Supporting Information for:

Structural Elucidation of a Mononuclear Titanium Methylidene

Lauren N. Grant,^a Seihwan Ahn,^{b,c} Brian C. Manor,^a Mu-Hyun Baik,^{b,c*} and Daniel J. Mindiola^{a*}

^aDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104. ^bDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea. ^cInstitute for Basic Science, Center for Catalytic Hydrocarbon Functionalizations, Daejeon, 34141, South Korea.

E-mail: mbaik2805@kaist.ac.kr; mindiola@sas.upenn.edu

Table of Contents	
Experimental Details	S2-S4
NMR Spectral Data	S4-S10
Molecular Structures and Crystallographic Tables	S10-S14
Computational Details	S15
Cartesian Coordinates of All Computed Structures	S16-S23
References	S24

Experimental Details

General Procedures

Unless otherwise stated, all operations were performed in a M.Braun Lab Master double-dry box under an atmosphere of purified dinitrogen or using high vacuum standard Schlenk techniques under an argon or dinitrogen atmosphere. Anhydrous solvents were purchased from Fisher Scientific or Aldrich. All anhydrous solvents were sparged with argon for 20 minutes and dried by passage through two columns of activated alumina and Q-5 drying agent in a Grubbs-type solvent system. Stabilizer-free Et₂O and THF were purchased from Fisher Scientific and dried by passage through two columns of activated alumina. Deuterated benzene and deuterated toluene were purchased from Cambridge Isotope Laboratories (CIL) and was sparged with argon for 20 minutes, then was dried over 4 Å sieves, and degassed by freeze-pump-thaw cycles. All solvents were transferred into a dry box and were stored over 4 Å sieves. All sieves were heated to 200 °C under vacuum overnight prior to use. Celite used for filtrations was also heated to 200 °C under vacuum overnight prior to use. Solution state magnetic susceptibility was measured by the Evans^[1] method in benzene-d₆/tetramethylsilane solution at 298 K. Corrections were applied for diamagnetism calculated for Pascal constants.^[2] (PN)₂TiCl,^[3] the, aryl oxyl radical •OMes* (Mes* = $2,4,6^{+}Bu_3C_6H_2$,^[4] H₂CPPh₃,^[5] and [FeCp₂][OTf]^[6] were prepared according to published literature procedures. NMR spectra were recorded on a Bruker UNI 400 MHz spectrometer for ¹H and ³¹P{¹H} spectra. ¹³C NMR spectra were recorded on a cryo500. ¹H and ¹³C NMR chemical shifts are reported referenced to the internal residual proton or carbon resonances of $C_6 D_6$ ($\delta =$ 7.16 ppm or 128.06 ppm). ¹⁹F and ³¹P NMR chemical shifts are reported with respect to external CF₃CO₂H (δ –78.5 ppm) and H₃PO₄ (δ 0.0 ppm).

Synthesis of (PN)₂Ti(CH₃) (1)

A dark brown solution of $(PN)_2$ TiCl (294 mg, 0.38 mmol, 1 equiv.) in 5 mL of toluene was cooled to -35 °C for 30 mins in a 20 mL vial. To this solution was added an ethereal solution of 1.6 M LiCH₃ (0.24 mL, 0.38 mmol, 1 equiv,) dropwise, over a period of 3 minutes. An immediate color change to dark green was observed during this time. The reaction mixture was stirred at room temperature for 15 minutes, followed by removal of all volatiles. The green residue was then dissolved in 15 mL diethyl ether, filtered through Celite, and the filtrate concentrated to 5 mL. This concentrated solution was then layered with 10 mL *n*-hexanes and stored at -35 °C overnight, resulting in the deposition of a dark green powder. To isolate this material, the solution was rapidly filtered cold and the solid dried *in vacuo*. Total collected was 278 mg (0.37 mmol, 98% yield). In order to grow single crystals suitable for X-ray diffraction studies, half of the powder product from the isolated reaction mixture (140 mg) was dissolved in 10 mL ether, and stored at -35 °C overnight without further filtration to yield green single plates of complex **1**.

¹H NMR (400 MHz, 298 K, benzene-*d*₆): δ 11.98 (br, $\Delta v_{1/2} = 5.7$ Hz, 2 H, meta-Ar*H*_{Tolyl}), 9.37 (s, 2 H, meta-Ar*H*_{Tolyl}), 8.23 (br, $\Delta v_{1/2} = 65.2$ Hz, 2 H, ortho-Ar*H*_{Tolyl}), 8.14 (s, 4 H, meta-Ar*H*_{Mesityl}), 4.29 (s, 12 H, ortho-C*H*₃Mesityl), 3.31 (s, 6 H, para-C*H*₃Tolyl), 2.80 (s, 6 H para-C*H*₃Mesityl), 2.39 (br, $\Delta v_{1/2} = 33.2$ Hz, 12 H, P-CH-C*H*₃), 1.37 (s, 3 H, Ti-C*H*₃) 0.49 (br, 4 H ea, P-C*H*-CH₃). Some

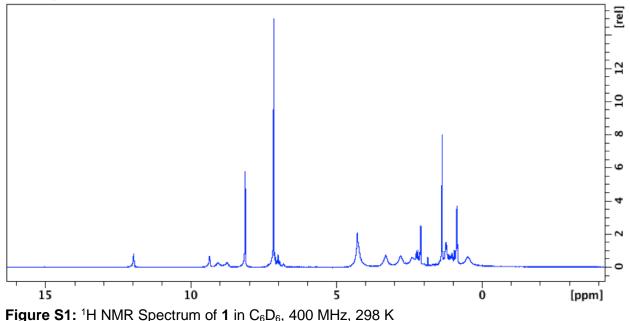
residual solvents such as *n*-hexanes and *n*-pentane are present based on the ¹H NMR spectrum. μ_{eff} = 2.03 μ_B , 25 °C, C₆D₆, Evans' method.

Synthesis of (PN)₂Ti(CH₃)(OTf) (2)

To a dark green solution of **1** in 5 mL THF in a 20 mL vial (224.5 mg, 0.3 mmol, 1 equiv.) was added a 10 mL THF slurry of [FeCp₂][OTf] (101.5 mg, 0.3 mmol, 1 equiv.) at room temperature while stirring. A color change to dark red was observed, whereby all [FeCp₂][OTf] was consumed as it was added, instantaneously resulting in a homogeneous bright red solution. As monitored by ¹H NMR spectroscopy, complex **1** is converted quantitatively to complex **2**. Removal of volatiles after stirring at room temperature for 30 minutes provides a pure powder that can be used for NMR characterization. Complex **2** is cleanly formed along with FeCp₂ based on the ¹H NMR spectrum. Given the clean conversion of **1** to complex **2**, it is possible to conduct *in situ* experiments with the crude material without need for separation from the FeCp₂. The details below rely on the use of crude mixture for the synthesis of complex **3**.

¹H NMR (400 MHz, 298 K, benzene-*d*₆): δ 6.70 (s, 4H, *meta*-Ar*H*_{Mesityl}), 6.55, (br, $\Delta v_{1/2} = 3.3$ Hz, 2 H, *meta*-Ar*H*_{Tolyl}), 6.53 (s, 2 H, *meta*-Ar*H*_{Tolyl}), 5.48 (dd, ³J_{H-H} = 3.5 Hz, 2H, *ortho*-Ar*H*_{Tolyl}), 3.60 (s, 12 H, ortho-C*H*₃Mesityl), 2.82 (sept, ³J_{H-H} = 3.5 Hz, 2 H, P-C*H*-CH₃), 2.57 (sept, ³J_{H-H} = 3.3 Hz, 2 H, P-C*H*-CH₃), 2.31 (s, 6 H, para-C*H*₃Tolyl), 2.19 (s, 6 H para-C*H*₃Mesityl), 1.69 (t, ³J_{H-H} = 9.1 Hz, 3 H, Ti-C*H*₃), 1.54 (m, 3 H, P-CH-C*H*₃, coupling constant not assignable due to overlapping resonances), 1.48 (m, 3 H, P-CH-C*H*₃, coupling constant not assignable due to overlapping resonances). ³¹P{¹H} NMR (162 MHz, 298 K, benzene-*d*₆): δ 17.45 ppm. ¹⁹F NMR (282 MHz, 298 K, benzene-*d*₆): δ 158.45 (Ar-C), 145.43 (Ar-C), 138.41 (Ar-C), 136.47 (Ar-C), 136.10 (Ar-C), 133.67 (Ar-C), 132.40 (Ar-C), 130.63 (Ar-C), 130.04 (Ar-C), 129.27 (Ar-C), 113.90 (Ar-C), 55.22 (t, ¹J_{C-H}= 8.1 Hz, Ti-CH₃), 28.01 (PCH(CH₃)₂, 27.17 (PCH(*C*H₃)₂), 21.61 (Ar-*C*H₃), 21.46 (PCH(*C*H₃)₂), 21.26 (PCH(*C*H₃)₂), 20.99 (Ar-*C*H₃), 20.49 (Ar-*C*H₃).

Synthesis of (PN)₂Ti=CH₂ (3)


Route A:

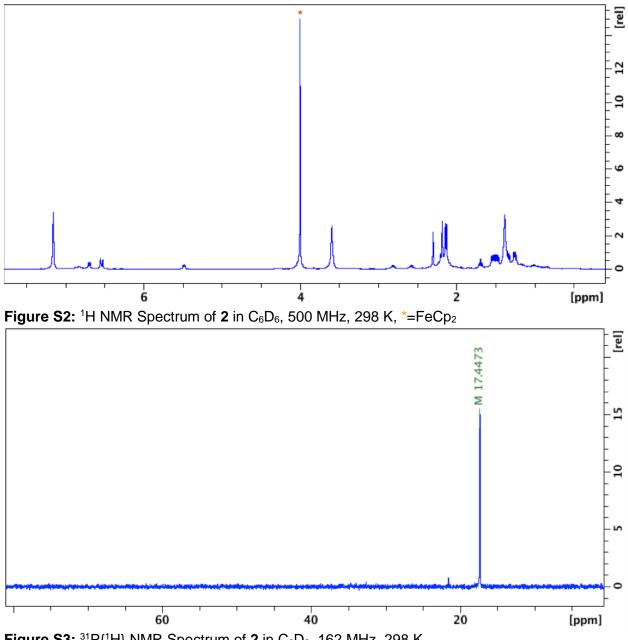
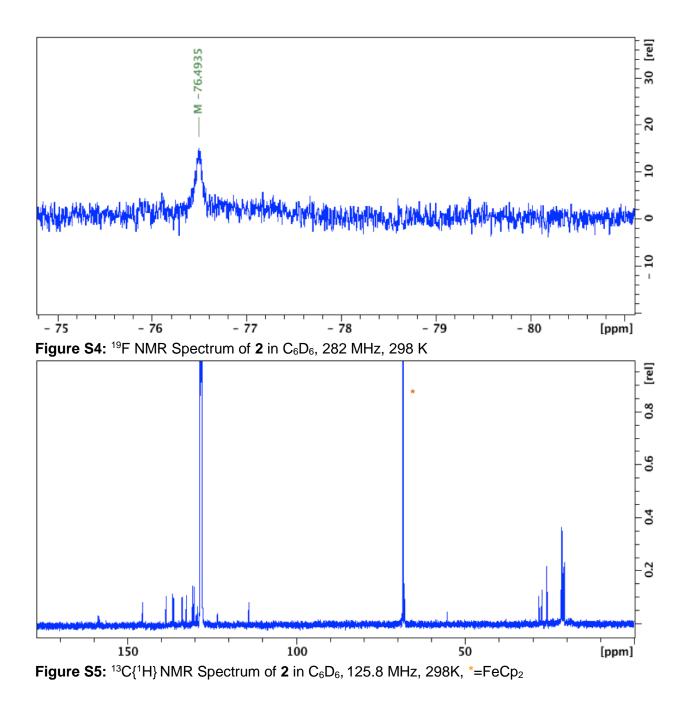
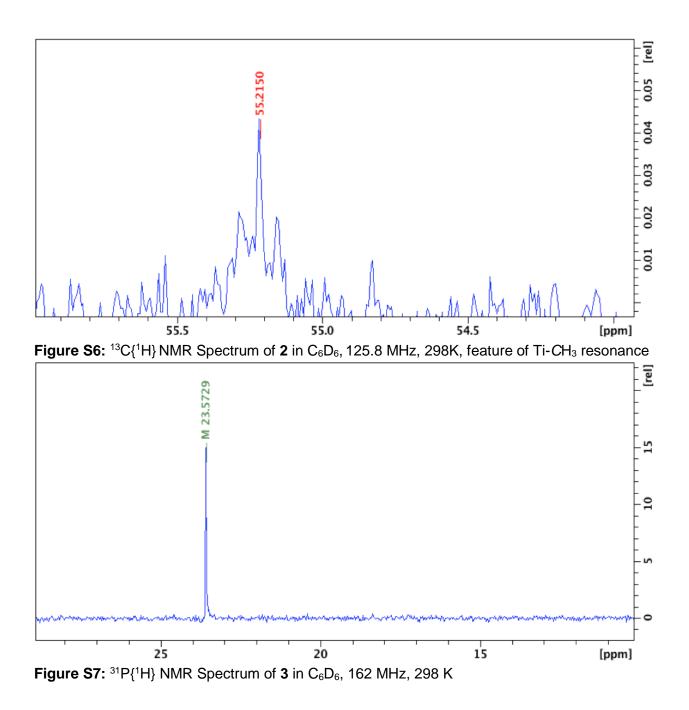
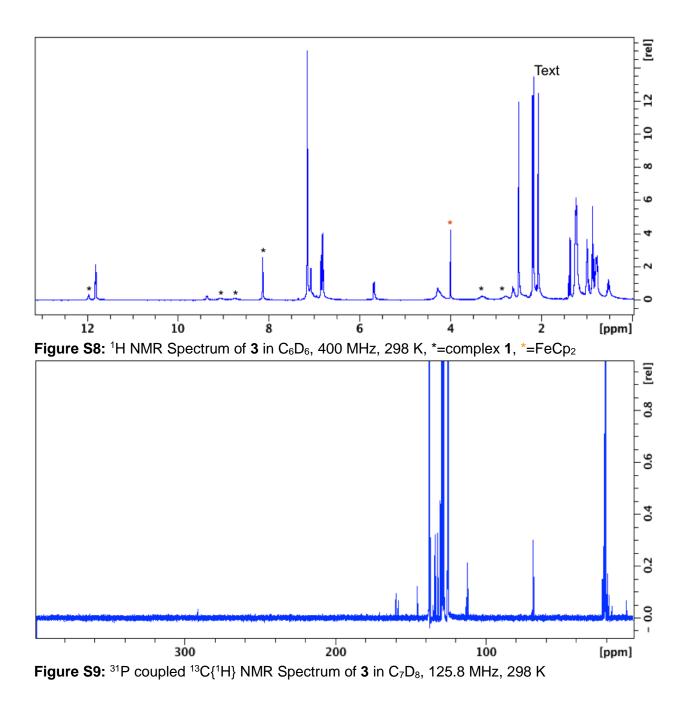
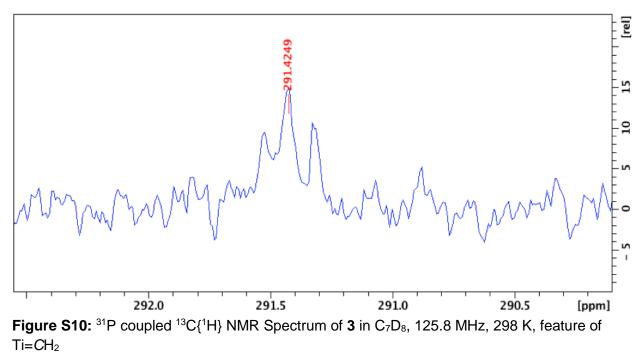
To a dark green solution of complex 1 (224 mg, 0.3 mmol, 1 equiv.) in 5 mL of THF in a 20 mL vial was added a 5 mL slurry of [FeCp₂][OTf] (101.5mg, 0.3 mmol, 1 equiv.) at room temperature while stirring. A color change to a bright red color was observed immediately upon addition. The solution was stirred for another hour at room temperature during which no further color change was observed. All volatiles were taken to dryness under reduced pressure, and the residue redissolved in 5 mL toluene. To this solution was added a stoichiometric amount of H_2CPPh_3 (83.3 mg, 0.3 mmol, 1 equiv.) as a 5 mL toluene solution at room temperature while stirring. A rapid color change from bright red to light orange was observed. The solution was stirred for 5 minutes, and then taken to dryness under reduced pressure, followed by two triturations with *n*-hexanes. The orange residue was then dissolved in 8 mL of *n*-hexanes, and filtered over Celite to remove the colorless precipitate, presumably [H₃CPPh₃][OTf]. The filtrate was quickly stored at -35 °C overnight without further concentration, resulting in the deposition of light orange crystals of complex **3** suitable for x-ray diffraction (168 mg, 0.22 mmol, 75% yield). In solution complex **3**

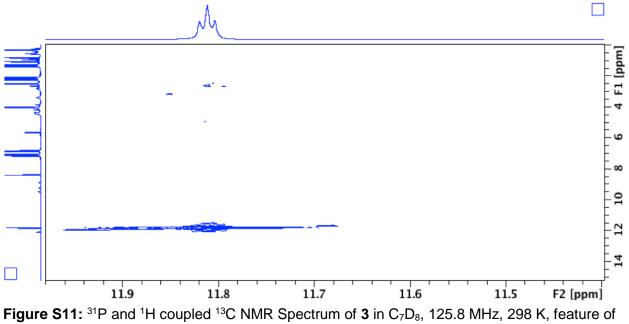
gradually decomposes so it is recommended that manipulation of such a species must be conducted rapidly while maintaining the solution cold. *Route B:*

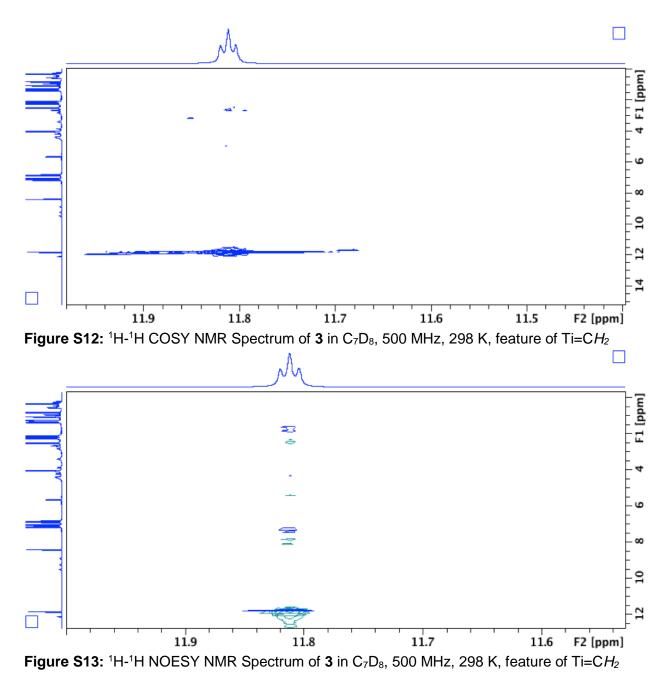
To a dark green stirred solution of complex 1 (75 mg, 0.1 mmol, 1 equiv.) in 5 mL of toluene in a 20 mL vial was added a 5 mL toluene solution of the aryl oxyl radical •OMes* (Mes* = 2,4,6- $^{t}Bu_{3}C_{6}H_{2}$), at room temperature. Within five minutes, the solution began to lighten to an orange color. The reaction does not fully convert to complex **3** as monitored by ¹H NMR spectroscopy. The optimized reaction time for conversion to **3** is 15 minutes at room temperature. After this time, the reaction mixture was then taken to dryness under reduced pressure, triturated with *n*-hexanes, and then redissolved in 10 mL n-hexanes. The solution was filtered over Celite and the filtrate stored at $-35 \,^{\circ}$ C overnight to yield orange crystals of complex **3** (35 mg, 0.05 mmol, 48% yield) ¹H NMR (400 MHz, 298 K, benzene-*d*₆): δ 11.82 ppm (t, J_{H-H}=3.68 Hz, 2 H, Ti=C*H*₂), 7.04 (s, 4 H, meta-ArH_{Mesityl}), 6.85 (br, $\Delta v_{1/2} = 4.0$ Hz, 2 H, meta-ArH_{Tolyl}), (br, $\Delta v_{1/2} = 4.0$ Hz, 2 H, meta-Ar*H*_{Tolvl}), 5.69 (dd, ³J_{H-H} = 4.1 Hz, 2 H, *ortho*-Ar*H*_{Tolvl}), 2.62 (sept, ³J_{H-H} = 6.6 Hz, 2 H, P-C*H*-CH₃), 2.50 (s, 6 H, para-CH_{3Tolyl}), 2.20 (s, 6 H para-CH_{3Mesityl}), 2.08 (s, 12 H, ortho-CH_{3Mesityl}), 1.01 (m, 6 H, P-CH-CH₃, coupling value not assignable), 0.79 (m, 6 H, P-CH-CH₃, coupling value not assignable due to overlapping residual solvent residues), 0.53 (sept, ³J_{H-H} = 6.4 Hz, 2 H, P-CH-CH₃). ³¹P{¹H} NMR (162 MHz, 298 K, benzene-*d*₆): δ 23.60 ppm. ¹³C NMR (125.8 MHz, 298 K, toluene-d₈): δ 291.10 (t, ¹J_{C-H}=123.5 Hz, ²J_{C-P}=12.5 Hz, Ti=CH₂), 170.32 (Ar-C), 159.67 (t, Ar-C, ²J_{CP}= 12.3 Hz), 158.17 (Ar-C), 145.46 (Ar-C), 136.85 (Ar-C), 133.78 (Ar-C), 133.60 (Ar-C), 131.82 (Ar-C), 130.27 (Ar-C), 129.89 (Ar-C), 112.78 (Ar-C), 112.12 (t, Ar-C, ²J_{C-P}= 4.2 Hz), 22.47 (PCH(CH₃)₂, CP coupling constant not assignable due to overlapping resonances), 21.67 (PCH(CH₃)₂, 20.86 (PCH(CH₃)₂), 20.65 (PCH(CH₃)₂), 20.28 (Ar-CH₃), 19.97 (Ar-CH₃), 19.21 (Ar-CH₃).

NMR Spectral Data

S4

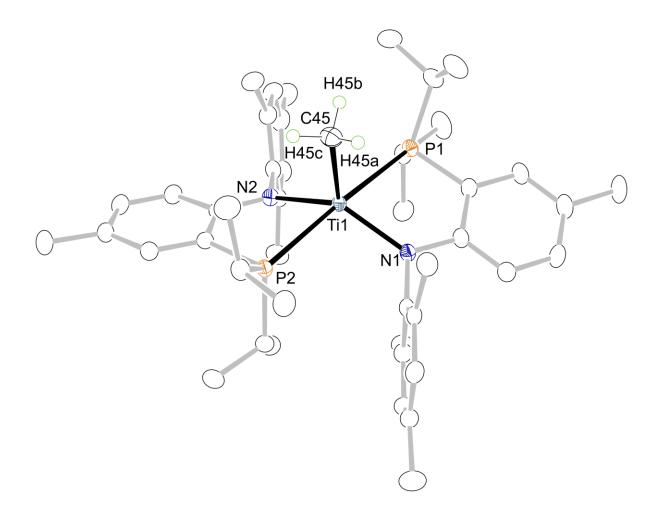







Figure S3: ³¹P{¹H} NMR Spectrum of 2 in C₆D₆, 162 MHz, 298 K



 $Ti=CH_2$

Molecular Structures and Crystallographic Tables


X-ray Crystallography

Crystallographic data for are summarized Table S1 and S2. Suitable single crystals for X-ray analysis of **1** or **3** were placed on the end of a Cryoloop coated in NVH oil. The X-ray intensity data collection was carried out on a Bruker APEXII CCD area detector using graphite-monochromated Mo-K radiation (I = 0.71073 Å) at 100(1) K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. Rotation frames were integrated using SAINT,^[7] producing a listing of non-averaged F^2 and s(F^2) values which

were then passed to the SHELXTL^[8] program package for further processing and structure solution. The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS.^[9] All calculations were performed using SHELXS^[10] and SHELXL.^[11] The structures were solved by Patterson and Fourier transform methods. All reflections were used during refinement. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using riding models with exception for methylidene of **3**.

Molecular formula	C100 H154 N4 P4 Ti2
Formula weight	815.98
Temperature (K)	100(2)
Crystal system	Triclinic
Space group	Р
Cell constants:	
a (Å)	12.3342(3)
b (Å)	14.2207(4)
c (Å)	28.9433(8)
Volume (Å ³)	4833.9(2)
Z	4
Density (calcd mg/m3)	1.121
Abs coeff (mm-1)	0.277
F(000)	1772
Wavelength	0.71073
q range for data collection (°)	1.43 to 27.56
# Refins collected	21616
Refinement method	Full-matrix least- squares on F2
R_1^a	0.0814
wR_2^b	0.0575

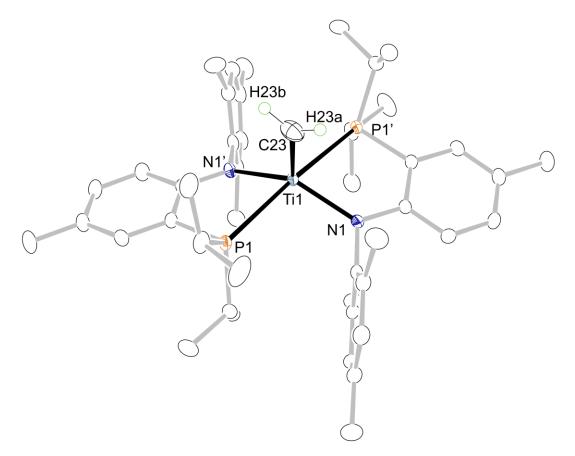

Table S1. Crystallographic Data for Complex 1

Figure S14. Molecular structure of **1**, showing thermal ellipsoids at 50% probability level. Hatoms, with the exception of those on C45, have been omitted for clarity.

Molecular formula	C45 H64 N2 P2 Ti
Formula weight	742.82
Temperature (K)	100(2)
Crystal system	Monoclinic

Space group	C 1 2/c 1
Cell constants:	
a (Å)	15.3286(7)
b (Å)	12.3358(5)
c (Å)	22.4869(11)
Volume (Å ³)	4230.8(3)
Z	4
Density (calcd mg/m3)	1.166
Abs coeff (mm-1)	0.310
F(000)	1600
Wavelength	0.71073
q range for data collection (°)	1.43 to 27.56
# Refins collected	59618
Refinement method	Full-matrix least- squares on F2
R_1^a	0.0484
wR_2^b	0.0374
Goodness-of-fit on F2c	1.058

Figure

S15. Molecular structure of **1**, showing thermal ellipsoids at 50% probability level. H-atoms, with the exception of those on C23, have been omitted for clarity.

Computational Details

All calculation results were obtained using density functional theory^[12] as implemented in the Jaguar 9.1 suite^[13] of ab initio quantum chemistry programs. The geometry optimizations were carried out with B3LYP^[14–17] functional and 6-31G^{**} basis set. Titanium was represented using the Los Alamos LACVP basis set^[18–20] that includes effective core potentials. The energies of the optimized structures were readdressed by single-point calculations using cc-pVTZ(-f)^[21] basis set. Titanium used a modified version of LACVP denoted LACV3P. Vibrational frequency calculations were carried out at the B3LYP/6-31G^{**} level of theory. Standard approximation was used to obtain zero-point vibrational energy and entropy corrections. Solvation energies were evaluated by Self-Consistent Reaction field (SCRF)^[22–24] calculations with the dielectric constant $\varepsilon = 4.3$ (Ethyl Ether) using the optimized gas phase structures. The natural bond orbital (NBO) analysis was carried out using NBO 6.0 program^[25–27] in the Jaguar 9.1 suite. The Gibbs free energy in solution phase was computed as follows^[28]:

$$G(\text{Sol}) = G(\text{gas}) + G^{\text{solv}}$$
(1)

$$G(gas) = H(gas) - TS(gas)$$
(2)

$$H(gas) = E(SCF) + ZPE$$
(3)

$$\Delta G(\text{Sol}) = \Sigma G(\text{Sol}) \text{ for products - } \Sigma G(\text{Sol}) \text{ for reactants}$$
(4)

Cartesian Coordinates of All Computed Structures

3-Singlet

Ti	5.980214569 8.332128337 16.777293945
Р	7.322321404 8.476039008 19.143521281
N	7.864935571 9.004241905 16.235341647
С	9.032774882 8.939102894 17.012150513
С	10.322553043 9.179381453 16.470400700
Η	10.417693252 9.454431158 15.426887182
С	11.474310358 9.060399601 17.235856107
Н	12.436221248 9.249990767 16.762109745
С	11.432019652 8.697293442 18.588458309
С	10.166040211 8.490615086 19.137090366
Н	10.104042589 8.216342066 20.186561691
С	8.981307752 8.623147333 18.395563386
С	12.693775256 8.553691612 19.407373965
Н	13.382380227 7.822731301 18.965854055
Н	12.472286072 8.223483924 20.427110657
Н	13.240570926 9.502526277 19.479945536
С	7.537446559 7.030357960 20.343671006
Н	8.395528358 7.314689515 20.963988049
С	7.895351703 5.728657673 19.614190318
Н	7.082867751 5.412607557 18.953921862
Η	8.073718740 4.932391147 20.347457505
Н	8.798742040 5.839046709 19.007914869
С	6.333907825 6.830106411 21.275570765
Н	5.469604252 6.453004327 20.725455150
Н	6.030959814 7.748520449 21.786103815
Н	6.585593587 6.089146803 22.044450051

С	7.192325833	9.986208244 20.290280708
Н	6.145009239	9.976556819 20.611877501
С	7.431671475	11.270875893 19.482846298
Н	8.473222992	11.337905390 19.151902913
Н	7.217390371	12.149056222 20.103841099
Н	6.793156255	11.326323040 18.599576778
С	8.091443873	9.979056157 21.536420184
Н	9.151669300	9.998990472 21.265191679
Н	7.918451674	9.118137961 22.187714780
Н	7.892709874	10.880265376 22.130318297
С	8.087500669	9.460626362 14.889372076
С	8.458955405	8.549638424 13.874819028
С	8.700582092	9.026240210 12.579270376
Н	8.986949433	8.314275244 11.807304823
С	8.609659155	10.381832046 12.254274785
С	8.290794740	11.274867437 13.283072702
Н	8.248197231	12.341487988 13.067928618
С	8.045775076	10.844301548 14.590720478
С	8.688848777	7.091171543 14.191172997
Н	8.918096212	6.527554881 13.282022703
Н	7.822456768	6.636720067 14.677171645
Н	9.533351278	6.975570592 14.880588099
С	8.862585725	10.876834809 10.848259767
Н	9.224743489	10.073515190 10.199960435
Н	9.608011660	11.680602267 10.834481601
Н	7.949257812	11.281717357 10.394769362
С	7.825143411	11.867043025 15.678598047
Н	7.669653736	12.863610357 15.255143318
Н	8.693233914	11.915029282 16.346911092
Н	6.966434031	11.621969889 16.307115594

С	5.973961148	6.463837612	16.773514302
Н	6.847495100	5.846112026	16.536271895
Н	5.094507307	5.853055745	17.006931233
Р	4.636790350	8.481908776	14.413335255
N	4.097725237	9.007996437	17.322914477
С	2.928709523	8.941275522	16.547578542
С	1.639219045	9.176496205	17.092291460
Н	1.545138921	9.446120926	18.137362782
С	0.486873014	9.060310070	16.327193844
Н	-0.474660710	9.247493641	16.802538159
С	0.528110430	8.703897144	14.972759206
С	1.793468589	8.497794567	14.422490257
Η	1.854918237	8.226660946	13.372102762
С	2.978823747	8.628100759	15.163242929
С	-0.734250292	8.565447032	14.154020269
Н	-1.422942382	7.832389480	14.591850928
Н	-0.513730694	8.241022203	13.132240708
Η	-1.280548151	9.514974797	14.087294721
С	4.426090604	7.036800743	13.213406790
Η	3.571814547	7.321248008	12.587635473
С	4.064349327	5.734752171	13.939080811
Н	4.875271001	5.415948257	14.599753679
Н	3.885899074	4.940757200	13.203484065
Η	3.159983679	5.845464823	14.543694779
С	5.637379018	6.838547744	12.290812579
Η	6.499677372	6.467929309	12.849064755
Н	5.939662763	7.756581735	11.779256608
Η	5.395118011	6.093473385	11.522819323
С	4.763701022	9.989276588	13.262450419
Н	5.809799147	9.978119957	12.937323213

С	4.528508421	11.276465059 14.066439012
Н	3.487413340	11.347565033 14.397788494
Н	4.745172379	12.152361278 13.443052289
Н	5.167276682	11.332064396 14.949280432
С	3.860195114	9.980109059 12.019467774
Н	2.800662126	9.999121304 12.293831084
Н	4.032201337	9.119023464 11.368140113
Н	4.055961518	10.881160661 11.424279850
С	3.877955806	9.466713628 18.669031515
С	3.530930398	8.552125745 19.688691211
С	3.301362534	9.026625379 20.987412400
Н	3.038860373	8.311404386 21.764805462
С	3.372867588	10.384289743 21.308283321
С	3.661318662	11.280849169 20.273523185
Н	3.685811700	12.348606551 20.485736675
С	3.899502225	10.851931003 18.964242155
С	3.311362893	7.091735074 19.373950358
Н	3.091735393	6.526532177 20.284477460
Н	4.177885103	6.643810362 18.882345265
Н	2.463527001	6.970011471 18.689684272
С	3.132235369	10.878012400 22.716892020
Η	2.798366140	10.069130622 23.373394169
Η	2.369785575	11.665415723 22.740628130
Η	4.043800331	11.304304515 23.154029411
С	4.092947723	11.876246481 17.873007660
Н	4.228908599	12.876931603 18.293454355
Н	3.221236412	11.903885875 17.208262810
Η	4.954452985	11.648113343 17.241886990

3-Triplet

Ti	5.979923075 8.347975707 16.781701496
Р	7.361715533 8.344074649 19.146039188
N	7.863009345 9.099189036 16.271993068
С	9.030572117 9.054919196 17.050808957
С	10.308607840 9.394090209 16.528532963
Η	10.386280268 9.739664447 15.504511532
С	11.469068273 9.281996833 17.282557133
Н	12.418661594 9.549242344 16.821542171
С	11.449658861 8.828659210 18.609120153
С	10.197120844 8.523028490 19.142775377
Н	10.151564563 8.175266656 20.172036476
С	9.004291350 8.640097531 18.411502557
С	12.719234852 8.691350165 19.417134897
Η	13.436617021 8.015275682 18.935172340
Н	12.514854131 8.295049665 20.416979074
Н	13.227043731 9.656201498 19.543465994
С	7.623641303 6.844866601 20.263304476
Н	8.414902441 7.138881241 20.963423056
С	8.121802202 5.624494383 19.477740574
Η	7.365816427 5.280037668 18.765007416
Η	8.332854875 4.799597039 20.169374760
Н	9.037553437 5.844208823 18.922445610
С	6.367732311 6.502193879 21.078676900
Η	5.571527284 6.125801988 20.431023233
Н	5.970765472 7.359795645 21.630068992
Н	6.601874211 5.716034377 21.807202384
С	7.136556053 9.785792757 20.362663040
Н	6.075384285 9.742044636 20.628465662
С	7.395870202 11.113829957 19.635111269

Н	8.456941670	11.225830097 19.391251707
Н	7.101481372	11.952251153 20.276976430
Н	6.827419964	11.195146611 18.706279280
С	7.972381505	9.722015548 21.650114871
Н	9.045627153	9.751291474 21.435338275
Н	7.765289859	8.833733460 22.253477698
Н	7.743417179	10.596748648 22.272118060
С	8.081528736	9.553972037 14.927692969
С	8.448988387	8.641184474 13.912017249
С	8.655962251	9.107891794 12.607501870
Н	8.937517240	8.392964596 11.836026543
С	8.541274544	10.460169337 12.274056010
С	8.229346129	11.356568026 13.301582763
Н	8.169105073	12.421011140 13.079154662
С	8.013247448	10.933633792 14.617116055
С	8.705055496	7.190317399 14.238078849
Н	8.934550842	6.620991603 13.332379570
Н	7.848960570	6.726677457 14.734039644
Н	9.554878325	7.092460031 14.923901271
С	8.759430438	10.946218142 10.859233429
Н	9.148413123	10.149552046 10.217930044
Н	9.471088623	11.779569278 10.826949482
Н	7.825978422	11.306871517 10.408837055
С	7.790537026	11.959913857 15.701484260
Н	7.628943640	12.954363325 15.275049906
Н	8.658887838	12.014429912 16.369409881
Н	6.933078498	11.712959629 16.332189297
С	5.971236813	6.291339122 16.784440355
Н	6.809227224	5.658721703 16.469002081
Η	5.126653648	5.668643720 17.102468510

Р	4.598834988	8.345357052	14.418664412
N	4.100469430	9.113102301	17.286165684
С	2.930552567	9.058492753	16.510990523
С	1.652172240	9.397244355	17.032834360
Н	1.575429081	9.751908058	18.053886381
С	0.490135858	9.272967348	16.282482085
Н	-0.459345292	9.539354811	16.744280429
С	0.507362226	8.808869490	14.959361563
С	1.760889958	8.505914209	14.425413253
Н	1.806368716	8.151514210	13.398410154
С	2.954967866	8.633843248	15.153237204
С	-0.763938302	8.655505362	14.157296577
Н	-1.468256511	7.966385729	14.640195150
Н	-0.558548893	8.266198430	13.154922924
Н	-1.287204443	9.612845206	14.037631367
С	4.343982908	6.852892842	13.291354628
Н	3.525275127	7.133710714	12.617926570
С	3.902302922	5.611236021	14.077596093
Н	4.687908220	5.280550673	14.764485904
Н	3.693568204	4.787670715	13.383696917
Н	2.997791683	5.800146836	14.661886881
С	5.582787655	6.553738008	12.434025060
Н	6.410321238	6.195787584	13.052008567
Н	5.936155300	7.427246751	11.877980712
Н	5.348014694	5.767064363	11.706243189
С	4.817700850	9.794284061	13.210710444
Н	5.877077436	9.750114383	12.937995125
С	4.565349632	11.118381566	13.947552849
Н	3.506765949	11.228089755	14.203266266
Н	4.851525083	11.960658320	13.306938376

Η	5.143842976	11.195319744 14.870273431
С	3.972302503	9.738199513 11.929485814
Н	2.900943629	9.764374671 12.153881690
Н	4.175676249	8.853970212 11.318826959
Н	4.195279589	10.617222887 11.311409484
С	3.884434317	9.572138129 18.629234174
С	3.512925805	8.661598864 19.645244482
С	3.300347424	9.130591486 20.947839807
Н	3.013850757	8.417228605 21.718955696
С	3.416111465	10.483091756 21.279696737
С	3.738198635	11.377006162 20.252922756
Н	3.801717467	12.441328089 20.475048329
С	3.960942498	10.952156798 18.938755324
С	3.260234167	7.209392126 19.321994604
Н	3.041456749	6.639401888 20.229867016
Н	4.114336002	6.749647237 18.818809015
Н	2.404952268	7.107003616 18.643645766
С	3.190214466	10.970639983 22.692839035
Н	2.796533281	10.174684239 23.332195768
Н	2.479285775	11.804750169 22.720761092
Н	4.121410370	11.330209632 23.148722509
С	4.196786466	11.975655518 17.854812391
Н	4.330461565	12.974747855 18.280234512
Н	3.347094370	12.012171860 17.162398715
Н	5.076235388	11.740510047 17.250170175

References

- [1] D.F. Evans, J. Chem. Soc. (Resumed), 1959, 2003.
- [2] G. A. Bain and J. F. Berry, J. Chem. Ed., 2008, 85, 532.
- [3] M. E. Carroll, B. Pinter, P. J. Carroll and D. J. Mindiola, J. Am. Chem. Soc., 2015, 137, 8884.
- [4] V. W. Manner, T. F. Markle, J. H. Freudenthal, J. P. Roth and J. M. Mayer, *Chem. Commun.*, 2008, 256.
- [5] D. D. Heinrich, R. J. Staples and J. P. Fackler Jr., Inorg. Chim. Acta, 1995, 229, 61.
- [6] J. J. Curley, R. G. Bergman and T. D. Tilley, *Dalton Trans.*, 2012, 41, 192.
- [7] SAINT; Bruker AXS Inc.: Madison, WI, USA. 2009.
- [8] SHELXTL; Bruker AXS Inc.: Madison, WI, USA, 2009.
- [9] G. M. Sheldrick, SADABS; University of Gottingen: Germany, 2007.
- [10] G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

[11] $R_1 = S||F_o| - |F_c|| / S |F_o|$, $wR_2 = [Sw(F_o^2 - F_c^2)^2/Sw(F_o^2)^2]^{\frac{1}{2}}$, $GOF = [Sw(F_o^2 - F_c^2)^2/(n - p)]^{\frac{1}{2}}$; where n = the number of reflections and p = the number of parameters refined.

[12] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.

[13] A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp,

D. Rinaldo, M. D. Halls, J. Zhang and R. A. Friesner, Int. J. Quantum Chem., 2013, 113, 2110.

- [14] A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- [15] C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- [16] A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- [17] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.
- [18] W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
- [19] P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- [20] P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- [21] T. H. Dunning, Jr. J. Chem. Phys., 1989, 90, 1007.
- [22] B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff and B. Honig, *J. Phys. Chem.*, 1996, **100**, 11775.
- [23] M. Friedrichs, R. H. Zhou, S. R. Edinger and R. A. Friesner, *J. Phys. Chem. B*, 1999, **103**, 3057.
- [24] S. R. Edinger, C. Cortis, P. S. Shenkin and R. A. Friesner, *J. Phys. Chem. B*, 1997, **101**, 1190.
- [25] J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211.
- [26] A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735.
- [27] A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev. 1988, 88, 899.
- [28] M.-H. Baik, S. Mazumder, P. Ricci, J. R. Sawyer, Y.-G. Song, H. Wang and P. A. Evans, *J. Am. Chem. Soc.*, 2011, **133**, 7621.