Electronic Supplementary Information (ESI) for

One-pot synthesis of thiazino[2,3,4-*hi*]indole derivatives through

tandem oxidative coupling/heteroannulation process

Xi Mao, Tao Tong, Senbao Fan, Liting Fang, Jingyi Wu, Xiaoxia Wang, Honglan Kang, and Xin Lv*.

Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China.

e-Mail: lvxin@zjnu.cn

Table of Contents

1. General Information						
2.	General	Procedure	for	the	One-Pot	
Reactio	on					
3. Opti	mization of the I	Reaction Conditions		•••••		
4. Cha	aracterization D	ata for Products	••••••			
S13						
5. Copi	ies of ¹ H and ¹³ C	NMR Spectra for P	roducts 5	••••••		
6. Copi	ies of ¹ H and ¹³ C	NMR Spectra for th	ne Intermedi	ates	S38-S39	
7. The	X-Ray Crystal S	tructures of 5r	•••••	••••••	S40-S41	

1. General Information.

All one-pot reactions were performed in an over-dried Schlenk tube equipped with a magnetic stir bar under N₂ atmosphere. DMF, DMAc and DMSO were distilled from CaH₂. N-(*o*-Haloaryl) enamines¹ and 2-bromophenylthiols² were prepared according to the known literatures. All other reagents were obtained from commercial sources and utilized without further purification, if not stated otherwise. All melting points are uncorrected. The NMR spectra were recorded in CDCl₃ on a 400 or 600 M Hz instrument with TMS as internal standard. Recorded shifts were reported in parts per million (δ) downfield from TMS. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constant (*J*, Hz) and integration. TLC was carried out with 0.2 mm thick silica gel plates (GF254). Visualization was accomplished by UV light. The chromatographic columns were hand packed with silica gel 60 (160-200 mesh). The unknown key products were additionally confirmed by HRMS. HRMS analyses were carried out using a TOF-MS instrument with an ESI source.

2. General Procedure for the One-Pot Reaction.

An oven-dried Schlenk tube was charged with a magnetic stir bar, N-(*o*-haloaryl) enamine **1** (0.5 mmol), iodine (0.025 mmol, 5 mol%), N-bromosuccinimide (NBS, 0.55 mmol, 1.1 equiv), and K₂CO₃ (0.6 mmol, 1.2 equiv). The tube was evacuated and backfilled with nitrogen (3 times). DMF (1.0 mL) was added to the mixture *via* syringe under nitrogen at room temperature. The reaction mixture was stirred at 100 °C for 1 h. After that, DBU (2.0 mmol, 4.0 equiv) in DMF (0.5 mL) was added *via* syringe. Under a positive pressure of nitrogen, CuI (0.05 mmol, 10 mol%) and L-proline (0.1 mmol, 20 mol%) was added. Then a solution of *o*-bromophenylthiol (0.6 mmol, 1.2 equiv) in DMF (1.0 mL) was added *via* syringe. The reaction mixture was stirred at 120 °C for 20-24 h (monitored by TLC). The mixture was cooled to room temperature, diluted with water (20 mL), and extracted with ethyl acetate (20 mL). The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, and dried over sodium sulfate. After filtration and removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel with petrol/AcOEt as eluent to give the product.

^{1.} J. Maruyama, H. Yamashita, T. Watanabe, S. Arai, and A. Nishida, Tetrahedron, 2009, 65, 1327.

^{2.} C. Mukherjee and E. Biehl, Heterocycl., 2004, 63, 2309.

3. Optimization of the Reaction Conditions

HN.	NBS/I ₂ , K ₂ C Ph then [Cu], I	NBS/I ₂ , K ₂ CO ₃ , Sol., 100 °C, 1 h then [Cu], ligand, base				
l 1a	CO ₂ Et	T, 24 h † 4a	S Sa			
entry	[Cu]	Ligand	Base	Sol.	T (°C)	Yield (%) ^b
1	Cul	L-proline	K ₂ CO ₃	DMF	90	trace
2	Cul	L-proline	K ₂ CO ₃	DMF	120	15
3	Cul	L-proline	K ₂ CO ₃	DMF	130	15
4	Cul	L-proline	Cs ₂ CO ₃	DMF	120	18
5	Cul	L-proline	K ₃ PO ₄	DMF	120	22
6	Cul	L-proline	<i>t</i> -BuONa	DMF	120	30
7	Cul	L-proline	<i>t</i> -BuONa	DMSO	120	25
8	Cul	L-proline	<i>t</i> -BuONa	DMAc	120	18
9	Cul	L-proline	TEA	DMF	120	trace
10	Cul	L-proline	DABCO	DMF	120	62
11	Cul	L-proline	DBU	DMF	120	86
12	Cul	L-proline	DIPEA ^c	DMF	120	14
13	Cul	L-proline	TMPDA ^d	DMF	120	6
14	Cul	L-proline	TAA ^e	DMF	120	35
15	CuBr	L-proline	DBU	DMF	120	81
16	Cu(OAc) ₂	L-proline	DBU	DMF	120	trace
17	Cu(OAc) ₂ /Cul	L-proline	DBU	DMF	120	65
18	Cul	1,10-phen	DBU	DMF	120	60
19	Cul	BINOL	DBU	DMF	120	59
20	Cul	DMG ^f	DBU	DMF	120	70
21	Cul	2,2'-bipy	DBU	DMF	120	65

Table S1 Screening of reaction conditions^a

^{*a*} Reaction conditions: enamine **1a** (0.5 mmol), I₂ (0.025 mmol, 5 mol%), NBS (0.55 mmol, 1.1 equiv), K₂CO₃ (0.6 mmol, 1.2 equiv), in solvent (1 mL), under nitrogen, at 100 °C for 1 h. Then Cu source (0.05 mmol, 10 mol%), ligand (0.1 mmol, 20 mol%), base (2.0 mmol, 4 equiv), *o*-bromothiophenol **4a** (0.6 mmol, 1.2 equiv) and solvent (1.5 mL) were added under nitrogen, and the mixture was stirred at the indicated temperature for 24 h. ^{*b*} Isolated yield of product **5a**. ^{*c*} DIEPA = N,N-diisopropylethylamine. ^{*d*} TMPDA = N,N,N',N'-tetramethylpropylenediamine. ^{*e*} TAA = triallylamine. ^{*f*} DMG = N,N-dimethylplycine.

4. Characterization Data for Products.

Ethyl 1-phenylpyrrolo[**3**,**2**,**1**-*kI*]**phenothiazine-2-carboxylate (5a)**. White solid (159 mg, 86% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 119 – 121 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.76 (d, J = 8.0 Hz, 1H), 7.55 – 7.54 (m, 2H), 7.50 – 7.46 (m, 3H), 7.13 (t, J = 7.8 Hz, 1H), 7.06 (dd, J = 7.8, 1.4 Hz, 1H), 6.87 – 6.84 (m, 2H), 6.65 – 6.63 (m, 1H), 6.40 (d, J = 8.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.4, 144.0, 134.9, 134.7, 132.5, 130.3, 129.4, 128.6, 128.0, 126.8, 126.2, 125.4, 125.2, 123.7, 119.6, 118.7, 117.8, 117.5, 110.4, 59.9, 14.2; HRMS (ESI) calcd. for C₂₃H₁₈NO₂S (M + H⁺): 372.1053; found: 372.1053.

Ethyl 4-methyl-1-phenylpyrrolo[**3**,**2**,**1**-*kl*]**phenothiazine-2-carboxylate (5b).** White solid (140 mg, 73% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 132 – 133 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.55 (s, 1H), 7.52 (dd, *J* = 7.5, 1.7 Hz, 2H), 7.48 – 7.45 (m, 3H), 7.03 (d, *J* = 7.8 Hz, 1H), 6.83 (t, *J* = 7.5 Hz, 1H), 6.67 (s, 1H), 6.63 – 6.60 (m, 1H), 6.39 (dd, *J* = 8.4, 0.6 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.38 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.5, 143.8, 135.0, 134.8, 133.1, 132.8, 130.3, 129.3, 128.5, 127.9, 126.6, 126.4, 125.2, 123.7, 119.4, 119.0, 118.3, 117.0, 110.0, 59.8, 21.7, 14.2; HRMS (ESI) calcd. for C₂₄H₂₀NO₂S (M + H⁺): 386.1209; found: 386.1207.

Ethyl 4-isopropyl-1-phenylpyrrolo[**3**,**2**,**1**-*kl*]**phenothiazine-2-carboxylate (5c).** White solid (167 mg, 81% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 118 – 120 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, J = 0.8 Hz, 1H), 7.53 – 7.51 (m, 2H), 7.49 – 7.44 (m, 3H), 7.05 (dd, J = 7.8, 1.4 Hz, 1H), 6.83 (td, J = 7.7, 1.0 Hz, 1H), 6.76 (d, J = 1.2 Hz, 1H), 6.66 – 6.60 (m, 1H), 6.40 – 6.39 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.95 (hept, J = 6.9 Hz, 1H), 1.29 (d, J

= 6.9 Hz, 6H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.5, 146.5, 143.9, 134.8, 133.4, 132.8, 130.3, 129.3, 128.6, 127.9, 126.7, 126.4, 125.3, 123.7, 119.4, 117.2, 116.8, 115.8, 110.3, 59.8, 34.5, 24.4, 14.1; HRMS (ESI) calcd. for C₂₆H₂₄NO₂S (M + H⁺): 414.1522; found: 414.1521.

Ethyl 4-methoxy-1-phenylpyrrolo[3,2,1-kl]phenothiazine-2-carboxylate (5d). Yellow solid (140 mg, 70% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 134 – 136 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.53 – 7.46 (m, 5H), 7.27 – 7.25 (m, 1H), 7.08 (dd, J = 7.8, 1.5 Hz, 1H), 6.88 (td, J = 7.6, 1.0 Hz, 1H), 6.66 (ddd, J = 8.7, 7.4, 1.5 Hz, 1H), 6.53 (d, J = 2.2 Hz, 1H), 6.43 (dd, J = 8.5, 0.9 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.6, 158.1, 143.9, 134.6, 132.8, 130.3, 129.4, 129.3, 128.6, 127.8, 126.9, 126.7, 125.3, 123.1, 119.4, 118.5, 110.0, 107.6, 100.1, 59.8, 55.7, 14.1; HRMS (ESI) calcd. for C₂₄H₂₀NO₃S (M + H⁺): 402.1158; found: 402.1160.

Ethyl 4-chloro-1-phenylpyrrolo[3,2,1-*kl*]**phenothiazine-2-carboxylate (5e).** White solid (163 mg, 80% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 143 – 144 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 1.8 Hz, 1H), 7.53 – 7.46 (m, 5H), 7.05 (dd, J = 7.8, 1.4 Hz, 1H), 6.88 (td, J = 7.7, 1.0 Hz, 1H), 6.80 (d, J = 1.8 Hz, 1H), 6.67 (ddd, J = 8.7, 7.5, 1.5 Hz, 1H), 6.41 (dd, J = 8.5, 0.9 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 144.6, 134.3, 133.0, 132.2, 130.7, 130.2, 129.6, 128.6, 127.9, 127.0, 126.8, 125.6, 122.9, 119.6, 119.3, 118.1, 117.6, 109.9, 60.1, 14.1; HRMS (ESI) calcd. for C₂₃H₁₇CINO₂S (M + H⁺): 406.0663 (³⁵Cl); found: 406.0658.

Ethyl 4-fluoro-1-phenylpyrrolo[3,2,1-*kl*]**phenothiazine-2-carboxylate (5f).** White solid (169 mg, 87% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 149 – 150 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.52 – 7.46 (m, 5H), 7.39 (dd, J = 9.6, 2.2 Hz, 1H), 7.03 (dd, J = 7.7, 1.4 Hz, 1H), 6.87 – 6.84 (m, 1H), 6.67 – 6.63 (m, 1H), 6.59 – 6.56 (m, 1H), 6.40 (d, J = 8.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.0, 160.9 (d, J = 239 Hz), 144.8, 134.3, 132.3, 131.0, 130.2, 129.6, 128.6, 127.8, 127.0, 126.6, 125.6, 122.7, 119.6, 119.2 (d, J = 11.1 Hz), 110.2 (d, J = 4.2 Hz), 106.3 (d, J = 29.6 Hz), 103.9 (d, J = 25.7 Hz), 60.0, 14.2; HRMS (ESI) calcd. for C₂₃H₁₇FNO₂S (M + H⁺): 390.0959; found: 390.0962.

Ethyl 1-phenyl-4-(trifluoromethyl)pyrrolo[3,2,1-*kl*]phenothiazine-2-carboxylate (5g). White solid (180 mg, 82% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 146 – 148 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.55 – 7.50 (m, 5H), 7.09 – 7.06 (m, 2H), 6.91 (td, *J* = 7.8, 1.0 Hz, 1H), 6.71 – 6.66 (m, 1H), 6.44 (dd, *J* = 8.5, 0.7 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 145.2, 136.0, 133.0 (d, *J* = 219 Hz), 130.2, 129.8, 128.7, 128.0, 127.8, 127.5, 127.1, 125.9, 125.7, 125.4, 123.0 (d, *J* = 7.5 Hz), 119.7, 119.2, 116.6 (q, *J* = 4.5 Hz), 114.2 (q, *J* = 3.5 Hz), 110.8, 60.2, 14.1; HRMS (ESI) calcd. for C₂₄H₁₇F₃NO₂S (M + H⁺): 440.0927; found: 440.0929.

Ethyl 3-chloro-1-phenylpyrrolo[**3**,**2**,**1**-*k1*]**phenothiazine-2-carboxylate (5h).** White solid (127 mg, 63% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 120 – 122 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.57 – 7.55 (m, 2H), 7.48 – 7.45 (m, 3H), 7.12 – 7.08 (m, 2H), 6.92 – 6.89 (m, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.74 – 6.71 (m, 1H), 6.47 (d, J = 8.4 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 165.3, 139.7, 136.5, 134.6, 131.4, 129.6, 129.5, 129.0, 128.0, 127.0, 125.4, 125.3, 123.0, 122.8, 122.7, 119.5, 118.3, 116.8, 114.0, 61.4, 13.9; HRMS (ESI) calcd. for C₂₃H₁₇ClNO₂S (M + H⁺): 406.0663 (³⁵Cl); found: 406.0664.

Ethyl 6-phenylbenzo[*c*]**pyrrolo**[1,2,3-*mn*]**phenothiazine-7-carboxylate (5i).** Yellow solid. (115 mg, 55% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.5$); mp 156 – 158 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.30 (s, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 6.3 Hz, 2H), 7.51 – 7.47 (m, 3H), 7.43 – 7.38 (m, 2H), 7.17 (d, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.67 (t, *J* = 7.8 Hz, 1H), 6.37 (d, *J* = 8.4 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.4, 147.4, 135.6, 135.1, 132.4, 132.2, 130.3, 129.6, 129.3, 128.6, 128.4, 127.1, 126.1, 125.24, 125.18, 124.8, 124.5, 123.4, 122.6, 119.4, 116.6, 111.6, 109.8, 60.0, 14.2; HRMS (ESI) calcd. for $C_{27}H_{20}NO_2S$ (M + H⁺): 422.1209; found: 422.1206.

Ethyl 1-phenyl-6-thia-5,10b-diazaaceanthrylene-2-carboxylate (5j). White solid (141 mg, 76% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.5$); mp 137 – 139 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 5.6 Hz, 1H), 7.60 – 7.50 (m, 6H), 7.17 (dd, J = 7.9, 1.4 Hz, 1H), 6.99 – 6.94 (m, 1H), 6.74 – 6.69 (m, 1H), 6.53 (dd, J = 8.6, 0.8 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 150.7, 145.2, 143.5, 142.3, 133.2, 131.9, 130.0, 129.9, 129.8, 128.8, 128.5, 126.9, 126.0, 124.1, 119.3, 113.2, 109.8, 60.1, 14.1; HRMS (ESI) calcd. for C₂₂H₁₇N₂O₂S (M + H⁺): 373.1005; found: 373.1007.

Ethyl 1-(*p***-tolyl)pyrrolo**[**3,2,1***-kI*]**phenothiazine-2-carboxylate (5k).** White solid (148 mg, 77% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 119 – 121 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, J = 8.1, 0.7 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.13 (t, J = 7.8 Hz, 1H), 7.08 (dd, J = 7.8, 1.4 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.70 – 6.66 (m,

1H), 6.49 (dd, J = 8.5, 0.9 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 144.4, 139.4, 134.95, 134.91, 130.2, 129.4, 129.3, 127.9, 126.8, 126.2, 125.3, 125.1, 123.7, 119.7, 118.7, 117.7, 117.5, 110.3, 59.9, 21.6, 14.2; HRMS (ESI) calcd. for C₂₄H₂₀NO₂S (M + H⁺): 386.1209; found: 386.1205.

Ethyl 1-(4-methoxyphenyl)pyrrolo[3,2,1-*kl***]phenothiazine-2-carboxylate (5l).** White solid (166 mg, 83% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 155 – 157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.16 – 7.08 (m, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.91 – 6.85 (m, 2H), 6.75 – 6.69 (m, 1H), 6.51 (d, *J* = 8.4 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 160.4, 144.3, 135.03, 134.99, 131.7, 128.0, 126.8, 126.2, 125.3, 125.1, 124.4, 123.7, 119.7, 118.7, 117.7, 117.5, 114.0, 110.1, 59.9, 55.3, 14.3; HRMS (ESI) calcd. for C₂₄H₂₀NO₃S (M + H⁺): 402.1158; found: 402.1162.

Ethyl 1-(4-chlorophenyl)pyrrolo[3,2,1-*kl***]phenothiazine-2-carboxylate (5m).** White solid (135 mg, 67% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 125 – 127 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.76 (dd, J = 8.1, 0.6 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.48 – 7.45 (m, 2H), 7.14 (t, J = 7.8 Hz, 1H), 7.10 (dd, J = 7.8, 1.4 Hz, 1H), 6.91 (td, J = 7.7, 1.0 Hz, 1H), 6.87 (dd, J = 7.4, 0.6 Hz, 1H), 6.75 – 6.71 (m, 1H), 6.44 (dd, J = 8.5, 0.8 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.2, 142.5, 135.6, 135.1, 134.5, 131.8, 130.8, 128.9, 128.1, 126.9, 126.1, 125.5, 125.3, 123.8, 119.6, 118.8, 118.0, 117.6, 110.8, 60.1, 14.2; HRMS (ESI) calcd. for C₂₃H₁₇ClNO₂S (M + H⁺): 406.0663; found: 406.0665.

Ethyl 1-methylpyrrolo[3,2,1-*kl***]phenothiazine-2-carboxylate (5n).** White solid (80 mg, 52% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$) ; mp 108 – 110 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.17 – 7.12 (m, 2H), 7.08 – 7.04 (m, 2H), 6.77 (d, *J* = 7.4 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.08 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 165.6, 143.7, 134.6, 134.4, 128.3, 127.3, 125.8, 125.7, 124.9, 124.3, 118.7, 118.2, 116.9, 116.7, 109.6, 60.0, 16.7, 14.6; HRMS (ESI) calcd. for C₁₈H₁₆NO₂S (M + H⁺): 310.0896; found: 310.0899.

Methyl 1-phenylpyrrolo[3,2,1-*kl*]**phenothiazine-2-carboxylate (50).** White solid (141 mg, 79% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.5$); mp 149 – 150 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, J = 8.1 Hz, 1H), 7.56 – 7.54 (m, 2H), 7.51 – 7.48 (m, 3H), 7.14 (t, J = 7.8 Hz, 1H), 7.08 (dd, J = 7.8, 1.5 Hz, 1H), 6.88 – 6.85 (m, 2H), 6.66 (ddd, J = 8.7, 7.4, 1.5 Hz, 1H), 6.41 – 6.39 (m, 1H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.8, 144.3, 135.0, 134.7, 132.3, 130.3, 129.5, 128.6, 128.0, 126.8, 126.1, 125.4, 125.2, 123.7, 119.7, 118.7, 117.8, 117.6, 110.2, 51.1; HRMS (ESI) calcd. for C₂₂H₁₆NO₂S (M + H⁺): 358.0896; found: 358.0893.

Phenyl(1-phenylpyrrolo[3,2,1-*kl***]phenothiazin-2-yl)methanone (5p).** Yellow oil. (155 mg, 77% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃): δ 7.60 (d, J = 7.3 Hz, 2H), 7.38 – 7.36 (m, 2H), 7.32 – 7.30 (m, 2H), 7.26 – 7.20 (m, 3H), 7.19 – 7.16 (m, 2H), 7.15 (dd, J = 7.8, 1.3 Hz, 1H), 7.10 – 7.06 (m, 1H), 6.92 – 6.88 (m, 2H), 6.71 – 6.68 (m, 1H), 6.47 (dd, J = 8.5, 0.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 192.8, 142.3, 138.8, 135.9, 135.0, 132.0, 131.7, 130.3, 129.5, 129.2, 128.7, 128.3, 127.9, 127.1, 126.9, 126.7, 125.4, 125.2, 124.0, 120.0, 118.3, 118.0, 117.9; HRMS (ESI) calcd. for C₂₇H₁₈NOS (M + H⁺): 404.1104; found: 404.1100.

Ethyl 9-methyl-1-phenylpyrrolo[3,2,1-*kI*]**phenothiazine-2-carboxylate (5q).** White solid (158 mg, 82% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 156 – 158 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 1H), 7.56 – 7.47 (m, 5H), 7.13 (t, J = 7.7 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 6.17 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 1.82 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.4, 144.0, 136.6, 134.7, 134.3, 132.8, 130.3, 129.2, 128.5, 127.5, 126.2, 126.0, 125.1, 120.7, 119.9, 118.5, 117.8, 117.7, 110.0, 59.9, 21.1, 14.2; HRMS (ESI) calcd. for C₂₄H₂₀NO₂S (M + H⁺): 386.1209; found: 386.1206.

Ethyl 4-chloro-9-methyl-1-phenylpyrrolo[3,2,1-*kl*]phenothiazine-2-carboxylate (5r). White solid (130 mg, 62% yield) (petroleum ether/EtOAc = 5:1, R_f = 0.6); mp 165 – 167 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.72 (d, *J* = 1.8 Hz, 1H), 7.53 – 7.47 (m, 5H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.79 (d, *J* = 1.8 Hz, 1H), 6.71 – 6.69 (m, 1H), 6.16 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.81 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.0, 144.6, 136.9, 133.8, 132.8, 132.4, 130.5, 130.2, 129.5, 128.6, 127.5, 126.7, 126.3, 120.7, 119.6, 119.1, 117.9, 117.4, 109.5, 60.0, 21.1, 14.2; HRMS (ESI) calcd. for C₂₄H₁₉ClNO₂S (M + H⁺): 420.0820 (³⁵Cl); found: 420.0817.

Ethyl 8-methyl-1-phenylpyrrolo[3,2,1-*kI***]phenothiazine-2-carboxylate (5s).** White solid (156 mg, 81% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 115 – 117 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.77 (dd, J = 8.1, 0.6 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.50 – 7.47 (m, 3H), 7.13 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 1.6 Hz, 1H), 6.86 – 6.85 (m, 1H), 6.47 (dd, J = 8.6, 1.6

Hz, 1H), 6.29 (d, J = 8.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.14 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.4, 143.9, 135.2, 134.6, 132.7, 132.3, 130.3, 129.3, 128.52, 128.51, 128.2, 127.4, 126.1, 125.0, 123.4, 119.4, 118.6, 117.6, 109.9, 59.8, 20.3, 14.2; HRMS (ESI) calcd. for C₂₄H₂₀NO₂S (M + H⁺): 386.1209; found: 386.1211.

Ethyl 4,8-dimethyl-1-phenylpyrrolo[**3,2,1**-*kI*]**phenothiazine-2-carboxylate (5t).** White solid (156 mg, 78% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 132 – 133 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.56 – 7.55 (m, 1H), 7.53 – 7.51 (m, 2H), 7.49 – 7.46 (m, 3H), 6.88 (d, J = 1.4 Hz, 1H), 6.69 (s, 1H), 6.45 (dd, J = 8.6, 1.9 Hz, 1H), 6.28 (d, J = 8.6 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.39 (s, 3H), 2.13 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.6, 143.7, 135.1, 134.8, 132.9, 132.8, 132.3, 130.3, 129.2, 128.5, 128.2, 127.3, 126.4, 123.3, 119.2, 118.8, 118.2, 117.1, 109.5, 59.7, 21.7, 20.3, 14.1; HRMS (ESI) calcd. for C₂₅H₂₂NO₂S (M + H⁺): 400.1366; found: 400.1367.

Ethyl 9-methoxy-1-phenylpyrrolo[3,2,1-*kl*]**phenothiazine-2-carboxylate** (5u). Yellow solid (136 mg, 68% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 136 – 137 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, *J* = 7.9 Hz, 1H), 7.53 – 7.49 (m, 5H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.2 Hz, 1H), 6.63 (s, 1H), 6.34 (d, *J* = 9.2 Hz, 1H), 6.21 (d, *J* = 7.0 Hz, 1H), 4.21 (q, *J* = 6.9 Hz, 2H), 3.68 (s, 3H), 1.22 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.5, 156.6, 143.7, 134.3, 132.6, 130.3, 129.3, 128.6, 128.1, 126.1, 124.9 (*J* = 10.1 Hz), 120.4, 118.7, 117.5, 117.1, 112.9, 112.0, 109.5, 100.0, 59.8, 55.5, 14.2; HRMS (ESI) calcd. for C₂₄H₂₀NO₃S (M + H⁺): 402.1158; found: 402.1166.

Ethyl 9-chloro-1-phenylpyrrolo[3,2,1-*kl*]**phenothiazine-2-carboxylate (5v).** White solid (174 mg, 86% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 157 – 158 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, J = 1.8 Hz, 1H), 7.53 – 7.47 (m, 5H), 7.05 (dd, J = 7.8, 1.3 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 1.8 Hz, 1H), 6.69 – 6.64 (m, 1H), 6.41 (d, J = 8.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.9, 144.7, 134.3, 133.0, 132.2, 130.7, 130.2, 129.6, 128.7, 127.9, 127.0, 126.8, 125.6, 122.9, 119.6, 119.3, 118.1, 117.6, 109.8, 60.1, 14.2; HRMS (ESI) calcd. for C₂₃H₁₇ClNO₂S (M + H⁺): 406.0663 (³⁵Cl); found: 406.0656.

Ethyl 9-chloro-4-methyl-1-phenylpyrrolo[3,2,1-*kl*]phenothiazine-2-carboxylate (5w). White solid (151 mg, 72% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 176 – 178 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.50 (m, 6H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.83 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.69 (s, 1H), 6.31 (d, *J* = 2.0 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.3, 143.8, 135.6, 135.3, 132.7, 132.2, 132.1, 130.1, 129.6, 128.8, 128.3, 126.4, 125.1, 122.0, 119.7, 119.2, 118.6, 116.4, 110.4, 59.9, 21.7, 14.1; HRMS (ESI) calcd. for C₂₄H₁₉ClNO₂S (M + H⁺): 420.0820 (³⁵Cl); found: 420.0817.

Ethyl 4,9-dichloro-1-phenylpyrrolo[**3,2,1-***kl*]**phenothiazine-2-carboxylate**(**5x**). White solid (160 mg, 73% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.6$); mp 143 – 144 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, J = 1.4 Hz, 1H), 7.58 – 7.50 (m, 5H), 6.96 (d, J = 8.4 Hz, 1H), 6.88 – 6.86 (m, 1H), 6.82 – 6.81 (m, 1H), 6.32 (d, J = 1.4 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.7, 144.6, 135.0, 132.6, 132.5, 131.6, 130.9, 130.1, 129.9, 128.9, 128.4, 126.8, 125.5, 121.2, 119.9, 118.7, 118.4, 117.8, 110.3, 60.2, 14.1; HRMS (ESI) calcd. for C₂₃H₁₆Cl₂NO₂S (M + H⁺): 440.0273 (³⁵Cl); found: 440.0271.

Ethyl 7-iodo-2-phenyl-1H-indole-3-carboxylate (3a). Yellow solid (182 mg, 93% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.5$); mp 175 – 176 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (b, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.48 – 7.46 (m, 3H), 7.03 (t, J = 7.8 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 165.1, 144.5, 137.0, 131.8, 131.6, 129.7, 129.6, 128.3, 127.7, 123.7, 122.4, 106.3, 76.1, 59.9, 14.3; HRMS (ESI) calcd. for C₁₇H₁₅INO₂ (M + H⁺): 392.0142; found: 392.0145.

Ethyl 7-((2-bromophenyl)thio)-2-phenyl-1H-indole-3-carboxylate (6a). White solid (97 mg, 43% yield) (petroleum ether/EtOAc = 5:1, $R_f = 0.48$); mp 189 – 190 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.80 (b, 1H), 8.36 (d, J = 8.0 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.53 – 7.51 (m, 2H), 7.44 – 7.42 (m, 3H), 7.37 (t, J = 7.7 Hz, 1H), 7.01 (td, J = 7.9, 1.2 Hz, 1H), 6.95 (td, J = 7.6, 1.5 Hz, 1H), 6.51 (dd, J = 7.9, 1.2 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.9, 144.8, 138.2, 137.3, 133.0, 131.4, 131.3, 129.7, 129.5, 128.5, 128.2, 128.0, 126.9, 126.7, 124.6, 123.3, 120.8, 112.3, 105.8, 60.0, 14.4; HRMS (ESI) calcd. for C₂₃H₁₉BrNO₂S (M + H⁺): 452.0314 (⁷⁹Br); found: 452.0316.

5. Copies of ¹H and ¹³C NMR Spectra for Products 5:

5a:

S15

5g:

5h:

S22

5j:

5k:

5l:

5m:

5n:

S28

5q:

5r:

S33

5u:

5v:

5w:

S37

6. Copies of ¹H and ¹³C NMR Spectra for the Intermediates

3a:

6a:

7. The X-Ray Crystal Structures of 5r

Figure 1. ORTEP diagram of compound 5r.

Important crystal data for 5r:

Bond precision:	C-C = 0.0039 A	Wavelength=0.71073	
Cell:	a=9.5389(3)	b=10.7066(3)	c=11.2370(3)
	alpha=66.541(1)	beta=73.749(2)	gamma=85.725(2)
Temperature:	296 K		
	Calculated	Reported	
Volume	1009.82(5)	1009.82(5)	
Space group	P -1	P-1	
Hall group	-P 1	?	
Moiety formula	$C_{24}H_{18}CINO_2S$	$C_{24}H_{18}CINO_2S$	
Sum formula	$C_{24}H_{18}ClNO_2S$	$C_{24}H_{18}CINO_2S$	
Mr	419.90	419.90	
Dx,g cm ⁻³	1.381	1.381	
Ζ	2	2	
Mu (mm ⁻¹)	0.313	0.313	
F000	436.0	436.0	
F000'	436.71		
h,k,l _{max}	12,13,14	12,13,14	
N _{ref}	4710	4662	
T_{min}, T_{max}	0.945,0.975	0.922,0.965	

 T_{min} 0.931

 Correction method = # Reported T Limits: $T_{min}=0.922$ $T_{max}=0.965$

 AbsCorr = EMPIRICAL
 Theta(max)= 27.650

 R(reflections)= 0.0577(3340)
 wR2(reflections)= 0.1567(4662)

 S = 1.055
 Npar= 262