Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

1. Experimental Section

General procedure for the synthesis of anion-functionalized ILs: A solution of $[P_{66614}][OH]$ in ethanol was prepared by $[P_{66614}][Br]$ using an anion-exchange resin. The anion-functionalized fluorescent ILs could be easily prepared by the neutralization of 2-(2'-hydroxyphenyl) benzoxazole [HBO] with the solution of $[P_{66614}][OH]$ according to a literature method. ¹ Equimolar [HBO] was added to the $[P_{66614}][OH]$ solution in ethanol. The mixture was then stirred at 60 °C for 12 h. Subsequently, the sample was dried under vacuum at 60 °C for 24 h. The ionic liquid was treated with N₂ bubbling at 80 °C to reduce the possible trace amount of water or ethanol. The structure of the anion-functionalized fluorescent ILs was confirmed by NMR and IR spectroscopy; no impurities were found by NMR. The water content of the ILs was determined with a Karl Fisher titration and found to be less than 0.1 wt%.

Absorption and desorption of SO₂: In the typical absorption of SO₂, SO₂ of atmospheric pressure (1.00 bar) was bubbled through about 1.0g ILs in a glass container with an inner diameter of 10mm, and the flow rate was about 60 ml/min. The glass container was partly immersed in a circulation water bath of desirable temperature. The amount of SO₂ absorbed was determined at regular intervals by the electronic balance with an accuracy of 0.1 mg. During the absorption of SO₂ under reduced pressure, SO₂ was diluted with N₂ in order to reduce the partial pressure of SO₂ passing through the system. The SO₂ partial pressure was controlled by changing the flow of SO₂ and N₂. Finally, the SO₂ absorption capacities were determined on the basis of the gravimetric difference.

Desorption of SO₂ from saturated IL was carried out and monitored in an analogous way to the described absorption method. The ILs was regenerated by heating and bubbling nitrogen through the IL. In a typical desorption of SO₂, N₂ at atmospheric pressure was bubbled through about 1.0 g captured IL in a glass container, which was partly immersed in a circulation oil bath at the desired temperature, and the flow rate was about 100 ml/min under 90 °C. The release of SO₂ was determined at regular intervals using an electronic balance.

In the reversibility experiments, SO₂ absorption and desorption by pure [P₆₆₆₁₄][HBO] were carried out for 5 cycles. Absorption was carried out at 30 $^{\circ}$ C and 1 bar under SO₂ (60 ml/min) for 15min in each cycle, and desorption was performed at 90 $^{\circ}$ C and 1 bar under N₂ (100 ml/min) for 60 min in each cycle.

2. General procedures:

All chemicals used in this work were purchased from commercial and used without further purification unless otherwise stated. 2-(2'-hydroxyphenyl) benzoxazole [HBO] were purchased

from Energy Chemical. Trihexyl (tetradecyl) phosphoniumbromide ([P₆₆₆₁₄][Br]) was obtained from J&K Chemicals. An anion-exchange resin -711(Cl) was obtained from Aladdin Reagents. SO₂, CO₂ and N₂ gas (purity: 99.999%) were obtained from Hangzhou Jingong Special Gas Co. Ltd., China. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance DMX-400 spectrometer in DMSO-d6 with tetramethylsilane as the standard. FT-IR spectra were obtained using a Nicolet 470 FT-IR spectrometer. Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer. Fluorescence spectras were obtained on Edinburgh Instruments FLS920 spectrometer.

3. ¹H NMR, ¹³C NMR, IR, and ESI-MS data of ILs

[P₆₆₆₁₄][HBO]: ¹H NMR (DMSO-d6) δ (ppm): 7.63 (s, 1H), 7.50 (d, J=8.8Hz, 2H), 7.17 (d, J=36.7Hz, 2H), 6.83 (s, 1H), 6.19 (d, J=8.6Hz, 1H), 5.89 (ddd, J=7.8,6.7,1.1Hz, 1H), 2.26-2.04 (m, 8H), 1.63-1.03 (m, 48H), 0.93-0.81 (m, 12H); ¹³C NMR (DMSO-d6) δ (ppm): 172.33, 167.68, 149.78, 142.57, 131.74, 130.96, 124.19, 123.14, 122.05, 117.38, 112.30, 109.42, 106.09, 31.30, 30.40, 29.83, 29.68, 29.07, 29.05, 29.02, 28.96, 28.72, 28.64, 28.10, 22.10, 21.81, 20.57, 20.53, 20.48, 17.70, 17.23, 13.94, 13.85. FT-IR σ(cm-1): 2924, 2854, 1612, 1594, 1544, 1519, 1477, 1454, 1356, 1267, 1234, 1177, 1146, 1109, 1009, 895, 843, 796, 738. ESI-MS: m/z 483.9[M]+ (100%), 210.1 [M]-(100%).

The FT-IR	peaks	could	be	assigned	as	follows:
THC FF IN	peaks	coura	ыc	ussigneu	us	10110103.

2924 cm ⁻¹ ,	2854 cm ⁻¹	v	CH2
1594 cm ⁻¹ ,	1454 cm ⁻¹	v	benzene
1612 cm ⁻¹ ,	1544 cm ⁻¹ , 1519 cm ⁻¹	v	heterocycle
1477 cm ⁻¹ ,	738 cm ⁻¹	γ	CH2
1356 cm ⁻¹		γ	СНЗ
1234 cm ⁻¹		v	C-N
1234 cm ⁻¹		v	phenol
1146 cm ⁻¹ , 1009 cm ⁻¹			ether
895 cm ⁻¹ , 8	343 cm ⁻¹ , 796 cm ⁻¹	γ	benzene

4. DFT calculations

All the calculations were performed with Gaussian 09 package. Geometry Optimizations and frequency calculations were carried out at the M062x/6-31+G (d,p) level . Each stationary point was confirmed by insuring there is no imaginary frequency. The NMR data was calculated at the B3LYP/ 6-311+g(2d,p) level with the optimized structures.

	НОМО	LUMO	energy gap/eV	absorption wavelength/nm				
[HBO] ⁻	-0.08263	0.10506	5.1	243				
[HBO-SO ₂] ⁻	-0.12979	0.07855	5.6	221				
[HBO-SO ₂] ⁻ -SO ₂	-0.14573	0.05542	5.5	225				

Table S1. The calculated HOMOs and LUMOs of [HBO, [HBO-SO₂], [HBO-SO₂]-SO₂.

Figure S1. The assignment of ¹³C NMR peaks for anion[HBO]⁻. The rest of the NMR peaks, which appear from 40 ppm to 10ppm, are assigned to the carbon chains in cation $[P_{66614}]^+$.

Scheme S1. Possible SO₂ chemical and physical absorption mechanism by [P₆₆₆₁₄][HBO].

Figure S2. The corresponding fluorescence spectra of $[P_{66614}][HBO]$ upon the exposure to different concentrations of SO₂. (a) Fresh ionic liquid exposed to 0.01 bar SO₂ (60 ml/min) for 60min at 30°C; (b) followed by exposure to 1.00 bar SO₂ (60 ml/min) for 15min at 30°C.

Figure S3. 1H NMR spectra of $[P_{66614}][HBO]$ (black), $[P_{66614}][HBO]$ after SO₂ chemical absorption stage (red) and $[P_{66614}][HBO]$ after SO₂ physical absorption stage (blue)

Figure S4. UV-vis spectra of $[P_{66614}][HBO]$ (black), $[P_{66614}][HBO]$ after SO₂ chemical absorption stage (red line, 30 °C, 0.01 bar under SO₂, 60 ml/min, 60min) and $[P_{66614}][HBO]$ after SO₂ physical absorption stage (blue line, 30 °C, 1.00 bar under SO₂, 60 ml/min, 15min).

Figure S5. The corresponding fluorescence spectra of benzoxazole ($1*10^{-6}M$ benzoxazole in hexane) (black) and benzoxazole ($1*10^{-6}M$ benzoxazole in hexane) exposed to 1.00 bar SO₂ (red line, $30^{\circ}C$, 60 ml/min, 0.5min).

Figure S6. Selective fluorescence responses of $[P_{66614}][HBO-SO_2]$ sensor to different gas under a 400nm UV lamp. The pressures of all gases are 1.00 bar (60 ml/min).

 C. M. Wang, X. Y. Luo, H. M. Luo, D. E. Jiang, H. R. Li and S. Dai, *Angew. Chem. Int. Ed.*, 2011, 50, 4918-4922.