m, 822s, 773m; HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₈O₂Si₂ (M+Na)⁺:413.2303, found 413.2303.

2.2. Synthesis of (S)-1a

Preparation of (S)-4

To a 0.5 M pentane solution of racemic 4¹ (20.0 g, 140.8 mmol) was added molecular sieve (2.0 g), Amano lipase AK (4.0 g) and vinyl acetate (52 mL, 562.1 mmol). The resulting suspension was stirred at room tempreture for 24 h under argon atomosphere. The mixture was filtered via celite, and the resultant filtration was concentrated and purified by silica gel flash chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) to provide (*S*)-4 (10.0 g, 50%) as a yellow liquid and (*R*)-4-Ac (12.9 g, 49%) as a yellow liquid. (*S*)-4: $[\alpha]_D^{20} = -17.5$ (*c* = 1.0 in CHCl₃); {literature reported $[\alpha]_D^{20} = -22.3$ (*c* = 1.0 in CHCl₃)¹}; ¹H NMR (400 MHz, CDCl₃) δ 4.51 (dq, *J*₁ =5.2 Hz, *J*₂ =6.8 Hz, 1H), 2.05 (d, *J* =5.2 Hz, 1H), 1.43 (d, *J* = 6.8 Hz, 3H), 0.16 (s, 9H); IR (liquid film) cm⁻¹ 3019w, 1372w, 1251w, 1214s, 1114w, 942w, 942w, 866m, 844m; (*R*)-4-Ac: $[\alpha]_D^{20}$ =+104.3 (*c* = 1.0 in CHCl₃). {literature reported $[\alpha]_D^{20} = +119$ (*c* = 1.0 in CHCl₃)¹}

Preparation of (S)-5, (S)-6, and (S)-1a

(*S*)-**S1**: Using the same procedure as that used for (±)-**S1** afforded (*S*)-**S1** (16.0 g, 86%) as a yellow liquid. The enantiomeric ratio was determined to be 99.5:0.5 by HPLC analysis on Chiralpak IC column (0.66% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 10.58$ min, $t_{major} = 11.99$ min; $[\alpha]_D^{20} = -21.3$ (c = 1.0 in CHCl₃).

^{1.} S. E. Denmark, N. S. Werner, J. Am. Chem. Soc., 2010, 132, 3612.

(S)-5: Using the same procedure as that used for racemic 5 afforded (S)-5 (28.3 g, 99%) as a colorless liquid. $[\alpha]_D^{20} = +6.4$ (c = 1.0 in CHCl₃).

(*S*)-6: Using the same procedure as that used for racemic 6 afforded (*S*)-S6 (19.6 g, 95%) as a colorless liquid. The enantiomeric ratio was determined to be 98.5:1.5 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 6.38 \text{ min}$, $t_{major} = 5.84 \text{ min}$; $[\alpha]_D^{20} = -3.7$ (c = 1.0 in CHCl₃).

(*S*)-1a: Using the same procedure as that used for (±)-1a afforded (*S*)-1a (22.4 g, 95%) as a colorless liquid. $[\alpha]_D^{20} = -13.7$ (c = 1.0 in CHCl₃). The enantiomeric ratio was determined by (*S*)-S2 as below.

To a solution of (*S*)-**1a** (100 mg, 0.243 mmol) in anhydrous CH₂Cl₂(2 mL) was added DIBAL-H (0.486 mL of 1.0 M solution in *n*-hexane, 0.486 mmol) at -78 °C. After stirring for 1 h at -78 °C, the reaction was quenched with sat aq NaHCO₃ (2 mL) and extracted with CH₂Cl₂ (3 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded (*S*)-**S2** (80.5 mg, 90% yield) as a colorless oil. The enantiomeric ratio was determined to be 98.6:1.4 by HPLC analysis on Chiralpak OD column (1% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, t_{minor} = 20.48, t_{major} = 10.04min; $[\alpha]_D^{20} = -11.2$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J*=7.2 Hz, 2H), 7.59 (d, *J*=7.2 Hz, 2H), 7.35 (d, *J*=7.2 Hz, 2H), 7.32 (s, 1H), 7.31 (d, *J*=7.2 Hz, 2H), 5.96 (d, *J*=15.6 Hz, 1H), 5.25 (dq, *J_I*=15.6 Hz, *J₂*=6.0 Hz, 1H), 3.62 (t, *J* = 8.0 Hz, 2H), 2.13 (dt, *J_I*=16.0 Hz, *J₂*=8.0 Hz, 1H), 1.85 (d, *J*=6.0 Hz, 3H), 0.72 (s, 3H), 0.16 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 137.4, 137.0, 135.4, 131.6, 129.1, 128.9, 127.6, 127.5, 120.6, 60.7, 34.1, 24.4, 18.7, -0.9, -3.1; IR (liquid film) cm⁻¹ 2917m, 1428m, 1251m, 1103m,

1021m, 856s, 786s; HRMS (ESI-TOF, m/z) calcd for $C_{22}H_{32}OSi_2$ (M+Na)⁺:391.1884, found 391.1884.

2.3. Synthesize of 2a-2j

Preparation of 2a

2a: To a solution of (*S*)-**1a** (20.5 mg, 0.05 mmol) and *p*-Br-C₆H₄CHO (9.25 mg, 0.05mmol) in anhydrous CHCl₃ (0.5 mL) was added Ph₃C⁺B(C₆F₅)₄⁻ (0.9 mg, 0.001 mmol) at room temperature. After stirring for 2 h, the reaction was quenched with sat aq NaHCO₃ (2 mL) and extract with CH₂Cl₂ (3 × 2 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded **2a** (14.9 mg, 75%) as a yellow oil. The enantiomeric ratio was determined to be 98.5:1.5 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, t_{minor} = 20.69 min, t_{major} = 40.87 min; $[\alpha]_D^{20} = +47.8$ (*c* = 1.0 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.90 (d, *J* = 10.8 Hz, 1H), 4.23 (d, *J* = 8.4 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.19 (d, *J* = 16.0 Hz, 1H), 3.09 (d, *J* = 16.0 Hz, 1H), 2.72 (s, 1H), 2.61 (ddd, *J_I* = 6.8 Hz, *J₂* = 8.4 Hz, *J₃* = 10.8 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.79 (d, *J* = 6.8 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 148.7, 141.0, 136.4, 131.1, 128.8, 121.3, 77.7, 60.7, 44.9, 43.5, 16.6, 14.1, 0.16; IR (liquid film) cm⁻¹ 3468w, 2962m, 1730s, 1486w, 1249m, 1178w, 1097w, 1011m, 838s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₇F₃O₃Si (M+Na)⁺; 421.0805, found 421.0805.

Preparation of S3

To a solution of 2a (100 mg, 0.251 mmol) in anhydrous CH₂Cl₂ (2 mL) was added DIBAL-H (0.502 mL of 1.0 M solution in *n*-hexane, 0.502 mmol) at -78 °C. After stirring for 8 h at -78 °C, the reaction was guenched with sat aq NaHCO₃ (2 mL) and extracted with CH_2Cl_2 (3 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded S3 (80.5 mg, 90% yield) as a white solid. The enantiomeric ratio was determined to be 97.8:2.1 by HPLC analysis on Chiralpak OD column (5% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, t_{minor} = 12.54, t_{major} = 10.02 min; m.p.: 94-97 °C; $[\alpha]_D^{20} = -113.0$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz , 2H), 5.84 (d, J = 10.8 Hz, 1H), 4.14 (d, J = 8.8 Hz, 1H), 3.43 (dt, J₁ = 4.0 Hz, $J_2 = 5.2$ Hz, 1H), 3.41 (dt, $J_1 = 4.0$ Hz, $J_2 = 5.2$ Hz, 1H), 3.23 (s, 1H), 2.71 (s, 1H), 2.51-2.61 (m, 1H), 2.45 (dt, *J*₁ =12.8 Hz, *J*₂ = 4.0 Hz, 1H), 2.25 (dt, *J*₁ = 12.8 Hz, *J*₂ = 4.0 Hz, 1H), 0.76 (d, *J* = 6.8 Hz, 1H), 0.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 141.8, 137.9, 131.3, 128.6, 121.4, 77.8, 60.9, 44.8, 41.2, 16.8, 0.58; IR (liquid film) cm⁻¹ 3054w, 2924w, 2370w, 1419w, 1265s, 1010w, 895w; HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₅BrO₂Si (M+Na)⁺:379.0699, found 379.0698. Crystals suitable for X-ray diffraction studies (CCDC1528458) were obtained by slow solvents evaporation of a solution of S3 (25 mg) in a mixture of $CH_2Cl_2(0.2 \text{ mL})$ and *n*-hexane (1.0 mL) at 4°C overnight.

Preparation of 2b

J = 7.2 Hz, 3H), 0.79 (q, J = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.9, 162.3 (CH, d, $J_{C-F} = 244.1$ Hz), 149.0, 137.7, 136.8, 128.7 (CH, d, $J_{C-F} = 6.5$ Hz), 135.1 (CH, d, $J_{C-F} = 6.5$ Hz), 77.9, 60.8, 45.3, 43.6, 16.7, 14.2, 0.28; IR (liquid film) cm⁻¹ 2918m, 1731m, 1510m, 1220s, 1029m, 837s, 774s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₇FO₃Si (M+Na)⁺: 361.1606, found 361.1609.

Preparation of 2c

2c: Using the same procedure as that used for **2a** afforded **2c** (12.4 mg, 70%) as a colorless liquid. The enantiomeric ratio was determined to be 98.4:1.6 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 4.12$ min, $t_{major} = 3.57$ min; $[\alpha]_D^{20} = -44.0$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 1H), 7.23-7.26 (m, 3H), 5.90 (d, J = 10.4 Hz, 1H), 4.24 (d, J = 8.4 Hz, 1H), 4.14 (q, J = 6.8 Hz, 2H), 3.19 (d, J = 16.0 Hz, 1H), 3.10 (d, J = 16.0 Hz, 1H), 2.69 (s, 1H), 2.63 (ddd, $J_I = 10.4$ Hz, $J_2 = 8.4$ Hz, $J_3 = 6.8$ Hz, 1H), 1.26 (t, J = 6.8 Hz, 3H), 0.81 (d, J = 6.4 Hz, 3H), 0.20 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.9, 148.7, 144.1, 144.0, 137.0, 134.1, 129.5, 127.8, 127.3, 125.4, 77.9, 60.8, 45.1, 43.6, 16.7, 14.2, 0.27, 0.25; IR (liquid film) cm⁻¹ 2917w, 1728m, 1249s, 1178m, 1078m, 1028s, 879m, 836s, 786m; HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₇ClO₃Si (M+Na)⁺: 411.1574, found 411.1575.

Preparation of 2d

2d: Using the same procedure as that used for 2a afforded 2d (15.5 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak OD-H column (5.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 20.64$ min, $t_{major} = 11.22$ min; $[\alpha]_D^{20} = -87.2$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 5.89 (d, J = 10.4 Hz, 1H), 4.32 (d, J = 8.4 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.20 (d, J = 16.0 Hz, 1H), 3.08 (d, J = 16.0 Hz, 1H), 2.88 (s, 1H), 2.60 (ddd, $J_I = 7.2$ Hz, $J_2 = 8.4$ Hz, $J_3 = 10.4$ Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 148.1, 147.4, 137.5, 132.0, 127.9, 118.8, 111.4, 77.8, 60.9, 45.1, 43.5, 16.5, 14.2, 0.2; IR (liquid film) cm⁻¹ 2918m, 2228w, 1320w, 1249s, 1176m, 1028m, 836s, 760m; HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₇NO₃Si (M+Na)⁺: 368.1652, found 368.1651.

Preparation of 2e

2e: Using the same procedure as that used for **2a** afforded **2e** (13.6 mg, 70%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 16.02$ min, $t_{major} = 18.07$ min; $[\alpha]_D^{20} = -48.4$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 5.92 (d, *J* = 10.8 Hz, 1H), 4.33 (d, *J* = 8.4 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.20 (d, *J* = 16.0 Hz, 1H), 3.10 (d, *J* = 16.0 Hz, 1H), 2.81 (s, 1H), 2.65 (ddd, *J_I* = 6.8 Hz, *J₂* = 8.4 Hz, *J₃* = 10.8 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.82 (t, *J* = 6.8 Hz, 3H), 0.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 148.5, 146.0, 137.2, 127.5, 125.1 (CF, d, *J_{C-F}* = 3.7 Hz), 125.0, 77.9, 60.8, 45.2, 43.6, 16.6, 14.2, 0.21; IR (liquid film) cm⁻¹ 2963w, 1724s, 1325s, 1265m, 1160m, 1125m, 1103m, 840s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₇F₃O₃Si (M+Na)⁺: 377.1310, found 377.1306.

Preparation of 2g

2g: Using the same procedure as that used for **2a** afforded **2g** (12.3 mg, 72%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak IC column (5.0%)

2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 19.43$ min, $t_{major} = 22.39$ min; $[\alpha]_D^{20} = -3.2$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, $J_I = 15.6$ Hz, $J_2 = 5.6$, 1H), 6.11 (d, J = 15.6 Hz, 1H), 5.83 (d, J = 10.8 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.95 (dd, $J_I = 6.4$ Hz, $J_2 = 6.8$ Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 166.4, 147.9, 147.2, 137.2, 122.0, 74.5, 60.8, 60.4, 43.5, 43.2, 16.4, 14.2, 14.1, 0.19; IR (liquid film) cm⁻¹ 1717w, 1264s, 1177w, 841w; HRMS (ESI-TOF, m/z) calcd for C₁₇H₃₀O₅Si (M+Na)⁺: 365.1755, found 365.1755.

Preparation of 2h

2h: Using the same procedure as that used for **2a** afforded **2h** (13.6 mg, 71%) as a colorless liquid. $[\alpha]_D^{20} = +1.2 \ (c = 1.0 \text{ in CHCl}_3)$; The enantiomeric ratio was determined using **2h-NO**₂ (see below) ¹H NMR (400 MHz, CDCl₃) δ 5.84 (d, J = 10.8, 1H), 4.16 (d, J = 7.2 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.11 (d, J = 16.4 Hz, 1H), 3.06 (d, J = 16.4 Hz, 1H), 2.67-2.72 (m, 1H), 2.17 (s, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.10 (d, J = 6.4 Hz, 3H), 0.99 (d, J = 8.0 Hz, 9H), 0.61 (q, J = 8.0 Hz, 6H), 0.18 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 147.7, 135.8, 105.9, 87.9, 66.7, 60.6, 43.7, 43.2, 29.7, 15.8, 14.2, 7.4, 4.3, 0.18; IR (liquid film) cm⁻¹ 2916m, 1264m, 1250m, 1178m, 1019m, 839s; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₈O₃Si₂ (M+Na)⁺: 405.2252, found 405.2252.

To a solution of **2h** (50 mg, 0.131 mmol), Et₃N (55 μ L, 0.39 mmol) and DMAP (1.60 mg, 0.013 mmol) in CH₂Cl₂ (1.5 mL) was added 3, 5-dinitrobenzoyl chloride (36.2 mg, 0.157 mmol) at 0°C.

After stirring for 2h at room temperature, the reaction was quenched with sat aq NaHCO₃ (2 mL) and extracted with CH₂Cl₂ (3 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-1.0% of EtOAc/petroleum ether) afforded **2h-NO₂** (69.1 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 94:6 by HPLC analysis on ChiralpakODcolumn (0.67% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, t_{minor} = 18.02 min, t_{major} = 19.71 min; $[\alpha]_D^{20} = -23.7$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.22 (m, 1H), 9.15 (d, *J* = 1.2 Hz, 2H), 5.83 (d, *J* = 10.8 Hz, 1H), 5.55 (d, *J* = 8.0 Hz, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.05 (d, *J* = 16.0 Hz, 1H), 2.98-3.07 (m, 1H), 2.99 (d, *J* = 16.0 Hz, 1H), 1.23 (d, *J* = 6.8 Hz, 3H), 1.17 (t, *J* = 6.8 Hz, 3H), 1.00 (t, *J* = 7.6 Hz, 9H), 0.63 (q, *J* = 7.6 Hz, 6H), 0.19 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 161.4, 148.5, 146.0, 135.8, 133.7, 129.8, 122.3, 100.9, 90.9, 70.1, 60.3, 43.5, 41.5, 16.6, 14.1, 7.4, 4.1, 0.07; IR (liquid film) cm⁻¹ 2957m, 1733s, 1548s, 1344s, 1270m, 1164m, 840m; HRMS (ESI-TOF, m/z) calcd for C₂₇H₄₀N₂O₈Si₂ (M+Na)⁺: 599.2215, found 599.2214.

Preparation of 2i

2i: Using the same procedure as that used for **2a** afforded **2i** (9.8 mg, 60%) as a colorless liquid. $[\alpha]_D^{20} = -12.4 \ (c = 1.0 \text{ in CHCl}_3)$; The enantiomeric ratio was determined using **2i-NO**₂. ¹H NMR (400 MHz, CDCl₃) δ 5.85 (d, J = 10.4, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.14 (d, J = 16.0 Hz, 1H), 3.11 (m, 1H), 3.04 (d, J = 16.0 Hz, 1H), 2.59 (ddd, $J_I = 6.8$ Hz, $J_2 = 10.4$ Hz, $J_3 = 6.4$ Hz, 1H), 1.41-1.66 (m, 11H), 1.22 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H), 0.16 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 173.0, 150.4, 135.3, 78.6, 60.7, 43.6, 39.8, 39.0, 30.9, 26.9, 26.5, 26.4, 24.5, 16.6, 14.2,0.24; IR (liquid film) cm⁻¹ 2924s, 2851m, 1731s, 1450m, 1319m, 1249s, 1166m, 1098m, 838s, 760m; HRMS (ESI-TOF, m/z) calcd for C₁₈H₃₄O₃Si (M+Na)⁺: 349.2169, found 349.2168.

2i-NO₂: Using the same procedure as that used for **2h-NO**₂ afforded **2i-NO**₂ (58.8 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (5.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 11.68$ min, $t_{major} = 9.94$ min; $[\alpha]_D^{20} = -15.5$ (c = 1.0 in CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 9.20 (dd, $J_I = 2.0$ Hz, $J_2 = 2.0$ Hz, 1H), 9.09 (d, J = 2.0 Hz, 2H), 5.86 (d, J = 10.4 Hz, 1H), 5.05 (dd, $J_I = 2.8$ Hz, $J_2 = 9.2$ Hz, 1H), 3.84 (q, J = 7.2 Hz, 2H), 2.98 (d, J = 16.0 Hz, 1H), 2.92-2.98 (m, 1H), 2.86 (d, J = 16.0 Hz, 1H), 1.59-2.01 (m, 10H), 1.11 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 6.8 Hz, 3H), 0.12 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 162.4, 148.4, 148.1, 134.4, 133.7, 129.7, 122.0, 83.2, 60.1, 43.2, 38.7, 38.1, 30.7, 26.2, 26.1, 26.0, 17.3, 14.1, 0.14; IR (liquid film) cm⁻¹ 2919s, 1731s, 1547s, 1344s, 1171m, 839m; HRMS (ESI-TOF, m/z) calcd for C₂₅H₃₆N₂O₈Si (M+Na)⁺:543.2133, found 543.2128.

Preparation of 2j

2j: Using the same procedure as that used for **2a** afforded **2j** (9.5 mg, 60%) as a colorless liquid. $[\alpha]_D^{20} = +1.4 \ (c = 1.0 \text{ in CHCl}_3)$. The enantiomeric ratio was determined using **2j-NO**₂. ¹H NMR (400 MHz, CDCl₃) δ 6.00 (d, J = 10.8 Hz, 1H), 4.26-4.32 (m, 1H), 4.05-4.19 (m, 4H), 3.07 (d, J = 16.0 Hz, 1H), 3.03 (d, J = 16.0 Hz, 1H), 2.86 (s, 1H), 2.79-2.85 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 0.17 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 172.7, 145.6, 134.6, 61.7, 60.4, 43.7, 40.1, 17.2, 14.2, 14.1, 0.11; IR (liquid film) cm⁻¹ 2918w, 1728m, 1265m, 1249m, 1177m, 1026m, 839s; HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₈O₅Si (M+Na)⁺: 339.1598, found 339.1597._

2j-NO₂: Using the same procedure as that used for **2i-NO₂** afforded **2j-NO₂** (58.9 mg, 92%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak IC column (0.67% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 46.75$ min, $t_{major} = 40.73$ min; $[\alpha]_D^{20} = -4.0$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, J = 2.0, 1H), 9.17 (d, J = 2.0 Hz, 1H), 5.98 (d, J = 10.8 Hz, 1H), 5.08 (d, J = 7.2 Hz, 1H), 4.26 (dq, $J_I = 7.2$ Hz, $J_2 = 3.2$ Hz, 2H), 4.03 (q, J = 6.8 Hz, 2H), 3.16-3.24 (m, 1H), 3.12 (d, J = 16.0 Hz, 1H), 3.07 (d, J = 16.0 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.23 (d, J = 10.8 Hz, 3H), 1.20 (t, J = 6.8 Hz, 3H), 0.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 172.4, 168.3, 162.1, 148.6, 144.9, 135.8, 133.1, 129.8, 122.6, 77.9, 61.9, 60.4, 43.5, 38.2, 17.2, 14.1, 0.1; IR (liquid film) cm⁻¹ 2917m, 2849w, 1737w, 1549w, 1215m, 754s; HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₀N₂O₁₀Si (M+Na)⁺:549.1301, found 549.1300.

2.4. Synthesis of 3a-3j

Preparation of (±)-3a

(±)-**3a** was obtained in 36% yield as the by-product in the reaction to form racemic **2a** (Table 1, entry 2). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 6.0 Hz, 2H), 7.25 (d, *J* = 6.0 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 5.72 (s, 1H), 5.35 (s, 1H), 4.19 (d, *J* = 9.6 Hz, 1H), 4.07 (dq, *J*₁ = 2.4 Hz, *J*₂ = 6.8 Hz, 2H), 2.81 (d, *J* = 16.0 Hz, 1H), 2.63 (d, *J* = 16.0 Hz, 3H), 2.57 (s, 1H), 1.23 (t, *J* = 6.8 Hz, 3H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 139.5, 138.8, 132.0, 131.6, 131.4, 130.0, 129.0, 122.2, 121.8, 82.6, 79.9, 60.7, 38.9, 36.7, 16.8, 14.1; IR

(liquid film) cm⁻¹ 2917m, 2849, 1731, 1487, 1369m, 1260m, 1175m, 1103m, 1070s, 1010s, 850m, 809s; HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₂Br₂O₃ (M+Na)⁺: 514.9828, found 514.9822.

Preparation of 3b

3b: To a solution of **2a** (19.9 mg, 0.05 mmol) in CH₂Cl₂ (1mL) was added Ph₃C⁺B(C₆F_{5)4⁻} (0.922 mg, 0.001 mmol). The mixture was stirred at room temperature for 20 h before quenching with sat aq NaHCO₃ (1 mL) and extraction with CH₂Cl₂ (3 \times 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) afforded **3b** (20.4 mg, 92%) as a colorless liquid. The enantiomeric ratio determined to be 97:3 by HPLC analysis on Chiralpak OD column (0.67% was 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 16.27 \text{ min}$, $t_{maior} = 11.69 \text{ min}$; $[\alpha]_D^{20} = -3.2$ $(c = 1.0 \text{ in CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.6 Hz, 2H), 7.19 (d, J = 7.6 Hz, 2H), 5.26 (s, 1H), 4.44 (s, 1H), 4.17 (q, J = 6.8 Hz, 2H), 3.96 (d, J = 9.2 Hz, 3H); 3.46 (t, J = 6.8 Hz, 2H), 3.08 (d, J = 15.6 Hz, 1H), 3.00 (d, J = 15.6 Hz, 1H), 3.32 (m, 1H), 2.02 (m, 2H), 1.91 (d, J = 8.8 Hz, 2H), 1.29 (t, J = 6.8 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 140.1, 131.9, 131.8, 131.3, 128.9, 121.6, 82.0, 75.6, 60.9, 38.7, 36.8, 34.3, 31.0, 27.7, 16.7, 14.2; IR (liquid film) cm⁻¹ 2960w, 2918m, 2850w, 1733m, 1260m, 1175w, 1094m, 1011s, 754s; HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{24}Br_2O_3$ (M+Na)⁺: 480.9984, found 480.9983.

Preparation of 3c

3c: Using the same procedure as that used for **3b** afforded **3c** (15.5 mg, 70%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (0.25% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 30.17 \text{ min}$, $t_{major} = 35.48 \text{ min}$; $[\alpha]_D^{20} = -8.0 \ (c = 1.0 \text{ in CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 2H), 7.19-7.29 (m, 2H), 5.64 (s, 1H), 4.42 (s, 1H), 4.15 (q, J = 6.8 Hz, 2H), 3.99 (d, J = 9.6 Hz, 1H), 3.09 (d, J = 15.6 Hz, 1H), 3.02 (d, J = 15.6 Hz, 1H), 2.69-2.82 (m, 2H), 2.36 (m, 1H), 2.10-2.12 (m, 1H), 1.87-1.92 (m, 1H), 1.25 (t, J = 6.8 Hz, 3H), 0.81 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 142.4, 140.4, 132.1, 131.7, 128.9, 128.5, 128.3, 125.7, 121.5, 82.0, 75.7, 60.8, 38.8, 36.9, 34.3, 16.7, 14.2; IR (liquid film) cm⁻¹ 2959m, 2927m, 1732s, 1490m, 1454m, 1369m, 1264m, 1172m, 1098m, 1030s, 1011s, 812m; HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₇BrO₃ (M+Na)⁺: 465.1036, found 465.1039.

Preparation of 3d

3d

3d: Using the same procedure as that used for **3b** afforded **3d** (19.4 mg, 98%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak IC column (0.25% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 8.79$ min, $t_{major} = 9.41$ min; $[\alpha]_D^{20} = -18.5$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.55 (s, 1H), 4.37 (t, J = 4.0 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.95 (d, J = 9.2 Hz, 1H); 3.09 (d, J = 16.0 Hz, 1H), 2.99 (d, J = 16.0 Hz, 1H), 2.31 (m, 1H), 1.85-1.95 (dt, $J_I = 6.8$ Hz, d, $J_2 = 6.8$ Hz, 1H), 1.42-1.54 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 6.8 Hz, 6H), 0.80 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 140.5, 133.2, 131.1, 130.8, 128.9, 121.3, 82.0, 60.7, 41.8, 38.9, 36.9, 24.1, 24.0, 21.7, 16.8, 14.2; IR (liquid film) cm⁻¹ 2956m, 2927m, 1735s, 1156m, 1094s, 1009s, 912w, 810s; HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₇BrO₃ (M+Na)⁺: 417.1036, found 417.1038.

Preparation of 3e

3e: Using the same procedure as that used for **3b** afforded **3e** (19.5 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak OD column (0.67% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 15.81$ min, $t_{major} = 10.32$ min; $[\alpha]_D^{20} = +21.6$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 5.6 Hz,1H), 7.26-7.30 (m, 2H), 7.25 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 5.72 (s, 1H), 5.36 (s, 1H), 4.07 (dq, $J_I = 4.8$ Hz, $J_2 = 7.2$ Hz, 2H), 2.80 (d, J = 16.0 Hz, 1H), 2.64 (d, J = 16.0 Hz, 1H), 2.57 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 0.87 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 163.7 (CH, d, $J_{C-F} = 245.5$ Hz), 139.6, 135.6, 132.3, 131.4, 131.2, 130.0 (CH, d, $J_{C-F} = 8.1$ Hz), 129.0, 127.9, 127.2, 121.7, 115.4 (CH, d, $J_{C-F} = 21.6$ Hz), 82.7, 79.9, 60.7, 38.9, 36.7, 16.8, 14.1; IR (liquid film) cm⁻¹ 2926w, 1729w, 1510w, 1261w, 1215m, 1012w, 746s; HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₂BrFO₃ (M+Na)⁺:455.0629, found 455.0636.

Preparation of 3f

3f: Using the same procedure as that used for **3b** afforded **3f** (21.6 mg, 95%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak OD column (0.25% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 72.38 \text{ min}$, $t_{major} = 78.18 \text{ min}$; $[\alpha]_D^{20} = +57.6 \text{ (c} = 1.0 \text{ in CHCl}_3)$;¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.71 (s, 1H), 5.35 (s, 1H), 4.20 (d, J = 9.2 Hz, 1H), 4.09 (dq, $J_1 = 4.8$ Hz, $J_2 = 6.8$ Hz, 2H), 3.81 (s, 3H), 2.82 (d, J = 16.0 Hz, 1H), 2.68 (d, J = 16.0 Hz, 1H), 2.58 (m, 1H), 1.24 (t, J = 6.8 Hz, 2H), 3H), 0.87 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.2, 159.7, 141.3, 139.7, 132.4, 131.3, 130.8, 129.5, 129.0, 121.6, 120.7, 113.9, 113.6, 82.6, 80.5, 60.6, 55.2, 38.9, 36.7, 14.2, 14.1; IR (liquid film) cm⁻¹ 2963w, 1730m, 1488m, 1264s, 1070m, 1012m, 816m, 792m, 732m, 703s; HRMS (ESI-TOF, m/z) calcd for C₂₃H₂₅BrO₄ (M+Na)⁺: 467.0828, found 467.0824.

Preparation of 3g

3g: Using the same procedure as that used for **3b** afforded **3g** (20.7 mg, 98%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 12.29$ min, $t_{major} = 16.51$ min; $[\alpha]_D^{20} =$ +11.0 (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.24-7.30 (m, 4H), 7.09 (d, *J* = 4.8 Hz, 1H), 5.68 (s, 1H), 5.52 (s, 1H), 4.18 (d, *J* = 9.6 Hz,1H), 4.09 (q, *J* = 6.8 Hz, 2H), 2.84 (d, *J* = 16.0 Hz, 1H), 2.63 (d, *J* = 16.0 Hz, 1H), 1.24 (t, *J* = 6.8 Hz, 3H), 0.86 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 140.6, 139.7, 132.1, 131.1, 130.7, 129.0, 126.6, 126.1, 124.1, 121.7, 82.8, 38.9, 36.7, 16.8, 14.2; IR (liquid film) cm⁻¹ 2918w, 1731m, 1489w, 1264m, 1177w, 1071m, 1012m, 788m; HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₁BrO₃S (M+Na)⁺:443.0287, found 443.0290.

Preparation of 3h

3h: Using the same procedure as that used for **3b** afforded **3h** (21.6 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 4.50$ min, $t_{major} = 5.78$ min; $[\alpha]_D^{20} = +3.7$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.29-5.93 (m, 2H), 5.61 (s, 1H), 4.79 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 4.03 (d, J = 9.2 Hz, 1H), 3.05 (d, J = 16.0 Hz, 1H), 2.95 (d, J = 16.0Hz, 1H), 2.40 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 8.0 Hz, 9H), 0.80 (t, J = 7.2 Hz, 3H), 0.58 (q, J = 8.0 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 171.2, 144.7, 139.9, 131.9, 131.4, 131.1, 130.9, 129.1, 121.6, 82.1, 82.0, 60.7, 38.7, 36.6, 16.8, 14.2, 7.3, 3.3; IR (liquid film) cm⁻¹ 2955m, 2918m, 1737s, 1260m, 1180m, 1070s, 1012s, 991m,; HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₅BrO₃Si (M+Na)⁺: 501.1431, found 501.1425.

Preparation of 3i

3i: Using the same procedure as that used for **3b** afforded **3i** (15.5 mg, 80%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 55.01$ min, $t_{major} = 59.21$ min; $[\alpha]_D^{20} = -3.2^{\circ}$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.90 (dd, $J_I = 6.8$ Hz, $J_2 = 6.8$ Hz, 1H), 6.14 (d, J = 15.6 Hz, 1H), 5.67 (s, 1H), 5.02 (s, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 4.06 (d, J = 9.2 Hz, 1H), 3.09 (d, J = 16.0 Hz, 1H), 2.42 (s, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H), 0.82 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 166.0, 144.4, 139.4, 132.0, 131.5, 129.8, 129.0, 123.8, 121.9, 82.1, 60.9, 60.5, 38.7, 36.4, 16.6, 14.2, 14.1; IR (liquid film) cm⁻¹ 2962w, 2921m, 2851w, 1722s, 1369m, 1261s, 1175s, 1071s, 1031s, 1011s, 981m, 805s; HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₅BrO₅ (M+Na)⁺: 459.0778, found 459.0778.

Preparation of 3j

3j: Using the same procedure as that used for **3b** afforded **3j** (21.9 mg, 90%) as a colorless liquid. The enantiomeric ratio was determined to be 98:2 by HPLC analysis on Chiralpak OD column (5.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 18.16$ min, $t_{major} = 14.81$ min; $[\alpha]_D^{20} = +12.0$ (c = 1.0 in CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.33 (dd, *J*₁ = 16.0 Hz, *J*₂ = 8.0 Hz, 1H), 5.71 (s, 1H), 5.00 (d, *J* = 6.0 Hz, 1H), 4.10 (q, *J* = 6.8 Hz, 2H), 4.07 (d, *J* = 6.8 Hz, 1H), 3.08 (d, *J* = 16.0 Hz, 1H), 3.00 (d, *J* = 16.0 Hz, 1H), 2.50 (m, 1H), 1.19 (t, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 147.1, 142.8, 139.4, 132.5, 131.8, 131.5, 130.6, 129.0, 127.1, 123.9, 121.9, 82.3, 78.8, 60.8, 38.7, 36.3, 16.7, 14.1; IR (liquid film) cm⁻¹ 2917w, 1730m, 1596m, 1516s, 1341s, 1179m, 1070s, 1011s, 972m, 863m; HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₄BrNO₅ (M+Na)⁺: 508.0730, found 508.0731.

2.5. One-pot Synthesis of 3k-3m.

Preparation of 3k

3k: To a solution of (*S*)-**1a** (20.5 mg, 0.05 mmol) and *p*-Br-C₆H₄CHO (9.25 mg, 0.05 mmol) in anhydrous CHCl₃ (0.5 mL) was added Ph₃C⁺B(C₆F₅)₄⁻ (0.92 mg, 0.001 mmol) at room temperature. After stirring for 2 h, a solution of *n*-hexanal (14.6 mg, 0.146 mmol) in anhydrous CH₂Cl₂ (0.5 mL) was added to the above mixture. The reaction was stirred for 20 h before quenching with sat aq NaHCO₃ (2 mL) and extraction with CH₂Cl₂ (3 × 2 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) afforded **3k** (11.2 mg, 55%) as a yellow oil. The enantiomeric ratio was determined to be 97.5:2.5 by HPLC analysis on Chiralpak IC column (0.5% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220nm, t_{minor} = 8.13 min, t_{major} = 9.09 min; $[\alpha]_D^{20} = -3.5$ (*c* = 1.0 in CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4Hz, 2H), 5.58 (s, 1H), 4.37 (s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.95 (d, *J* = 9.6 Hz, 1H), 3.05 (d, *J* = 15.6 Hz, 1H), 2.98 (d, *J* = 15.6 Hz, 1H), 2.31 (m,

1H), 1.70-1.74 (m, 1H), 1.51-1.58 (m, 2H), 1.43-1.50 (m, 1H), 1.28-1.39 (m, 4H), 1.28 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.5, 132.5, 131.3, 128.9, 121.5, 81.9, 82.0, 82.0, 76.3, 60.7, 38.9, 36.9, 32.6, 32.0, 23.8, 22.6, 16.8, 14.2, 14.1; IR (liquid film) cm⁻¹ 2926s, 2851m, 1736s, 1490m, 1457m, 1369m, 1174m, 1071m, 1011s, 811m; HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₉BrO₃ (M+Na)⁺: 431.1192, found 431.1193.

Preparation of 31

31: Using the same procedure as that used for **3k** afforded **3l** (11.6 mg, 50%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220nm, $t_{minor} = 43.10min$, $t_{major} = 62.82 min$; $[\alpha]_D^{20} = +42.5$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.86 (m, 4H), 7.52 (d, *J* = 8.0, 1H), 7.48 (d, *J* = 3.2 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 5.78 (s, 1H), 5.56 (s, 1H), 4.27 (d, *J* = 6.8 Hz, 1H), 4.02 (dq, *J*₁ = 3.2 Hz, *J*₂ = 7.2 Hz, 2H), 2.83 (d, *J* = 16.0 Hz, 1H), 2.66 (d, *J* = 16.0 Hz, 1H), 2.64 (m, 1H), 1.16 (t, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 139.8, 132.4, 131.4, 131.2, 129.0, 128.5,128.0, 127.9, 127.6, 126.1, 125.4, 121.7, 82.6, 80.8, 60.6, 38.9, 36.9; IR (liquid film) cm⁻¹ 3054w, 1729m, 1264s, 1176w, 1072m, 1012m, 816m; HRMS (ESI-TOF, m/z) calcd for C₂₆H₂₅BrO₃ (M+Na)⁺:487.0879, found 487.0878.

Preparation of 3m

3m: Using the same procedure as that used for **3k** afforded **3m** (15.5 mg, 65%) as a colorless liquid. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (1.0% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220 nm, $t_{minor} = 4.61$ min, $t_{major} = 5.61$ min; $[\alpha]_D^{20} = +9.6$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.62 (s, 1H), 5.29 (s, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.03 (d, *J* = 9.2 Hz, 1H), 3.46 (d, *J* = 16.4 Hz, 1H), 3.13 (d, *J* = 16.4 Hz, 1H), 2.48 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 8.0 Hz, 9H), 0.60 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 139.1, 131.4, 131.0, 129.3, 129.2,121.9, 102.5, 88.9, 82.8, 69.1, 60.8, 39.0, 36.2, 16.6, 14.2, 7.4, 4.2; IR (liquid film) cm⁻¹ 2958w, 1731w, 1265m, 1088w, 1075w, 1012w; HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₃BrO₃Si (M+Na)⁺:499.1275, found 499.1275.

2.6. Functionalization of 3d

8: To a solution of 3d (50.0 mg, 0.127 mmol) in anhydrous CHCl₃ (1 mL) was added NBS (25 mg, 0.140 mmol) at 25 °C. After stirring for 3 h, the reaction was quenched with sat aq NH₄Cl (1 mL) and extracted with CH₂Cl₂ (3 × 1 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-1.0% of EtOAc/petroleum ether) afforded 8 (51.9 mg, 92% yield) as a colorless oil. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak IC column (5% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220nm, t_{minor} = 10.80, t_{major} = 6.99 min; $[\alpha]_D^{20}$ = +1.6 (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 4.76 (d, *J* = 2.8 Hz, 1H), 4.21 (d, *J* = 10.4 Hz, 1H), 3.31 (d, *J* = 8.8 Hz, 1H), 3.11 (d, *J* = 17.2 Hz, 1H), 2.88 (d, *J* =17.2 Hz, 1H), 2.36-2.41 (m, 1H), 1.70-1.77 (m, 1H), 1.16-1.25 (m, 1H), 0.87 (q, *J* = 7.2 Hz, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 138.3, 131.5, 128.9, 122.2, 87.7, 80.3, 76.7,59.9, 43.6, 41.7, 34.1, 24.7, 23.4,

22.0, 13.0; IR (liquid film) cm⁻¹ 2957w, 2917s, 2849s, 1795s, 1462m, 1376w, 1260w, 1073m, 1012m, 808m; HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{25}BrO_3 (M+Na)^+$:468.9807, found 468.9803.

Preparation of 9

9: To a solution of **3d** (50.0 mg, 0.127 mmol) in anhydrous CH₃CN (1 mL) was added NBS (25 mg, 0.140 mmol) at 25 °C. After stirring for 2 h, the reaction was quenched with sat aq NH₄Cl (1 mL) and extracted with CH₂Cl₂ (3 × 1 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-1.0% of EtOAc/petroleum ether) afforded **9** (56.0 mg, 90% yield) as a colorless oil. The enantiomeric ratio was determined to be 97:3 by HPLC analysis on Chiralpak OD column (5% 2-propanol/*n*-hexane, 1.0 mL/min), UV 220nm, t_{minor} = 13.68, t_{major} = 12.58 min; $[\alpha]_D^{20} = -28.5$ (*c* = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 4.25 (dq, *J_I* = 3.6 Hz, *J₂* = 7.2 Hz, 2H), 4.15 (m, 1H), 3.63 (d, *J* = 8.0 Hz, 1H), 3.62 (s, 1H), 3.03 (d, *J* = 14.4 Hz, 1H), 2.94 (d, *J* = 14.4 Hz, 1H), 2.54-2.59 (m, 1H), 1.67-1.79 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 6.4Hz, 3H), 0.84 (d, *J* = 6.4Hz, 3H), 0.72 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 140.0, 131.3, 129.1, 121.5, 80.0, 75.9, 74.8, 70.5, 61.6, 42.5, 40.4, 36.7, 24.2, 23.6, 21.8, 14.2, 13.7; IR (liquid film) cm⁻¹ 2925w, 2854w, 1710w, 1261m, 1214s, 1093m, 1012m; HRMS (ESI-TOF, m/z) calcd for C₂₁H₃₁BrO₄ (M+Na)⁺ :515.0226, found 515.0228.

2.7. Determining the absolute configuration of (S)-1a

DFT Calculation Procedures:

CD spectroscopy is obtained by density functional theory (DFT) calculations. All the DFT calculations of structure of starting material (ground state) and corresponding vibrational frequencies were performed on Gaussian 03 software with B3LYP/6-31G(d) basic set.

Electronic circular dichroism (ECD) spectra provided by quantum chemical calculation with SMD model, at the B3LYP/6-31G (d) level (methanol as solvent) were performed.

Computational data:

R.log

Zero-point correction=			0.523198 (Hartree/Particle)		
Thermal correction to Energy=			0.556411		
Thermal c	orrection to En	thalpy=	0.:	557355	
Thermal c	orrection to Gil	bbs Free Energy=	0.45	58808	
E(sov.) =	-1664.648094	26 A.U.			
Center	Atomic	Atomic	Coord	inates (Angstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.838595	0.097596	0.160410

2	6	0	-0.596734	0.003863	1.710542
3	1	0	-0.060821	0.907965	2.025080
4	1	0	0.072523	-0.839662	1.911742
5	6	0	-1.651801	1.333179	-0.143060
6	8	0	-1.918052	2.229830	0.638914
7	8	0	-2.085916	1.369980	-1.433993
8	6	0	-2.859536	2.532833	-1.808978
9	1	0	-2.246913	3.427656	-1.657952
10	1	0	-3.724638	2.611387	-1.143359
11	6	0	-3.269989	2.365164	-3.260162
12	1	0	-3.854331	3.234141	-3.582274
13	1	0	-2.392943	2.281144	-3.909998
14	1	0	-3.885510	1.469581	-3.393878
15	6	0	-1.817844	-0.125218	2.588523
16	1	0	-2.589502	0.629626	2.445691
17	6	0	-1.965046	-1.035223	3.557181
18	1	0	-1.176684	-1.775434	3.712241
19	6	0	-3.140088	-1.123063	4.490212
20	1	0	-3.885478	-0.351153	4.270424
21	1	0	-3.633984	-2.102106	4.422583
22	1	0	-2.827780	-1.002304	5.536747
23	14	0	-1.816530	-1.478782	-0.487259
24	6	0	-1.206396	-3.037085	0.398001
25	1	0	-1.373703	-2.981706	1.477996
26	1	0	-1.772340	-3.898843	0.020599
27	1	0	-0.144952	-3.235644	0.222769
28	6	0	-3.665659	-1.275382	-0.111473
29	1	0	-4.094118	-0.398112	-0.607902
30	1	0	-4.208343	-2.157368	-0.475770
31	1	0	-3.854387	-1.188409	0.962639

32	6	0	-1.662612	-1.773554	-2.354011
33	1	0	-0.651372	-2.060347	-2.658337
34	1	0	-2.329513	-2.601752	-2.627168
35	1	0	-1.966203	-0.895420	-2.930803
36	14	0	0.922272	0.307223	-0.682180
37	6	0	1.885140	-1.329091	-0.605474
38	6	0	2.097551	-2.098355	-1.764575
39	6	0	2.427618	-1.818761	0.599637
40	6	0	2.795052	-3.307921	-1.723643
41	1	0	1.717938	-1.749590	-2.721631
42	6	0	3.125086	-3.026569	0.649161
43	1	0	2.319497	-1.241847	1.514665
44	6	0	3.306097	-3.778153	-0.513795
45	1	0	2.941230	-3.879577	-2.636700
46	1	0	3.530471	-3.378798	1.594358
47	1	0	3.848946	-4.719155	-0.477820
48	6	0	1.959964	1.620280	0.224861
49	6	0	1.410505	2.809996	0.744607
50	6	0	3.359460	1.473483	0.291690
51	6	0	2.220286	3.798082	1.307957
52	1	0	0.336886	2.970682	0.726281
53	6	0	4.172957	2.461239	0.850483
54	1	0	3.826728	0.571719	-0.095170
55	6	0	3.604303	3.627524	1.362757
56	1	0	1.766098	4.701677	1.707042
57	1	0	5.249985	2.316641	0.887768
58	1	0	4.234214	4.397025	1.802087
59	6	0	0.807379	0.864313	-2.487189
60	1	0	0.381244	1.870416	-2.547904
61	1	0	1.818370	0.908549	-2.909815

S.log

Zero-point correction=	0.522797 (Hartree/Particle)
Thermal correction to Energy=	0.556172
Thermal correction to Enthalpy=	0.557116
Thermal correction to Gibbs Free Energy=	0.457638

E(sov.) = -1664.64469774 A.U.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.147077	-1.014385	-0.322342
2	6	0	0.983003	-0.651598	-1.609588
3	1	0	0.503864	0.212574	-2.095800
4	1	0	0.873828	-1.475269	-2.321064
5	6	0	-1.128081	-1.690108	-0.793703
6	8	0	-1.316861	-2.183475	-1.890834
7	8	0	-2.085179	-1.711033	0.172801
8	6	0	-3.353025	-2.298494	-0.198207
9	1	0	-3.184419	-3.333857	-0.510832
10	1	0	-3.751187	-1.750977	-1.057957
11	6	0	-4.271479	-2.206812	1.005931
12	1	0	-5.246792	-2.641987	0.761340
13	1	0	-3.856958	-2.752408	1.860033
14	1	0	-4.424835	-1.163669	1.300204
15	6	0	2.447362	-0.331003	-1.444799
16	1	0	2.713277	0.438006	-0.722392
17	6	0	3.418369	-0.873580	-2.187755

18	1	0	3.154635	-1.631898	-2.928119
19	6	0	4.874191	-0.510552	-2.105267
20	1	0	5.054633	0.254711	-1.342605
21	1	0	5.492718	-1.385842	-1.863913
22	1	0	5.242251	-0.123969	-3.065672
23	14	0	-0.352496	0.576187	0.693925
24	6	0	-0.809097	0.208146	2.495084
25	1	0	0.008459	-0.271752	3.043347
26	1	0	-1.047967	1.138452	3.022983
27	1	0	-1.680611	-0.449713	2.547111
28	14	0	1.070032	-2.427373	0.687525
29	6	0	-0.086164	-3.317355	1.899931
30	1	0	-0.884352	-3.861440	1.384884
31	1	0	0.504752	-4.052668	2.461828
32	1	0	-0.555452	-2.644662	2.622974
33	6	0	-1.826334	1.452773	-0.135417
34	6	0	-2.232453	1.244173	-1.466803
35	6	0	-2.542413	2.410268	0.609504
36	6	0	-3.300772	1.951060	-2.024894
37	1	0	-1.724302	0.512322	-2.087607
38	6	0	-3.611137	3.119348	0.059668
39	1	0	-2.263430	2.613914	1.640858
40	6	0	-3.994458	2.891204	-1.262932
41	1	0	-3.588996	1.764162	-3.056409
42	1	0	-4.143823	3.849515	0.664078
43	1	0	-4.825883	3.441973	-1.695432
44	6	0	1.050258	1.860906	0.723672
45	6	0	1.995516	1.906497	1.765735
46	6	0	1.162904	2.831880	-0.290509
47	6	0	3.016506	2.858845	1.786109

48	1	0	1.940165	1.190291	2.581410
49	6	0	2.181702	3.785529	-0.278686
50	1	0	0.438414	2.848848	-1.100924
51	6	0	3.114896	3.799180	0.759459
52	1	0	3.731997	2.868232	2.604731
53	1	0	2.243913	4.520530	-1.077354
54	1	0	3.908476	4.542016	0.772242
55	6	0	2.542654	-1.784147	1.691800
56	1	0	3.239841	-1.193739	1.091893
57	1	0	2.229706	-1.177505	2.548536
58	1	0	3.092405	-2.646766	2.090452
59	6	0	1.659881	-3.731069	-0.553108
60	1	0	2.481911	-3.364212	-1.174050
61	1	0	2.013948	-4.619034	-0.014299
62	1	0	0.847192	-4.045759	-1.217803

Experiment procedure:

Prior to each use, the CD instrument was purged with nitrogen for 20 min and the chiller was set to equilibrate at 25.0 °C. Spectra were collected between 200 and 520 nm with a standard sensitivity of 100 mdeg, a data pitch of 0.5 nm, a band width of 1 nm, ascanning speed of 500 nm/s⁻¹ and a response of 0.5 s using a quartz cuvette (1 cm path length). The data were adjusted through baseline correction and binomial smoothing. The concentration of (*S*)-1a was 6.0×10^{-4} M in methanol.

The experimental ECD spectrum of (S)-1a

Comparison of experimental ECD spectrum of (S)-1a in methanol with the calculated ECD spectrum of (S)-1a.

091.001-

643.

112.77 76.760 787.97 787.010

785.12-

-1.620

 $^{-10}$

CHU-V-26F2a H1 CDCI3 400MHz

CHU-VII-82F3 H1 CDCI3 400MHz

\sim 119.039
201.721 ^J
879.821
133.061
130.351
0/4.851
027 007

682.97
000 [.] 77→
212.77 _\

011.00-

~55.518 -36.403

-2.067 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266

180

190

200

210 F

192 933 933 933 957 957 957 957 957 933 933 933 933 933 933 933 933 933 93	20. 20. 22. 22. 22. 23. 23. 23. 23. 23. 23. 23	

689.09—	
112.77 000.77 887.87	

-24.388 -34.058

+07.81-

~-0.940 ___0110

-

-172.792

919.44
£7ð.0ð—
289.77 77.321 77.649 77.649

√+3.518

~14.115 929[.]91

031.0 0.159

CHU-VII-68F2PB H1 CDCI3 400MHz

0.247 0.266

~14.201 ~16.693

√¢3[°]033

CHU-VII-68F3PB C13 CDCI3 400MHz

866.0

210.1

1.232

1.248 792.1

1.293 -2.492

013.510 3.040

3.080

081.5 951.5 139

747.547

¢.099

911.4

4.134

921.4 4.193

112.4-

218.3 √2.842

980.9 6.125

829.9 6.942

796.9₇ 789.9₇ 799.9₇

0 <u>.</u>

ß

0.

1.0

1.5

0 S.

ß

сi

3.0

3.5

4.0

4.5

5.0

വ

5.

6.0

7.0

7.5

8.0

വ $\dot{\infty}$

9.0

വ 6.

ß 10.

11.5

12.5

(mdd)

fl വ 6.

CHU-VII-72F4PB C13 CDCI3 400MHz

2

458.	2
098.	S

101.0		
176.91		
729.01		
96L.LJ		
∦-1.224		
242.1 <i>-</i> ∱		
174.12		
^{_ر} ا` 4 63		
629.1 ₇		
895.2 7		
910.61		
990.€√		
£01.5√		
₹3.122		
291.6 ₇		
100.4		
901 V		

-132.336

029 843
669.09-
063.87 000.77 76.789

764.467 718.82-56.889 30.940 230.044

r14.224 099.91 J 777.4<u>.</u>777

- 20

(ppm)

f1

681.7 ^J
802.7√
092.7
864.7√
774.7 ₇

101	V
919	<u>'</u>

926 [°] 926	
026 425 426 426 426 455 455 455 455	4 3 3 3 3 3 3 3 3 3 3 4
LQL	. 4]

¥8€:f 885.f 707.0 70.0 707.0 700.0 707.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.00

J21.590 128.855 -131.343 819.151 131.918 √140.145

756.27 887.87 000'22/ 220.28 112.77

128.03-

169.91~ **۲83.72**√ _____21.025 ~34.318 28.38. √36.806

~14.213

S81

170

180

190

200

210

0

10

20

30

H1 CDCI3 400MHz

CHU-VII-99F2PB

à

24 4	282	6 0 0	2 2 2 3	Ē
0 7 6 9	9 8	0 1 1	- - - - - - - - - - - - - - - - - - -	

3

CHU-VII-34F4PB2 H1 CDCI3 400MHz

	72
	85
	29
	74
	7.8
	50 743
	70
	10
	19
	69
	62
	81
	74
	20
	42
	1
	15
	20 0+
	70
	60
	11
	20
	67
ΗR	94
Σ	63
00	۶۱
ব	06
<u>2</u>	66
ă	14
C	
Ŧ	32
-	23
Б	09
Ц Ц	84
<u>-</u> 9	69
9-8	00
Ę	
Ū	

513	51	۱
060	56	1~
292	31	1~
766	36	1

736.741 √40.398 √42.494
61.603 61.603

24.218 23.642 21.834 721.834 713.728
∠36.741

-10

