Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Tandem 1,6-addition/cyclization/vinylcyclopropane

rearrangement at low temperature under metal-free

conditions: an approach to spiro[4.5]cyclohexadienones

Zhenbo Yuan[†], Kuo Gai[†], Youzhi Wu, Jie Wu, Aijun Lin and Hequan Yao*

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R.China. E-mail: hyao@cpu.edu.cn; cpuhyao@126.com.

Contents

1. General Information	S2
2. Preparation of p-QMs	S3
3. General Procedure for the Synthesis of Spiro-compounds	S5
4. General Procedure for the Further Transformation of 3aa	
5. Crystallographic Data	S25
6. Full Spectrum of Control Experiments	S27
7. Kinetic Experiments	S29
8. References	S37
9. NMR Copies of Substrates and Products	S38

1. General Information

All reactions were carried out in oven-dried glassware under air with magnetic stirring. All solvents were purified and dried according to standard methods. Malonates 2a, 2b were purchased from Sigma-Aldrich Co. and used without further purification. 2c - 2h were synthesized according to reported procedures ^[1]. Flash column chromatography was carried out using commercially available 200 - 300 mesh under pressure and conducted by eluting with PE/EA as volume/volume ratios. ¹H and ¹³C NMR spectra were collected on BRUKER AV - 300 (300 MHz) spectrometer using CDCl₃ as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) with the solvent resonance as an internal standard (CDCl₃: δ = 7.26 ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: $\delta = 77.0$ ppm). Infrared spectra (IR) were recorded on a Thermo Scientific iS10 FT/IR spectrometer. Absorptions are reported in reciprocal centimeters. High Resolution Mass measurement was performed on Agilent QTOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. Melting point (m.p.) was measured on a microscopic melting point apparatus.

2. Preparation of *p*-QMs

1a, 1m, 1n were synthesized according to the following procedures ^[2]:

The corresponding phenol (10 mmol, 1.0 equiv) and cinnamic alcohol (11 mmol, 1.1 equiv) were added to a 50 mL round bottom flask. Then HCOOH (8 mL) and AcOH (20 mL) were sequentially added. The solution was heated to reflux for 3 hours. Then the reaction was quenched with saturated solution of NaHCO₃, poured into water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography. **S1** was obtained as white solid (71% yield).

S1 (7.1 mmol, 1 equiv) was dissolved in n-hexane (200 mL), then the solution of KOH (29.8 mmol, 4.2 equiv), and $K_3[Fe(CN)_6]$ (28.4 mmol, 4.0 equiv) in water (50 mL) were added. The solution was stirred overnight and yellow solid was formed. The reaction was poured into water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous Na₂SO₄, and the solvent were removed under reduced pressure. The crude product was purified by flash column chromatography and recrystallized from PE/EA to obtain the pure product.

1b – 1l, 1o were synthesized according to following procedures:

To a stirred solution of the corresponding cinnamoyl chloride (2.0 equiv) in DCM was added AlCl₃ (1.1 equiv) in portions at room temperature. After stirring for 10 min, 2,6-di-*tert*-butylphenol (1.0 equiv) was added at 0 °C. The mixture was stirred overnight at room temperature. When completed (detected by TLC), the solution was passed through a short pad of celite and extracted with DCM. The combined organic phase was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. Then, the crude product was purified by flash column chromatography to obtain **S2** as white or yellow solids.

To a stirred solution of S2 in MeOH at 0 °C was added NaBH₄ (4.0 equiv), then the color of solution turned red. After stirring for 2 hours, the mixture was quenched with saturated NH₄Cl, and extracted with ethyl acetate. The combined organic phase was dried over anhydrous Na₂SO₄,

and the solvent was removed under reduced pressure. Then, the crude product S3 was directly used for the next step without further purification.

To a stirred solution of **S3** in DCM was added Et_3N (2.2 equiv) and MsCl (1.1 equiv) at 0 °C, the reaction was stirred overnight and poured into water. Then the mixture was extracted with ethyl acetate. The combined organic phase was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. Then, the crude product was purified by flash column chromatography to obtain pure product **1** as red or yellow solids.

3. General Procedure for the Synthesis of Spiro-compounds

a) General procedure

In a 10 mL test tube was sequentially added *p*-QMs **1** (0.1 mmol, 1.0 equiv), Cs_2CO_3 (0.2 mmol, 2.0 equiv), bromomalonates **2** (0.11 mmol, 1.1 equiv) and EA (1 mL) at 40 °C. Then, the tube was sealed and stirred overnight. After the reaction was completed (detected by TLC), solvent was directly removed under reduced pressure and the crude mixture was purified by flash column chromatography on silica gel to afford the pure product **3**.

b) Characterization of the substrates (*E*)-2,6-Di-*tert*-butyl-4-(3-phenylallylidene)cyclohexa-2,5-dienone (1a)

Yellow solid, m.p. 194 – 196 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.47 (m, 4H), 7.43 – 7.34 (m, 3H), 6.99 (d, J = 15.3 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 6.86 (d, J = 11.9 Hz, 1H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 148.4, 147.9, 142.0, 140.9, 136.4, 134.6, 131.3, 129.4, 129.0, 127.5, 125.4, 123.6, 35.5, 35.1, 29.6, 29.6 ppm. **IR(KBr):** 2951, 1586, 1538, 1449, 1359, 1255, 1019, 973, 950, 750, 689, 465 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₃H₂₈O+H]⁺: 321.2213; found: 321.2210.

(E)-2,6-Di-tert-butyl-4-(3-(p-tolyl)allylidene)cyclohexa-2,5-dienone (1b)

Yellow solid, m.p. 142 – 146 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 1.7 Hz, 1H), 7.46 – 7.38 (m, 3H), 7.20 (d, J = 7.9 Hz, 2H), 6.98 – 6.93 (m, 2H), 6.85 (d, J = 11.9 Hz, 1H), 2.38 (s, 3H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 148.2, 147.7, 142.5, 141.2, 139.8, 134.7, 133.7, 130.8, 129.7, 127.5, 125.4, 122.7, 35.5, 35.1, 29.6, 29.6, 21.5 ppm. **IR(KBr):** 2944, 1604, 1586, 1561, 1537, 1359, 1249, 965, 949, 802, 446 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₄H₃₀O+H]⁺: 335.2369; found: 335.2368.

(E)-2,6-Di-tert-butyl-4-(3-(4-methoxyphenyl)allylidene)cyclohexa-2,5-dienone (1c)

Yellow solid, m.p. 148 – 149 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.49 (m, 3H), 7.34 (dd, J = 15.0, 12.0 Hz, 1H), 6.96 – 6.91 (m, 4H), 6.85 (d, J = 11.9 Hz, 1H), 3.84 (s, 3H), 1.37 (s,

9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 160.8, 148.0, 147.5, 142.8, 140.9, 134.7, 130.3, 129.2, 129.1, 125.4, 121.6, 114.5, 55.4, 35.5, 35.0, 29.6, 29.6 ppm. **IR(KBr):** 2944, 1605, 1586, 1569, 1540, 1384, 1250, 1176, 1169, 952, 813 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₄H₃₀O₂+H]⁺: 351.2319; found: 351.2321.

(E)-4-(3-(Benzo[d][1,3]dioxol-5-yl)allylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone (1d)

Yellow solid, m.p. 146 – 147 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 1.9 Hz, 1H), 7.34 – 7.25 (m, 1H), 7.09 (d, J = 1.1 Hz, 1H), 7.00 (dd, J = 8.1, 1.1 Hz, 1H), 6.93 – 6.92 (m, 2H), 6.87 – 6.80 (m, 2H), 6.01 (s, 2H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.8, 148.5, 147.9, 147.6, 147.1, 141.9, 140.3, 134.1, 130.5, 130.1, 124.9, 123.1, 121.4, 108.3, 105.5, 101.1, 35.0, 34.6, 29.1, 29.1 ppm. **IR(KBr):** 2968, 1578, 1540, 1502, 1448, 1359, 1253, 1038, 976, 807 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₄H₂₈O₃+H]⁺: 365.2111; found: 365.2114.

(E)-2,6-Di-tert-butyl-4-(3-(4-(trifluoromethyl)phenyl)allylidene)cyclohexa-2,5-dienone (1e)

Yellow solid, m.p. 139 – 142 °C. ¹**H** NMR (300 MHz, CDCl₃) δ 7.64 (s, 4H), 7.57 – 7.49 (m, 2H), 7.00 – 6.94 (m, 2H), 6.85 (d, J = 11.9 Hz, 1H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 148.9, 148.5, 140.7, 139.7, 138.5, 134.4, 132.5, 130.8, 127.4, 125.9 ($J_{C-F} = 3.8$ Hz), 125.7, 125.2, 122.2, 35.6, 35.1, 29.6, 29.5 ppm. **IR(KBr):** 2944, 1605, 1537, 1361, 1323, 1160, 1109, 1065, 972, 819 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₄H₂₇F₃O+H]⁺: 389.2087; found: 389.2088.

Yellow solid, m.p. 158 - 160 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.47 (m, 3H), 7.44 – 7.38 (m, 3H), 6.93 – 6.87 (m, 2H), 6.82 (d, *J* = 11.9 Hz, 1H), 1.36 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 148.6, 148.2, 141.3, 139.2, 135.3, 134.5, 132.1, 131.7, 128.8, 125.2, 124.1, 123.3, 35.5, 35.1, 29.6, 29.5 ppm. **IR(KBr):** 2952, 1607, 1587, 1542, 1478, 1360, 1252, 1072, 973, 951, 807, 506 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₃H₂₇BrO+H]⁺: 399.1318; found: 399.1319.

(E)-2,6-Di-tert-butyl-4-(3-(4-chlorophenyl)allylidene)cyclohexa-2,5-dienone (1g)

Yellow solid, m.p. 149 – 152 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.34 (m, 6H), 6.94 – 6.89 (m, 2H), 6.82 (d, J = 11.9 Hz, 1H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 148.6, 148.1, 141.4, 139.2, 135.1, 134.9, 134.5, 131.6, 129.2, 128.5, 125.2, 124.0, 35.5, 35.1, 29.6, 29.5 ppm. **IR(KBr):** 2950, 1606, 1588, 1561, 1541, 1384, 1356, 1086, 977, 951, 810, 515 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₃H₂₇ClO+H]⁺: 355.1823; found: 355.1821.

(E)-2,6-Di-tert-butyl-4-(3-(3-chlorophenyl)allylidene)cyclohexa-2,5-dienone (1h)

Yellow solid, m.p. 152 – 154 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.53 – 7.41 (m, 4H), 7.32 – 7.28 (m, 2H), 6.94 – 6.82 (m, 2H), 1.38 (s, 9H), 1.33 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 148.7, 148.3, 141.1, 138.9, 138.2, 134.9, 134.5, 132.0, 130.2, 129.1, 127.1, 125.6, 125.2, 124.7, 35.6, 35.1, 29.6, 29.5 ppm. **IR(KBr):** 2949, 1606, 1591, 1538, 1558, 1361 1084, 957, 887,

(E)-2,6-Di-tert-butyl-4-(3-(2-chlorophenyl)allylidene)cyclohexa-2,5-dienone (1i)

Yellow solid, m.p. $164 - 165 \text{ °C. }^{1}$ **H NMR** (300 MHz, CDCl₃) δ 7.74 (dd, J = 7.6, 1.8 Hz, 1H), 7.50 – 7.37 (m, 4H), 7.34 – 7.22 (m, 2H), 6.95 (d, J = 2.3 Hz, 1H), 6.91 (d, J = 9.9 Hz, 1H), 1.36 (s, 9H), 1.32 (s, 9H) ppm. 13 **C NMR** (75 MHz, CDCl₃) δ 186.4, 148.7, 148.3, 141.5, 136.1, 134.5, 134.3, 134.2, 132.0, 130.2, 130.0, 127.1, 126.9, 125.6, 125.3, 35.5, 35.1, 29.6, 29.5 ppm. **IR(KBr):** 2956, 2855, 1609, 1583, 1541, 1449, 1357, 1253, 967, 953, 880, 758 cm⁻¹. **HRMS** (**ESI**): m/z calculated for [C₂₃H₂₇ClO+H]⁺: 355.1823; found: 355.1826.

(E)-4-(3-([1,1'-Biphenyl]-4-yl)allylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone (1j)

Yellow solid, m.p. 154 – 156 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.61 (m, 6H), 7.53 – 7.44 (m, 4H), 7.40 – 7.35 (d, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 15.2 Hz, 1H), 6.95 (d, *J* = 2.1 Hz, 1H), 6.88 (d, *J* = 11.9 Hz, 1H), 1.38 (s, 9H), 1.33 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 148.4, 147.9, 142.1, 140.4, 140.2, 135.4, 134.6, 131.3, 129.0, 128.0, 127.8, 127.6, 127.0, 125.4, 123.6, 35.5, 35.1, 29.7, 29.6 ppm. **IR(KBr):** 2955, 1609, 1560, 1575, 1552, 1537, 1453, 1359, 1253, 967, 948, 820, 762, 696, 488 cm⁻¹. **HRMS (ESI)**: *m*/*z* calculated for [C₂₉H₃₂O+H]⁺: 397.2526; found: 397.2526.

Red solid, m.p. 144 – 146 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.2 Hz, 1H), 7.88– 7.77 (m, 4H), 7.61 – 7.49 (m, 5H), 7.01 – 6.98 (m, 2H), 1.38 (s, 9H), 1.35 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 148.0, 147.5, 141.7, 136.7, 134.2, 133.4, 133.0, 130.9, 130.7, 129.4, 128.5, 126.3, 125.7, 125.5, 125.2, 125.0, 123.8, 122.6, 35.1, 34.6, 29.2, 29.1 ppm. **IR(KBr):** 2950, 1589, 1575, 1541, 1566, 1358, 1287, 1253, 1240, 975, 952, 791 cm⁻¹. **HRMS (ESI)**: m/zcalculated for [C₂₇H₃₀O+H]⁺: 371.2369; found: 371.2370.

(E)-2,6-Di-tert-butyl-4-(3-(thiophen-2-yl)allylidene)cyclohexa-2,5-dienone (11)

Red solid, m.p. 208 - 210 °C. ¹**H NMR** (300 MHz, CDCl₃) δ 7.45 (d, J = 1.7 Hz, 1H), 7.35 (d, J = 4.9 Hz, 1H), 7.25 (dd, J = 11.2, 3.6 Hz, 1H), 7.20 – 7.12 (m, 2H), 7.07 – 7.05 (m, 1H), 6.92 (d, J = 1.9 Hz, 1H), 6.78 (d, J = 11.6 Hz, 1H), 1.37 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.3, 148.3, 147.8, 142.1, 141.5, 134.4, 133.2, 131.0, 129.0, 128.3, 127.5, 125.3, 123.3, 35.5, 35.1, 29.6, 29.6 ppm. **IR(KBr):** 2938, 2366, 2324, 1579, 1399, 1534, 1399, 1381, 1172, 704, 639 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₁H₂₆OS+H]⁺: 327.1777; found: 327.1777.

(E)-2,6-Dimethyl-4-(3-phenylallylidene)cyclohexa-2,5-dienone (1m)

Me	Me
	~

Red solid, m.p. 100 – 103 °C. ¹H NMR (300 MHz, CDCl₃) 7.56 – 7.52 (m, 3H), 7.48 – 7.34 (m, 4H), 7.03 – 6.98 (m, 2H), 6.83 (d, J = 11.9 Hz, 1H), 2.12 (d, J = 0.9 Hz, 3H), 2.06 (d, J = 0.9 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 187.3, 142.1, 141.8, 138.1, 136.4, 136.2, 135.9,

131.2, 129.6, 129.3, 129.0, 127.6, 123.6, 17.0, 16.4 ppm. **IR(KBr):** 1635, 1592, 1538, 1608, 1024, 971, 748, 687 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₁₇H₁₆O+H]⁺: 237.1274; found: 237.1275.

(E)-2,6-Diisopropyl-4-(3-phenylallylidene)cyclohexa-2,5-dienone (1n)

Yellow solid, m.p. 76 – 78 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 7.5 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.42 – 7.32 (m, 3H), 7.01 (d, J = 15.2 Hz, 1H), 6.89 (d, J = 11.4 Hz, 2H), 3.31 – 3.13 (m, 2H), 1.21 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H), 1.14 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.2, 146.4, 145.9, 142.4, 141.5, 136.3, 134.3, 131.4, 129.6, 129.0, 127.6, 125.1, 123.6, 27.1, 26.6, 22.2, 22.1 ppm. **IR(KBr):** 2955, 1586, 1570, 1540, 1448, 1359, 984, 974, 749, 687 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₁H₂₄O+H]⁺: 293.1900; found: 293.1896.

2,6-Di-*tert*-butyl-4-((2E,4E)-5-phenylpenta-2,4-dien-1-ylidene)cyclohexa-2,5-dienone (10)

Red solid, m.p. 160–163 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.45 (m, 3H), 7.38 – 7.29 (m, 3H), 7.10 – 7.01 (m, 2H), 6.92 (d, J = 2.2 Hz, 1H), 6.87 – 6.76 (m, 3H), 1.36 (s, 9H), 1.32 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.8, 147.7, 147.3, 141.2, 140.9, 136.9, 136.2, 133.9, 130.6, 128.4, 128.2, 127.6, 126.6, 126.5, 124.8, 35.0, 34.6, 29.1, 29.1 ppm. **IR(KBr):** 2954, 1610, 1597, 1558, 1570, 1524, 1385, 1359, 984, 944, 754, 690 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₅H₃₀O+H]⁺: 347.2369; found: 347.2368.

c) Characterization of the products

Diethyl 7,9-di-tert-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3aa)

White solid, m.p. 128 - 129 °C. 92% yield (44.0 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, J = 2.9 Hz, 1H), 7.18 – 7.16 (m, 3H), 6.98 – 6.96 (m, 2H), 6.41 (dd, J = 5.7, 1.5 Hz, 1H), 6.29 – 6.27 (m, 2H), 4.79 (s, 1H), 4.34 – 4.15 (m, 2H), 4.09 – 3.98 (m, 1H), 3.88 – 3.77 (m, 1H), 1.31 – 1.28 (m, 12H), 1.05 (t, J = 7.1 Hz, 3H), 0.82 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.1, 168.7, 168.1, 149.8, 148.0, 139.2, 138.3, 137.4, 137.1, 131.2, 127.2, 127.5, 127.3, 72.8, 61.8, 61.3, 58.7, 56.9, 35.2, 34.6, 29.4, 28.8, 14.1, 13.6 ppm. IR(KBr): 2950, 2855, 1753, 1726, 1639, 1366, 1274, 1254, 742, 695 cm⁻¹. HRMS (ESI): m/z calculated for [C₃₀H₃₈O₅+H]⁺: 479.2792; found: 479.2785.

(E)-Diethyl 5,7-di-tert-butyl-6-oxo-2-styrylspiro[2.5]octa-4,7-diene-1,1-dicarboxylate (3aa')

Yellow solid, m.p. 105 – 107 °C. ¹**H NMR** (300 MHz, CDCl₃) δ 7.37 – 7.24 (m, 5H), 6.91 (d, J = 2.7 Hz, 1H), 6.78 (d, J = 15.7 Hz, 1H), 6.39 (d, J = 2.7 Hz, 1H), 6.24 (dd, J = 15.7, 9.5 Hz, 1H), 4.33 – 4.25 (m, 4H), 3.40 (d, J = 9.5 Hz, 1H), 1.33 – 1.24 (m, 24H) ppm. ¹³**C NMR** (75 MHz, CDCl₃) δ 185.6, 166.8, 165.5, 150.0, 149.9, 136.9, 136.4, 136.3, 134.3, 128.7, 128.1, 126.3, 120.4, 62.6, 62.2, 50.3, 42.4, 39.8, 35.6, 35.3, 29.4, 29.3, 14.2 ppm. **IR(KBr):** 3476, 3414, 2951, 1736, 1724, 1645, 1619, 1302, 1266, 1255, 972, 751 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₀H₃₈O₅+Na]⁺: 501.2612; found: 501.2599.

Diethyl 7,9-di-tert-butyl-8-oxo-4-(p-tolyl)spiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ba)

White solid, m.p. 136 – 137 °C. 96% yield (47.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 2.8 Hz, 1H), 6.98 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 7.9 Hz, 2H), 6.39 (dd, J = 5.7, 1.4 Hz, 1H), 6.28 – 6.25 (m, 2H), 4.75 (s, 1H), 4.33 – 4.15 (m, 2H), 4.08 – 3.97 (m, 1H), 3.88 – 3.77 (m, 1H), 2.24 (s, 3H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.1 Hz, 3H), 0.83 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.6, 168.3, 167.7, 149.2, 147.3, 138.8, 138.1, 137.1, 136.4, 133.5, 130.4, 127.9, 126.8, 72.3, 61.3, 60.8, 57.9, 56.5, 34.7, 34.1, 29.0, 28.2, 20.5, 13.6, 13.1 ppm. IR(KBr): 2956, 1752, 1725, 1636, 1366, 1273, 1255, 1214, 1104, 721 cm⁻¹. HRMS (ESI): m/z calculated for

[C₃₁H₄₀O₅+H]⁺: 493.2949; found: 493.2948.

Diethyl 7,9-di-*tert*-butyl-4-(4-methoxyphenyl)-8-oxospiro[4.5]deca-2,6,9-triene-1,1 -dicarboxylate (3ca)

White solid, m.p. 116 – 117 °C. 92% yield (46.7 mg). ¹**H** NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 2.9 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 8.7 Hz, 2H), 6.37 (dd, J = 5.8, 1.6 Hz, 1H), 6.29 (d, J = 2.9 Hz, 1H), 6.25 (dd, J = 5.7, 2.9 Hz, 1H), 4.75 – 4.73(d, J = 2.1 Hz, 1H), 4.33 – 4.15 (m, 2H), 4.08 – 3.96 (m, 1H), 3.88 – 3.77 (m, 1H), 3.72 (s, 3H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.1, 168.7, 168.2, 158.9, 149.7, 147.9, 139.3, 138.6, 137.7, 130.9, 129.2, 128.5, 113.3, 72.7, 61.8, 61.3, 58.1, 57.1, 55.3, 35.2, 34.6, 29.5, 28.8, 14.1, 13.6 ppm. **IR(KBr):** 2954, 1730, 1663, 1642, 1516, 1361, 1257, 1206, 1104, 1041, 818 cm⁻¹. **HRMS (ESI**): *m/z* calculated for [C₃₁H₄₀O₆+Na]⁺: 531.2717; found: 531.2703.

Diethyl 4-(benzo[d][1,3]dioxol-5-yl)-7,9-di-*tert*-butyl-8-oxospiro[4.5]deca-2,6,9-triene-1,1 -dicarboxylate (3da)

White solid, m.p. 140 – 141 °C. 88% yield (46.0 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 2.8 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 6.44 – 6.41 (m, 2H), 6.34 (dd, J = 5.7, 1.3 Hz, 1H), 6.29 – 6.25 (m, 2H), 5.85 (s, 2H), 4.71 (s, 1H), 4.33 – 4.15 (m, 2H), 4.08 – 3.98 (m, 1H), 3.89 – 3.78 (m, 1H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.2 Hz, 3H), 0.90 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.1, 168.7, 168.1, 149.9, 148.0, 147.2, 146.7, 139.1, 138.4, 137.4, 131.1, 130.1, 120.7, 108.1, 107.6, 100.9, 72.6, 61.9, 61.4, 58.5, 57.1, 35.2, 34.6, 29.5, 28.9, 14.1, 13.7 ppm. IR(KBr): 2968, 2902, 1728, 1639, 1493, 1361, 1256, 1203, 1101, 1036, 736 cm⁻¹. HRMS (ESI): m/z calculated for [C₃₁H₃₈O₇+Na]⁺: 545.2510; found: 545.2505.

Diethyl 7,9-di-*tert*-butyl-8-oxo-4-(4-(trifluoromethyl)phenyl)spiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ea)

White solid, m.p. 192 - 193 °C. 93% yield (50.9 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 2.9 Hz, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.40 (dd, J = 5.8, 1.3 Hz, 1H), 6.34 (dd, J = 5.7, 2.7 Hz, 1H), 6.24 (d, J = 2.9 Hz, 1H), 4.84 (s, 1H), 4.35 – 4.16 (m, 2H), 4.10 –

3.99 (m, 1H), 3.88 – 3.77 (m, 1H), 1.32 – 1.27 (m, 12H), 1.06 (t, J = 7.1 Hz, 3H), 0.81 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.2, 168.0, 167.3, 149.7, 148.0, 140.9, 138.2, 137.1, 135.7, 131.6, 129.4, 127.2, 124.3 ($J_{C-F} = 3.7$ Hz), 121.7, 72.3, 61.5, 61.0, 57.8, 56.2, 34.8, 34.1, 28.9, 28.2, 13.6, 13.1 ppm. **IR(KBr):** 2962, 1750, 1722, 1637, 1612, 1367, 1325, 1260, 1163, 1128, 1111, 1068, 1019 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₃₁H₃₇F₃O₅+Na]⁺: 569.2485; found: 569.2481.

Diethyl 4-(4-bromophenyl)-7,9-di-*tert*-butyl-8-oxospiro[4.5]deca-2,6,9-triene-1,1 -dicarboxylate (3fa)

White solid, m.p. 179 - 180 °C. 90% yield (50.9 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 2.9 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.35 (dd, J = 5.8, 1.5 Hz, 1H), 6.29 (dd, J = 5.8, 2.7 Hz, 1H), 6.24 (d, J = 2.9 Hz, 1H), 4.74 (s, 1H), 4.33 – 4.15 (m, 2H), 4.09 – 3.98 (m, 1H), 3.88 – 3.77 (m, 1H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 168.6, 167.9, 150.1, 148.4, 138.9, 137.9, 136.6, 136.2, 131.7, 130.9, 129.1, 121.2, 72.8, 61.9, 61.4, 58.1, 56.8, 35.3, 34.7, 29.5, 28.8, 14.1, 13.6 ppm. **IR(KBr):** 2944, 2361, 1750, 1724, 1663, 1637, 1401, 1385, 1367, 1101, 617 cm⁻¹. **HRMS (ESI**): m/z calculated for [C₃₀H₃₇BrO₅+Na]⁺: 581.1702; found: 581.1694.

Diethyl 7,9-di-*tert*-butyl-4-(4-chlorophenyl)-8-oxospiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ga)

White solid, m.p. 172 - 174 °C. 94% yield (48.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 2.9 Hz, 1H), 7.18 – 7.15 (m, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.36 (dd, J = 5.8, 1.5 Hz, 1H), 6.29 (dd, J = 5.8, 2.8 Hz, 1H), 6.25 (d, J = 3.0 Hz, 1H), 4.75 (s, 1H), 4.33 – 4.13 (m, 2H), 4.11 – 3.98 (m, 1H), 3.87 – 3.77 (m, 1H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 168.6, 167.9, 150.1, 148.3, 138.9, 137.9, 136.7, 135.7, 133.1, 131.6, 128.7, 127.9, 72.8, 61.9, 61.4, 58.0, 56.8, 35.2, 34.7, 29.5, 28.8, 14.1, 13.6 ppm. IR(KBr): 2956, 1751, 1724, 1636, 1490, 1372, 1255, 1215, 1134, 1105, 618 cm⁻¹. HRMS (ESI): m/z calculated for [C₃₀H₃₇ClO₅+H]⁺: 512.2402; found: 512.2398.

Diethyl 7,9-di-*tert*-butyl-4-(3-chlorophenyl)-8-oxospiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ha)

White solid, m.p. 140 - 141 °C. 88% yield (45.1 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.50 (d, J = 2.9 Hz, 1H), 7.15 – 7.08 (m, 2H), 6.97 (s, 1H), 6.84 (d, J = 7.0 Hz, 1H), 6.37 (dd, J = 5.8, 1.5 Hz, 1H), 6.31 (dd, J = 5.8, 2.8 Hz, 1H), 6.26 (d, J = 2.9 Hz, 1H), 4.76 (s, 1H), 4.34 – 4.15 (m, 2H), 4.09 – 3.98 (m, 1H), 3.89 – 3.78 (m, 1H), 1.31 – 1.26 (m, 12H), 1.06 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 168.5, 167.9, 150.2, 148.4, 139.2, 138.7, 137.8, 136.5, 133.8, 131.8, 129.1, 127.7, 127.4, 125.6, 72.6, 62.0, 61.4, 58.3, 56.9, 35.3, 34.6, 29.5, 28.8, 14.1, 13.6 ppm. **IR(KBr):** 2997, 2944, 1728, 1641, 1478, 1461, 1367, 1262, 1212, 1105, 1057, 754 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₃₀H₃₇ClO₅+Na]⁺: 535.2222; found: 535.2213.

Diethyl 7,9-di-*tert*-butyl-4-(2-chlorophenyl)-8-oxospiro[4.5]deca-2,6,9-triene-1,1 -dicarboxylate (3ia)

White solid, m.p. 124 - 125 °C. 87% yield (44.6 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.54 (d, J = 3.0 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.19 – 7.08 (m, 3H), 6.46 (d, J = 2.9 Hz, 1H), 6.30 (dd, J = 5.7, 2.8 Hz, 1H), 6.24 (dd, J = 5.8, 1.6 Hz, 1H), 5.38 – 5.37 (m, 1H), 4.32 – 4.17 (m, 2H), 4.11 – 4.01 (m, 1H), 3.90 – 3.79 (m, 1H), 1.32 – 1.23 (m, 12H), 1.08 (t, J = 7.2 Hz, 3H), 0.93 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.7, 168.6, 168.1, 148.2, 147.9, 140.3, 137.9, 137.8, 135.1, 134.1, 131.3, 130.6, 129.8, 128.6, 126.1, 73.1, 61.9, 61.4, 57.2, 55.6, 35.1, 34.8, 29.0, 28.9, 14.1, 13.7 ppm. **IR(KBr):** 2960, 2917, 1869, 1725, 1637, 1474, 1466, 1388, 1367, 1263, 1222, 1109 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₀H₃₇ClO₅+Na]⁺: 535.2222; found: 535.2219.

Diethyl 4-([1,1'-biphenyl]-4-yl)-7,9-di-*tert*-butyl-8-oxospiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ja)

White solid, m.p. 130 - 131 °C. 97% yield (53.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, J = 2.8 Hz, 1H), 7.47 (d, J = 7.4 Hz, 2H), 7.41 – 7.37 (m, 4H), 7.34 – 7.29 (m, 1H), 7.04 (d, J = 8.1 Hz, 2H), 6.45 (dd, J = 5.8, 1.1 Hz, 1H), 6.32 – 6.29 (m, 2H), 4.83 (s, 1H), 4.35 – 4.16 (m, 2H), 4.09 – 3.98 (m, 1H), 3.91 – 3.78 (m, 1H), 1.32 – 1.27 (m, 12H), 1.06 (t, J = 7.1 Hz, 3H), 0.83 (s,

9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.5, 168.2, 167.6, 149.4, 147.5, 140.4, 140.0, 138.7, 137.9, 136.8, 135.7, 130.8, 128.3, 127.3, 126.8, 126.6, 126.1, 72.3, 61.4, 60.9, 57.9, 56.5, 34.8, 34.2, 29.0, 28.3, 13.6, 13.2 ppm. **IR(KBr):** 2953, 1731, 1637, 1484, 1366, 1252, 1211, 1102, 752 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₆H₄₂O₅+Na]⁺: 577.2924; found: 577.2921.

Diethyl 7,9-di-*tert*-butyl-4-(naphthalen-1-yl)-8-oxospiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ka)

White solid, m.p. 158 - 159 °C. 99% yield (52.4 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 9.0 Hz, 1H), 7.76 (dd, J = 6.1, 3.3 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 2.9 Hz, 1H), 7.44 – 7.34 (m, 3H), 7.28 (s, 1H), 6.47 – 6.44 (m, 2H), 6.36 (dd, J = 5.7, 2.7 Hz, 1H), 5.68 (s, 1H), 4.47 – 4.14 (m, 2H), 4.14 – 3.94 (m, 1H), 3.94 – 3.65 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.10 – 1.04 (m, 12H), 0.76 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 184.9, 168.4, 167.6, 147.8, 146.8, 139.4, 138.8, 138.3, 133.3, 133.2, 131.4, 130.4, 128.2, 127.5, 126.0, 125.1, 124.9, 124.3, 124.1, 72.9, 61.4, 60.9, 56.0, 54.1, 34.5, 34.1, 28.4, 28.3, 13.6, 13.2 ppm. IR(KBr): 2950, 2855, 1721, 1661, 1638, 1361, 1272, 1219, 1112, 783 cm⁻¹. HRMS (ESI): *m*/*z* calculated for [C₃₄H₄₀O₅+Na]⁺: 551.2768; found: 551.2765.

Diethyl 7,9-di*-tert*-butyl-8-oxo-4-(thiophen-2-yl)spiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3la)

White solid, m.p. 110 – 111 °C. 97% yield (48.5 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 2.9 Hz, 1H), 7.06 (dd, J = 5.1, 0.9 Hz, 1H), 6.85 (dd, J = 5.0, 3.6 Hz, 1H), 6.69 (d, J = 3.4 Hz, 1H), 6.38 (dd, J = 5.7, 1.5 Hz, 1H), 6.30 – 6.27 (m, 2H), 4.99 (s, 1H), 4.33 – 4.14 (m, 2H), 4.10 – 3.99 (m, 1H), 3.88 – 3.77 (m, 1H), 1.30 – 1.26 (m, 12H), 1.07 (t, J = 7.2 Hz, 3H), 0.89 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.2, 168.5, 167.8, 150.6, 148.4, 140.2, 138.4, 138.0, 137.0, 131.2, 126.3, 124.5, 123.9, 72.9, 61.9, 61.4, 56.7, 54.1, 35.3, 34.6, 29.4, 28.9, 14.1, 13.6 ppm. **IR(KBr):** 2956, 2855, 1747, 1728, 1638, 1369, 1266, 1223, 1101, 954, 815, 723 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₂₈H₃₆O₅S+Na]⁺: 507.2176; found: 507.2173.

White solid, m.p. 138 - 140 °C. 84% yield (33.4 mg). ¹H NMR (300 MHz, CDCl₃) $\delta7.60$ (dd, J = 2.9, 1.4 Hz, 1H), 7.18 - 7.15 (m, 3H), 6.98 - 6.95 (m, 2H), 6.45 (dd, J = 2.9, 1.4 Hz, 1H), 6.37 (dd, J = 5.8, 1.6 Hz, 1H), 6.27 (dd, J = 5.7, 2.9 Hz, 1H), 4.80 - 4.79 (m, 1H), 4.29 - 4.16 (m, 2H), 4.09 - 3.91 (m, 2H), 1.96 (d, J = 1.3 Hz, 3H), 1.49 (d, J = 1.3 Hz, 3H), 1.28 (t, J = 7.1 Hz, 4H), 1.02 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.8, 168.5, 168.0, 142.9, 142.4, 138.0, 137.6, 136.9, 136.5, 131.0, 127.9, 127.6, 127.3, 72.5, 62.0, 61.4, 58.5, 58.0, 16.6, 15.6, 14.0, 13.8 ppm. IR(KBr): 2979, 2920, 1749, 1728, 1632, 1443, 1361, 1252, 1208, 1103, 939, 727, 699 cm⁻¹. HRMS (ESI): m/z calculated for [$C_{24}H_{26}O_5$ +Na]⁺: 417.1672; found: 417.1674.

Diethyl 7,9-diisopropyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3na)

White solid, m.p. 74 – 78 °C. 91% yield (41.2 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.53 (dd, J = 2.9, 0.7 Hz, 1H), 7.18 – 7.14 (m, 3H), 6.99 – 6.95 (m, 2H), 6.41 (dd, J = 5.8, 1.6 Hz, 1H), 6.33 (dd, J = 2.9, 0.7 Hz, 1H), 6.29 (dd, J = 5.8, 2.9 Hz, 1H), 4.85 – 4.83 (m, 1H), 4.34 – 4.15 (m, 2H), 4.05 – 3.80 (m, 2H), 3.13 – 2.99 (m, 1H), 2.73 – 2.59 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.17 – 1.11 (m, 6H), 1.02 (t, J = 7.2 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H), 0.48 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (75 MHz, CDCl₃) δ 184.9, 168.6, 167.9, 148.1, 146.1, 139.7, 138.7, 137.5, 137.0, 131.1, 127.9, 127.5, 127.3, 72.8, 61.9, 61.3, 58.4, 56.9, 26.7, 26.0, 22.1, 21.5, 21.0, 14.1, 13.6 ppm. **IR(KBr):** 2962, 2855, 1727, 1636, 1455, 1399, 1385, 1252, 1212, 1101, 698 cm⁻¹. **HRMS (ESI**): m/z calculated for [C₂₈H₃₄O₅+Na]⁺: 473.2298; found: 473.2286.

Dimethyl 7,9-di-tert-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ab)

White solid, m.p. 120 - 121 °C. 88% yield (40.0 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 2.9 Hz, 1H), 7.19 – 7.17 (m, 3H), 6.99 – 6.95 (m, 2H), 6.42 (dd, J = 5.8, 1.6 Hz, 1H), 6.29 – 6.26 (m, 2H), 4.79 – 4.78 (m, 1H), 3.78 (s, 3H), 3.49 (s, 3H), 1.28 (s, 9H), 0.83 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.0, 169.0, 168.4, 150.1, 148.1, 138.8, 138.1, 137.6, 137.0, 130.9, 127.9, 127.4, 127.3, 73.0, 58.4, 56.9, 52.9, 52.1, 35.2, 34.6, 29.4, 28.1 ppm. IR(KBr): 2956, 1750, 1731, 1636, 1366, 1252, 1216, 1104, 751, 698 cm⁻¹. HRMS (ESI): *m*/*z* calculated for [C₂₈H₃₄O₅+Na]⁺: 473.2298; found: 473.2303.

White solid, m.p. 186 – 187 °C. 87% yield (44.1 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 2.9 Hz, 1H), 7.19 – 7.16 (m, 3H), 6.97 – 6.94 (m, 2H), 6.40 (dd, J = 5.7, 1.4 Hz, 1H), 6.32 (d, J = 2.9 Hz, 1H), 6.26 (dd, J = 5.7, 2.8 Hz, 1H), 5.14 – 5.06 (m, 1H), 4.81 – 4.71 (m, 2H), 1.29 – 1.26 (m, 15H), 1.17 (d, J = 6.1 Hz, 3H), 0.96 (d, J = 6.3 Hz, 3H), 0.82 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.4, 167.8, 167.1, 149.0, 147.3, 138.9, 138.1, 136.8, 136.6, 131.0, 127.3, 127.1, 126.8, 71.9, 69.0, 68.6, 58.3, 56.5, 34.7, 34.1, 29.0, 28.2, 21.0, 20.9 ppm. IR(KBr): 2950, 1722, 1637, 1384, 1361, 1260, 1219, 1108, 951, 704 cm⁻¹. HRMS (ESI): *m*/*z* calculated for [C₃₂H₄₂O₅+Na]⁺: 529.2924; found: 529.2929.

Di*-tert*-butyl 7,9-di*-tert*-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ad)

White solid, m.p. 182 - 183 °C. 90% yield (43.0 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 2.8 Hz, 1H), 7.17 – 7.14 (m, 3H), 6.93 – 6.91 (m, 2H), 6.38 – 6.34 (m, 2H), 6.26 (dd, J = 5.7, 2.8 Hz, 1H), 4.80 (s, 1H), 1.51 (s, 9H), 1.30 – 1.29 (m, 18H), 0.81 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.0, 168.3, 167.2, 149.2, 147.8, 139.7, 138.9, 137.1 137.0, 132.0, 127.8, 127.8, 127.2, 82.8, 81.5, 73.3, 59.0, 57.8, 35.2, 34.6, 29.6, 28.7, 28.0, 27.9 ppm. IR(KBr): 2950, 1719, 1637, 1396, 1368, 1284, 1152, 1136, 1103, 839, 695, 618 cm⁻¹. HRMS (ESI): *m/z* calculated for [C₃₄H₄₆O₅+Na]⁺: 557.3237; found: 557.3237.

Dibenzyl 7,9-di-tert-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3ae)

White solid, m.p. 100 - 101 °C. 90% yield (54.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 2.9 Hz, 1H), 7.31 – 7.15 (m, 11H), 7.03 (dd, J = 7.4, 1.8 Hz, 2H), 6.94 (dd, J = 6.5, 2.8 Hz, 2H), 6.43 (dd, J = 5.8, 1.5 Hz, 1H), 6.34 – 6.31 (m, 2H), 5.22 (d, J = 12.3 Hz, 1H), 5.08 (dd, J = 12.3, 1.8 Hz, 2H), 4.79 (s, 1H), 4.62 (d, J = 12.2 Hz, 1H), 1.10 (s, 9H), 0.83 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 168.5, 168.0, 149.9, 148.2, 138.9, 138.1, 137.7, 136.9, 135.1, 134.5, 131.0, 128.6, 128.4, 128.3, 128.0, 127.9, 127.5, 127.4, 72.9, 67.6, 67.5, 58.9, 57.2, 35.1, 34.6, 29.3, 28.9 ppm. **IR(KBr):** 2950, 1753, 1731, 1636, 1449, 1369, 1250, 1212, 1092, 957, 736,

698 cm⁻¹. **HRMS (ESI)**: m/z calculated for $[C_{40}H_{42}O_5+Na]^+$: 625.2924; found: 625.2927.

Diallyl 7,9-di-tert-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3af)

White solid, m.p. 97 – 98 °C. 94% yield (47.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 2.9 Hz, 1H), 7.20 – 7.16 (m, 3H), 6.96 (dd, J = 6.5, 2.7 Hz, 2H), 6.44 (dd, J = 5.8, 1.5 Hz, 1H), 6.30 (dd, J = 5.4, 2.9 Hz, 2H), 5.95 – 5.82 (m, 1H), 5.74 – 5.61 (m, 1H), 5.35 – 5.24 (m, 2H), 5.21 – 5.11 (m, 2H), 4.80 – 4.79 (m, 1H), 4.73 (dd, J = 13.3, 5.4 Hz, 1H), 4.62 (dd, J = 13.3, 5.5 Hz, 1H), 4.50 (dd, J = 13.0, 6.0 Hz, 1H), 4.23 (dd, J = 13.0, 5.8 Hz, 1H), 1.26 (s, 9H), 0.82 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 185.9, 168.2, 167.7, 150.0, 148.1, 138.8, 138.1, 137.7, 136.9, 130.9, 127.8, 127.5, 127.3, 119.1, 118.7, 72.9, 66.2, 58.7, 57.1, 35.2, 34.6, 29.4, 28.8 ppm. **IR(KBr):** 2954, 2861, 1750, 1728, 1661, 1639, 1452, 1367, 1253, 1215, 1101, 940, 734, 699 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₂H₃₈O₅+Na]⁺: 525.2611; found: 525.2612.

1,1'-(7,9-Di-*tert*-butyl-8-oxo-4-phenylspiro[4.5]deca-2,6,9-triene-1,1-diyl)diethanone (3ag)

Yellow solid, m.p. 136 – 137 °C. 45% yield (18.9 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.61 (d, J = 2.9 Hz, 1H), 7.18 –7.15 (m, 3H), 6.94 – 6.91 (m, 2H), 6.47 (dd, J = 5.9, 2.8 Hz, 1H), 6.41 (dd, J = 5.9, 1.5 Hz, 1H), 6.17 (d, J = 2.9 Hz, 1H), 4.56 (s, 1H), 2.21 (s, 3H), 1.86 (s, 3H), 1.30 (s, 9H), 0.82 (s, 9H) ppm. ¹³**C NMR** (75 MHz, CDCl₃) δ 203.2, 202.3, 185.3, 150.1, 148.3, 139.3, 138.9, 137.2, 136.4, 131.5, 127.9, 127.6, 127.5, 86.4, 59.4, 56.6, 35.4, 34.7, 29.4, 29.3, 28.5, 28.1 ppm. **IR(KBr):** 2944, 2873, 1698, 1658,1638, 1366, 1357, 1255, 1184, 757, 701 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₈H₃₄O₃+Na]⁺: 441.2400; found: 441.2406.

(E)-Diethyl 7,9-di-tert-butyl-8-oxo-4-styrylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (30a)

White solid, m.p. 122 - 126 °C. 86% yield (43.4 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, J = 2.8 Hz, 1H), 7.28 – 7.18 (m, 5H), 6.58 (d, J = 2.8 Hz, 1H), 6.33 (d, J = 15.8 Hz, 1H), 6.21 – 6.15 (m, 2H), 5.84 (dd, J = 15.8, 8.0 Hz, 1H), 4.25 – 4.13 (m, 3H), 4.10 – 4.04 (m, 1H), 3.95 – 3.86 (m, 1H), 1.25 (s, 12H), 1.10 (s, 12H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.6, 168.5, 168.1, 150.0, 149.0, 139.3, 138.3, 137.2, 136.6, 132.1, 130.4, 128.5, 127.5, 126.1, 125.6, 72.7, 61.8, 61.4,

56.8, 56.4, 35.1, 35.0, 29.5, 29.4, 14.0, 13.7 ppm. **IR(KBr):** 2957, 1727, 1638, 1367, 1255, 1210, 1119, 751, 692 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₂H₄₀O₅+Na]⁺: 527.2768; found: 527.2768.

(*E*)-Dimethyl 7,9-di-*tert*-butyl-8-oxo-4-styrylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (30b)

White solid, m.p. 98 – 102 °C. 81% yield (38.6 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.19 (m, 6H), 6.57 (d, *J* = 2.8 Hz, 1H), 6.34 (d, *J* = 15.8 Hz, 1H), 6.21 (dd, *J* = 5.7, 1.4 Hz, 1H), 6.16 (dd, *J* = 5.7, 2.5 Hz, 1H), 5.85 (dd, *J* = 15.8, 8.1 Hz, 1H), 4.21 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 3H), 3.54 (s, 3H), 1.25 (s, 9H), 1.11 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 168.9, 168.3, 150.3, 149.2, 139.0, 138.1, 137.4, 136.6, 132.2, 130.1, 128.6, 127.6, 126.1, 125.4, 72.8, 56.5, 56.4, 52.8, 52.3, 35.2, 35.0, 29.5, 29.4 ppm. **IR(KBr):** 2957, 2861, 1735, 1637, 1364, 1269, 1218, 1060, 969, 750, 689 cm⁻¹. **HRMS (ESI)**: *m*/*z* calculated for [C₃₀H₃₆O₅+Na]⁺: 499.2455; found: 499.2450.

(*E*)-Diisopropyl 7,9-di-*tert*-butyl-8-oxo-4-styrylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3oc)

White solid, m.p. 146 – 148 °C. 79% yield (42.1 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.43 (d, J = 2.8 Hz, 1H), 7.27 – 7.18 (m, 5H), 6.59 (d, J = 2.8 Hz, 1H), 6.29 (d, J = 15.8 Hz, 1H), 6.20 (dd, J = 5.7, 1.4 Hz, 1H), 6.15 (dd, J = 5.7, 2.5 Hz, 1H), 5.79 (dd, J = 15.8, 8.2 Hz, 1H), 5.11 – 4.99 (m, 1H), 4.85 – 4.75 (m, 1H), 4.21 (d, J = 8.1 Hz, 1H), 1.26 – 1.22 (m, 15H), 1.18 (d, J = 6.1 Hz, 3H), 1.10 (s, 9H), 1.02 (d, J = 6.3 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 168.2, 167.6, 149.6, 148.8, 139.6, 138.6, 137.1, 136.6, 132.1, 130.7, 128.5, 127.5, 126.1, 125.5, 72.1, 69.5, 69.2, 57.0, 56.6, 35.2, 35.0, 29.6, 29.4, 21.6, 21.5, 21.4 ppm. IR(KBr): 2991, 2956, 1722, 1664, 1637, 1364, 1259, 1107, 692 cm⁻¹. HRMS (ESI): *m*/*z* calculated for [C₃₄H₄₄O₅+Na]⁺: 555.3081; found: 555.3075.

White solid, m.p. 138 - 139 °C. 93% yield (52.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 2.8 Hz, 1H), 7.27 – 7.16 (m, 5H), 6.56 (d, J = 2.8 Hz, 1H), 6.21 (d, J = 15.6 Hz, 1H), 6.18 – 6.14 (m, 2H), 5.70 (dd, J = 15.8, 8.4 Hz, 1H), 4.22 (d, J = 8.3 Hz, 1H), 1.49 (s, 9H), 1.33 (s, 9H), 1.26 (s, 9H), 1.10 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.5, 168.1, 167.2, 149.5, 148.9, 139.7, 138.8, 136.9, 136.5, 132.2, 131.2, 128.5, 127.4, 126.1, 125.4, 82.7, 81.5, 72.8, 57.7, 57.3, 35.1, 35.0, 29.7, 29.4, 28.0, 27.9 ppm. **IR(KBr):** 2955, 1722, 1635, 1455, 1367, 1282, 1231, 1165, 1113, 948, 848, 695 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₃₆H₄₈O₅+Na]⁺: 583.3394; found: 583.3394.

(*E*)-Dibenzyl 7,9-di-*tert*-butyl-8-oxo-4-styrylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (30e)

White solid, m.p. 102 - 103 °C. 83% yield (52.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.16 (m, 14H), 7.07 (dd, J = 7.3, 1.9 Hz, 2H), 6.60 (d, J = 2.8 Hz, 1H), 6.29 (d, J = 15.8 Hz, 1H), 6.25 – 6.20 (m, 2H), 5.81 (dd, J = 15.8, 8.2 Hz, 1H), 5.16 – 5.04 (m, 3H), 4.70 (d, J = 12.2 Hz, 1H), 4.21 (d, J = 8.0 Hz, 1H), 1.10 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 168.3, 167.9, 150.2, 149.3, 139.0, 138.1, 137.6, 136.5, 135.0, 134.6, 132.3, 130.2, 128.6, 128.6, 128.5, 128.4, 128.3, 128.0, 127.6, 126.1, 125.3, 72.8, 67.5, 67.5, 57.1, 56.7, 35.1, 35.0, 29.5, 29.4 ppm. **IR(KBr):** 2962, 2861, 1745, 1726, 1639, 1267, 1248, 1215, 957, 755, 739, 694 cm⁻¹. **HRMS** (**ESI**): m/z calculated for [C₄₂H₄₄O₅+Na]⁺: 651.3081; found: 651.3085.

(E)-Diallyl 7,9-di-tert-butyl-8-oxo-4-styrylspiro[4.5]deca-2,6,9-triene-1,1-dicarboxylate (3of)

White solid, m.p. 80 – 82 °C. 85% yield (45.0 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.30 (d, J = 2.8 Hz, 1H), 7.28 – 7.18 (m, 5H), 6.58 (d, J = 2.8 Hz, 1H), 6.32 (d, J = 15.8 Hz, 1H), 6.24 – 6.17 (m, 2H), 5.92 – 5.78 (m, 2H), 5.76 – 5.65 (m, 1H), 5.33 – 5.13 (m, 4H), 4.70 – 4.50 (m, 3H), 4.31 (dd, J = 13.1, 5.8 Hz, 1H), 4.21 (d, J = 8.1 Hz, 1H), 1.24 (s, 9H), 1.10 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 168.1, 167.7, 150.2, 149.2, 139.0, 138.1, 137.5, 136.6, 132.3, 131.1,

131.1, 130.2, 128.6, 127.6, 126.1, 125.4, 119.1, 118.8, 72.7, 66.2, 56.8, 56.6, 35.2, 35.0, 30.0, 29.4 ppm. **IR(KBr):** 2953, 1753, 1730, 1655, 1637, 1618, 1385, 1366, 1340, 1250, 1120, 689, 612 cm⁻¹. **HRMS (ESI)**: m/z calculated for [C₃₄H₄₀O₅+Na]⁺: 551.2768; found: 551.2763.

4. General Procedure for the Further Transformation of 3aa

4.1 Treating 3aa with Pd/C under ambient pressure of H_2

a) General procedure

Into a 25 mL round bottom flask were placed Pd/C (0.01 mmol, 10% equiv) and **3aa** (0.1 mmol, 1 equiv) in EA (1 mL). The reactants were degassed and filled with hydrogen gas while stirring magnetically. After refluxing for 12 h, the solution was filtered, concentrated in *vacuo* and purified by chromatography on silica gel to afford the desired product **4aa**.

b) Characterization of the product diethyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-phenylpropyl)malonate (4aa)

Colorless oil. 88% yield (42.5 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.21 (d, J = 7.5 Hz, 2H), 7.15 – 7.09 (m, 5H), 5.13 (s, 1H), 4.16 (q, J = 7.1 Hz, 4H), 2.62 (t, J = 7.6 Hz, 2H), 2.31 – 2.25 (m, 2H), 1.63 – 1.52 (m, 2H), 1.39 (s, 18H), 1.19 (t, J = 7.1 Hz, 6H) ppm. ¹³**C NMR** (75 MHz, CDCl₃) δ 171.2, 152.9, 141.8, 135.0, 128.3, 128.2, 127.2, 125.7, 124.9, 62.4, 61.1, 36.0, 35.2, 34.4, 30.3, 26.4, 14.0 ppm. **IR(KBr):** 2959, 2867, 1730, 1439, 1390, 1364, 1239, 1175, 1161, 1123, 1093, 1025, 886, 748, 701 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₃₀H₄₂O₅+Na]⁺: 505.2924; found: 505.2923.

4.2 Reduction of 3aa with LAH

a) General procedure

A sealed tube was charged with **3aa** (0.1 mmol, 1 equiv), lithium aluminum hydride (0.3 mmol, 3 equiv), and tetrahydrofuran (1.0 mL). The reaction mixture was stirred at ambient temperature until the reaction was judged to be completed by TLC analysis. 1N Hydrochloric acid was added, and the mixture was extracted by ethyl acetate. Then the solution was concentrated in *vacuo* and purified by chromatography on silica gel to afford the desired product **5aa**.

b) Characterization of the product

7,9-di-tert-butyl-1,1-bis(hydroxymethyl)-4-phenylspiro[4.5]deca-2,6,9-trien-8-one (5aa)

Colorless oil. 62% yield (24.5 mg). ¹**H NMR** (300 MHz, CDCl₃) δ 7.18 – 7.16 (m, 3H), 7.07 (d, *J* = 3.0 Hz, 1H), 6.94 (dd, *J* = 6.7, 2.4 Hz, 2H), 6.41 (d, *J* = 3.0 Hz, 1H), 6.27 (dd, *J* = 5.9, 1.4 Hz, 1H), 5.99 (dd, *J* = 5.9, 2.8 Hz, 1H), 4.40 (s, 1H), 3.99 – 3.88 (m, 2H), 3.67 – 3.52 (m, 2H), 2.23 (s,

1H), 1.57 (s, 1H), 1.29 (s, 9H), 0.87 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 186.0, 148.7, 146.5, 141.6, 140.6, 137.9, 134.0, 133.6, 127.9, 127.2, 127.1, 65.4, 65.3, 63.2, 59.2, 55.1, 35.1, 34.7, 29.5, 28.9 ppm. **IR(KBr):** 2956, 2924, 2868, 1708, 1657, 1635, 1455, 1366, 1313, 1251, 1199, 1031, 963, 930, 907, 883, 759, 744, 700 cm⁻¹. **HRMS (ESI)**: *m/z* calculated for [C₂₆H₃₄O₃+Na]⁺: 417.2400; found: 417.2402.

5. Crystallographic Data

Procedure for recrystallization of compounds **3ga**, **3oa**: the hexane was slowly added into the solution of target products in dichloromethane (with different concentration), then the dichloromethane was evaporated from the mixed solvent system at room temperature under dark and the crystals were obtained after a few days.

Bond precision	C - C = 0.0044 A
	Wavelength = 0.71073
Cell	a = 9.7421 (6) b = 16.0093 (9) c = 19.0370 (11)
	alpha = 90 beta = 94.910 (2) gamma = 90
Temperature	296 K
Volume	2958.2 (3)
Space group	P2 (1) /n
Sum formula	C ₃₀ H ₃₇ ClO ₅
Mr	512.04
Dx,g cm ⁻³	1.150
Ζ	4
Mu (mm ⁻¹)	0.163
F000	1092.0
h,k,lmax	11,19,22
Nref	5212
Tmin,Tmax	0.956,0.965
Correction method	# Reported T Limits:Tmin=0.956 Tmax=0.965
AbsCorr	MULTI-SCAN
Data completeness	0.999
Theta(max)	25.010
R(reflections)	0.0638(3468)
wR2(reflections)	0.1870(5212)
S	1.028
Npar	333

Table S1 Crystallographic Data of 3ga

 \equiv

Bond precision	C - C = 0.0040 A
	Wavelength $= 0.71073$
Cell	a = 12.654 (3) b = 21.405 (5) c = 11.307 (3)
	alpha = 90 beta = 97.659 (4) gamma = 90
Temperature	296 К
Volume	3035.4(12)
Space group	P 21/c
Hall group	-P 2ybc
Sum formula	$C_{30}H_{40}O_5$
Mr	504.64
Dx,g cm ⁻³	1.104
Ζ	4
Mu (mm-1)	0.073
F000	1088.0
h,k,l max	14, 25, 13
N _{ref}	5351
Data completeness	1.000
Theta(max)	25.010
R(reflections)	0.0622(3588)
wR2(reflections)	0.2143(5351)
S	1.005
Npar	345

Table S2 Crystallographic Data of 30a

6. Full Spectrum of Control Experiments

The ¹H NMR crude mixture spectrum (300 MHz). Reaction was performed at -10 $^{\circ}$ C for 12 h.

The ¹H NMR crude mixture spectrum (300 MHz). Reaction was performed at -10 $^{\circ}$ C for 12 h, then at 40 $^{\circ}$ C for 1 h.

The ¹H NMR crude mixture spectrum (300 MHz). Reaction was performed at 40 $^{\circ}$ C for 12 h.

7. Kinetic Experiments

7.1 ¹H NMR (300 MHz) copies of rearrangement from 3aa'to 3aa at 25 °C After heating 15 min:

After heating for 45 min:

After heating for 240 min:

7.2 Kinetic data

The parallel reactions were run for indicated time, then quickly subjected to ¹H NMR (300 MHz) analysis at four different temperatures: 25 °C, 40 °C, 50 °C, and 60 °C ^[3].

25 °C data:				
	Average Integrals		Relative Percentage	
Time(min)	3 aa'	3 aa	3 aa'	3 aa
15	1.0000	0.0179	98.24	1.76
30	1.0000	0.0208	97.96	2.04
45	1.0000	0.0338	96.73	3.27
120	1.0000	0.0829	92.34	7.66
240	1.0000	0.1338	88.20	11.8

Time/min	-ln[A/A ₀]
0	0
15	0.01776
30	0.02061
45	0.03325
120	0.07969
240	0.12556

40 °C Data:

The 6 parallel reactions were run at 40 $^{\circ}$ C for indicated time, then quickly subjected to ¹H NMR (300 MHz) analysis.

Time(min)	Average Integrals		Relative Percentage	
Time(mm)	3aa'	3aa	3 aa'	3aa
15	4.4408	1.0000	81.62	18.38
30	1.9193	1.0000	65.74	34.26
45	0.9349	1.0000	48.32	51.68
60	0.5034	1.0000	33.48	66.52
120	0.1510	1.0000	13.12	86.88
180	0.0246	1.0000	2.40	97.60

Time/min	-ln[A/A ₀]
0	0
15	0.20310
30	0.41946
45	0.72732
60	1.09422
120	2.03103
180	3.72970

50 °C data:

Time (main)	Average Integrals		Relative Percentage	
Time(min)	3 aa'	3aa	3 aa'	3 aa
15	1.0000	0.4220	70.32	29.68
30	1.0000	1.0545	48.67	51.33
45	1.0000	2.6019	27.76	72.24
60	1.0000	5.0112	16.64	83.36
90	1.0000	13.6880	6.81	93.19

Time/min	-ln[A/A ₀]
0	0
15	0.35211
30	0.72011
45	1.28157
60	1.79336
90	2.68678

60 °C				
Average		Integrals	Relative Percentage	
Time(min)	3 aa'	3aa	3aa'	3aa
15	1.0000	1.0070	49.82	50.17
30	1.0000	5.5499	15.27	84.73
45	1.0000	24.7114	3.88	96.11
60	1.0000	148.1014	0.67	99.33

Time/min	$-\ln[A/A_0]$
0	0
15	0.69675
30	1.87928
45	3.38729
60	5.00565

T(°C)	k(min ⁻¹)	T(K)	1/T(K ⁻¹)	lnk
25	0.0006	298	0.00336	-7.6009
40	0.0192	313	0.00319	-3.8922
50	0.0292	323	0.00310	-3.4868
60	0.0770	333	0.00300	-2.4686

$$\begin{split} E_a &= -R^*K_a = -8.314 * (-14115) = 1.17^*10^5 \; J/mol = 27.99 \; kcal/mol \\ A &= 3.11^*10^{17} \, min^{-1} \end{split}$$

Error Plots 1

Т	$1/T(K^{-1})$	lnk	Error
298	0.00336	-7.6009	-7.9809
333	0.00300	-2.4686	-2.3452

Error Plots 2

Т	$1/T(K^{-1})$	lnk	Error
298	0.00336	-7.6009	-7.2209
333	0.00300	-2.4686	-2.5920

 $Error = -1.40 \, * \, 10^3 \quad E_a \ = -R \, * \, Error = -8.314 \, * \, (-1.40 \, * \, 10^3) \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, * \, 10^3 \, J/mol = 1.16 \, * \, 10^4 \, J/mol = 2.78 \, E_a \ = -1.40 \, E_a \$

kcal/mol

 $E_a\text{=}~27.99\pm2.78~\text{kcal/mol}$
8. References

[1] Gai K.; Fang X.; Li X.; Xu J.; Wu X.; Lin A.; Yao H. *Chem. Commun.* **2015**, *51*, 15831.

[2] Jurd L.; Fye R. L.; Morgan J. J. Agric. Food Chem. 1979, 27, 1007.

[3] Chen Y.; Ye S.; Jiao L.; Liang Y.; Sinha-Mahapatra D. K.; Herndon J. W.; Yu Z.-X. J. Am.

Chem. Soc., 2007, 129, 10773.

9. NMR Copies of Substrates and Products

 $\begin{array}{c} 7.7_{1,2}, 2.6_$

220 210 200

190 180 170 160 150 140 130 120

110 100 90 80 70 60 fl (ppm)

50 40 30

20 10

0 -1

GK HMBC CDCL3 303K AV-300

S76

S78

S80

$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$

7,1.1797 7,1.1576 7,7.0113 7,7.0113 7,0.015 6,9294 6,9294 6,9294 6,9294 6,9294 6,92910 6,5.9911 5,9807 6,4013 6,2730 6,5.9010 6,5.9010 6,5.9010 5,9910 6,5.911 5,9910 5,5.911 5,9126 5,3

