Electronic supplementary information

Surface-controlled preparation of EuWO₄(OH) nanobelts and their hybrid with

Au nanoparticles as a novel enzyme-free sensing platform towards hydrogen

peroxide

Linglin Yu^a[‡], Yao Wang^a[‡], Qiong Wu^a[‡], Ze Yuan^a, Xiaoji Xie^a, Zhiwei Wang^a, Ning Wang^a^{*}, Xiao Huang^a^{*}, Wei Huang^a^{*}

a. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P.R. China.

Email: <u>iamxhuang@njtech.edu.cn</u>, <u>iamnwang@njtech.edu.cn</u>, <u>wei-huang@njtech.edu.cn</u>

1. Methods

1.1. Chemicals.

Ammonium metatungstate hydrate ($(NH_4)_{10}H_2(W_2O_7)_6 \cdot xH_2O, 99.99\%$), thiourea $(CS(NH_2)_2 \ge 99.0\%)$, sodium molybdate dihydrate $(Na_2MoO_4 \cdot 2H_2O_2 \ge 99.0\%)$, thioacetamide (CH₃CSNH₂, \geq 99.0%), europium (III) nitrate hexahydrate $(Eu(NO_3)_3 \cdot 6H_2O_1)$ 99%), sodium citrate tribasic dehydrate $(HOC(COONa)(CH_2COONa)_2 \cdot 2H_2O_2 \ge 99.0\%)$, gold (III) chloride hydrate (HAuCl₄·xH₂O, 99.999%) were purchased from Sigma-Aldrich (Steinheim, Germany). H₂O₂ (30%) was purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Na₂HPO₄·12H₂O (\geq 99.0%), KH₂PO₄ (\geq 99.5%), Na₂CO₃ $(\geq 99.8\%)$, NaHCO₃ ($\geq 99.5\%$), NaClO ($\geq 5.2\%$) and HCl (36%) were purchased from Shanghai Linfeng Chemical Reagent Co., Ltd (Shanghai, China). Methylene blue (MB, 98.5%) was purchased from Tianjin Chemical Reagent Research Institute Co., Ltd (Tianjin, China). NaNO₂ (99.0%) and KNO₃ (99.0%) were purchased from Xilong Scientific Co., Ltd (Shantou, China). All reagents were used as received without further purification. The deionized water was purified using a Milli-Q3 System (Millipore, France).

1.2. Synthesis of $EuWO_4(OH)$ nanobelts.

In a typical process, 42 mg of $(NH_4)_{10}H_2(W_2O_7)_6 \cdot xH_2O$, 128 mg of $CS(NH_2)_2$ and 20 mg of $Eu(NO_3)_3 \cdot 6H_2O$ were dissolved in 19.5 mL distilled water in a 25 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed and heated to 220 °C at 5 °C min⁻¹ and maintained at this temperature for 24 h before cooled naturally to room temperature. The product was collected by centrifugation and washed with absolute ethanol and distilled water in turn before further characterizations.

1.3 Preparation of EuWO₄(OH)-Au hybrids.

0.04 mg of the EuWO₄(OH) nanobelt power was mixed with 9 mL aqueous solution containing 0.3 mM sodium citrate and 0.1 mM HAuCl₄ in a 10 mL glass bottle. Thereafter, the solution was irradiated with a 150 W halogen lamp at 70 % of its full intensity, during which the glass bottle was placed horizontally and kept 0.5 cm away from the light source. After 4 h of irradiation, the solution became red, indicating the formation of Au nanoparticles. The obtained product was then washed with water before further characterizations.

1.4 Characterizations.

The morphological, structural and compositional characterizations of the products were investigated by scanning electron microscopy (SEM, Hitachi S-4800, Japan), high resolution transmission electron microscope (HRTEM, JEOL 2100F, Japan) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD, SmartLab Rigaku, Japan), and X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe, Japan). The XRD characterization was carried on a diffractometer equipped with Cu K_a radiation ($\lambda = 1.54$ Å). For the XPS measurements, the binding energies were corrected for specimen

charging effects using the C 1s level at 284.6 eV as the reference. Excitation and emission spectra of the rare-earth compounds were measured under UV excitation at 250 nm on a fluorescent spectrometer (HitachiF-4600 FL) equipped with a power adjustable diode laser. The maximum photoluminescence of Eu³⁺ was recorded at 614 nm. Luminescence decay plots were obtained with a HORIBA Fluorolog-3 spectrofluorimeter under excitation at 250 nm. The pH values of buffer solutions were determined by a pH meter (Mettler Toledo Seven Excellent).

1.5 Investigation on the pH-dependent luminescence of EuWO₄(OH).

Buffer solutions were pre-prepared by mixing Na₂HPO₄·12H₂O and KH₂PO₄ (or Na₂CO₃ and NaHCO₃) at certain concentrations, and then their pH values were determined by a pH meter to be 6.0, 7.0, 8.0, 9.2, 10.1 and 10.8, respectively. To 2 mL of each of the above buffer solutions, 30 μ L of EuWO₄(OH) nanobelt dispersion in water (0.6 mg mL⁻¹) were added and incubated for 10 min at room temperature before their luminescent spectra were collected. All experiments were repeated three times, and the data were averaged.

1.6 Luminescent sensing of H_2O_2 .

In a typical process, 2 mL of EuWO₄(OH)-Au (0.009 mg mL⁻¹) aqueous solution was mixed with 1 μ L H₂O₂ aqueous solution with varied concentrations to give a final concentration of 0.1 to 3.0 μ M in a quartz cuvette, followed by 8 min of incubation. After that, the emission intensity at 614 nm was recorded under 250 nm excitation. All experiments were repeated three times, and the data were averaged.

1.7 Production of various reactive oxygen species (ROS)

The various ROS were prepared based on previous report.¹ Nitrite (NO₂⁻) was prepared from NaNO₂. Hypochlorite (OCl⁻) was prepared from NaClO aqueous solution. Nitrate (NO₃⁻) was prepared from an aqueous solution of NaNO₃. Peroxynitrite (ONOO⁻) was prepared by mixing 0.6 M of NaNO₂ aqueous solution with 0.7 M H₂O₂ with the same

volume containing 0.6 M HCl.

1.8 Detection of hydroxyl radicals by using methylene blue (MB) as an indicator.

90 μ L of sodium citrate aqueous solution (30 mM) and 30 μ L of HAuCl₄ aqueous solution (30 mM) were mixed with 9 mL distilled water in a 10 mL glass bottle. Thereafter, the solution was irradiated with a 150 W halogen lamp at 70 % of its full intensity, during which the glass bottle was placed horizontally and kept 0.5 cm away from the light source. After 4 h of irradiation, the solution became red, indicating the formation of Au NPs. The obtained product was washed with water and then redispersed in 2 mLwater. 30 μ L of this Au NP solution was mixed with 2 mL of MB (1.5 μ M) aqueous solution in a quartz cuvette, into which 1 μ L H₂O₂ aqueous solution (2 mM) was added to give a final concentration of 1.0 μ M. UV-vis adsorption spectra of the solution were collected before and after H₂O₂ was added.

Fig. S1 Side-view SEM images of typical $EuWO_4(OH)$ nanobelts, revealing an average thickness of ~ 30 nm.

Fig. S2 XPS analysis of $EuWO_4(OH)$ nanobelts. (a) Full scan, (b) O 1s, (c) Eu 3d, (d) W 4f and (e) S 2p spectra of the $EuWO_4(OH)$ nanobelts deposited on Si/SiO_x.

As shown in **Fig. S2a**, Eu, W, S and O elements can be detected in the full scan spectrum. The high resolution O 1s spectrum in **Fig. S2b** can be deconvoluted to give two sets of doublet peaks, attributable to WO_4^{2-} (530.08 eV) and $-OH/SO_3^{2-}$ (531.78 eV) species, respectively.² In the high resolution Eu 3d spectrum (**Fig. S2c**), two sets of doublet peaks can be assigned to Eu³⁺ (1134.00 and 1163.76 eV) and Eu²⁺ (1124.37 and 1155.20 eV) states, respectively.³ The high resolution W 4f spectrum (**Fig. S2d**) reveals two sets of doublet peaks for W⁵⁺ (34.56 and 36.71eV) and W⁶⁺ (35.22 and 37.37 eV),⁴ respectively. The high resolution S 2p spectrum (**Fig. S2e**) shows two peaks at 166.7 and 162.8 eV, assignable to SO₃²⁻ and S²⁻, respectively.².⁵

Fig. S3 SEM image of $EuWO_4(OH)$ rods and irregular flower-like assemblies prepared without adding $CS(NH_2)_2$ to the synthetic solution.

Fig. S4 (a) UV-vis absorption and luminescent emission spectra of $EuWO_4(OH)$ -Au hybrid. The excitation wavelength is 250 nm. (b) Emission spectra of $EuWO_4(OH)$ nanobelts and $EuWO_4(OH)$ -Au hybrid upon excitation at 250 nm.

Fig. S5 Normalized change of luminescent intensity $((I_0-I)/I_0)$ of EuWO₄(OH)-Au hybrid at 614 nm in response to 1 μ M H₂O₂, ClO⁻, NO₂⁻, NO₃⁻ and ONOO⁻ under the excitation at 250 nm.

Fig. S6 Emission spectra of $EuWO_4(OH)$ nanobelts in response to H_2O_2 with concentrations varying from 0.1 to 1.0 mM.

Fig. S7 Luminescence decay of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺ of EuWO₄(OH)-Au hybrid under the excitation at 250 nm in presence of H₂O₂ with different concentrations. Each set of the spots was fitted by a single exponential function.

Fig. S8 (a) UV-vis absorption spectra of an MB (1.5 μ M) solution before (black) and after (red) the addition of H₂O₂ (with a final concentration 1.0 μ M). (b) UV-vis absorption spectra of a solution containing Au NPs and MB (1.5 μ M) before (black) and after (red) the addition of H₂O₂ (with a final concentration of 1.0 μ M).

Fig. S9 (a) SEM image and (b) XRD pattern of Eu_2WO_6 nanoplates obtained by heating $EuWO_4(OH)$ nanobelts in N₂ at 650 °C for 2 h. PL spectra of (c) Eu_2WO_6 and (d) Eu_2WO_6 -Au hybrid in presence of H₂O₂ with varying concentrations from 0-1.0 mM.

Material	Linear range (M)	Limit of	Ref.
		detection	
		(nM)	
Eu(III)-doped GdVO ₄ nanoparticles	5×10^{-6} to 2.5×10^{-6}	1600	6
	4		
Y _{0.6} Eu _{0.4} VO ₄ nanoparticles	1 \times 10 ⁻⁶ to 4.5 \times	/	7
	10-5		
YAG:Ce (4%) and Gd _{0.6} Eu _{0.4} VO ₄	5×10^{-7} to 1×10^{-5}	500	8
nanoparticles			
(Y,Eu)PO ₄ -(Y,Eu)VO ₄ particles	1×10^{-2} to 4×10^{-1}	/	9
EuVO ₄ nanoparticles	0-0.25 ppm	0.05 ppm	10
EuVO ₄ -based films	/	100 ppb	11
NaYF ₄ :Yb/Er upconversion	1×10^{-7} to 4×10^{-6}	45	12
nanoparticles			
(MnO ₂)-nanosheet-modified	1×10^{-5} to 3.5	900	13
upconversion nanoparticles	×10 ⁻⁴		
CeO ₂ nanoparticle	0 to 1×10^{-3}	130	14

Table S1. Performance of various luminescent H_2O_2 sensors based on inorganic rareearth nanocrystals.

1	(a) M. H. Lan, Y. F. Di, X. Y. Zhu, TW. Ng, J. Xia, W. M. Liu, X. M. Meng, P. F. Wang, CS.
	Lee and W. J. Zhang, Chem. Commun., 2015, 51, 15574; (b) Z. N. Sun, H. L. Wang, F. Q. Liu,
	Y. Chen, P. K. Tam and D. Yang, Org. Lett., 2009, 11, 1887.
2	Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo and X. Y. Chen, <i>Adv. Mater.</i> , 2010, 22 , 3266.
3	(a) V. G. Pol, O. Palchik, A. Gedanken and I. Felner, J. Phys. Chem. B, 2002, 106, 9737; (b) B.
	Z. Zhao, X. J. Xie, S. L. Xu, Y. Pan, B. X. Yang, S. H. Guo, T. Wei, H. Q. Su, H. B. Wang, X.
	Q. Chen, V. P. Dravid, L. Huang and W. Huang, Adv. Mater., 2016, 28, 6665.
4	K. Oka, T. Nishiguchi, H. Kanai, K. Utani and S. Imamura, Appl. Catal. A-Gen., 2006, 309, 187.
5	(a) Z. Z. Li, Y. M. Xin, W. L. Wu, B. H. Fu and Z. H. Zhang, Anal. Chem., 2016, 88, 7724; (b)
	G. M. Bremmer, L. van Haandel, E. J. M. Hensen, J. W. M. Frenken and P. J. Kooyman, J.
	Phys. Chem. C, 2016, 120, 19204.
6	V. Muhr, M. Buchner, T. Hirsch, D. J. Jovanović, S. D. Dolić, M. D. Dramićanin and O. S.
	Wolfbeis, Sensor Actuat. B: Chem., 2017, 241, 349.
7	D. Casanova, C. Bouzigues, T. L. Nguyen, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin,
	J. P. Boilot, P. L. Tharaux and A. Alexandrou, Nat. Nanotechnol., 2009, 4, 581.
8	M. Abdesselem, R. Ramodiharilafy, L. Devys, T. Gacoin, A. Alexandrou and C. I. Bouzigues,
	Nanoscale, 2017, 9, 656.
9	P. C. de Sousa Filho, E. Larquet, D. Dragoe, O. A. Serra and T. Gacoin, ACS Appl. Mater.
	Interfaces, 2016.

¹⁰ N. Duée, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Vallé, D. Autissier and C. Sanchez,

Chem. Mater., 2015, 27, 5198.

- 11 C. Ambard, N. Duée, F. Pereira, D. Portehault, C. Méthivier, C.-M. Pradier and C. Sanchez, *J. Sol-Gel Sci. Technol.*, 2016, **79**, 381.
- 12 J. Liu, L. Lu, A. Li, J. Tang, S. Wang, S. Xu and L. Wang, Biosens. Bioelectron. , 2015, 68, 204.
- 13 J. Yuan, Y. Cen, X. J. Kong, S. Wu, C. L. Liu, R. Q. Yu and X. Chu, ACS Appl. Mater. Interfaces, 2015, 7, 10548.
- 14 B. Liu, Z. Sun, P. J. Huang and J. Liu, J. Am. Chem. Soc., 2015, 137, 1290.