Supporting Information

Direct Use of Allylic Alcohols and Allylic Amines in Palladium-

 Catalyzed Allylic Amination

 Catalyzed Allylic Amination}

Jiangyan Jing, ${ }^{\dagger}$ Xiaohong Huo, ${ }^{\ddagger}$ Jiefeng Shen, ${ }^{*}{ }^{\ddagger}$ Jingke Fu, ${ }^{\dagger}$ Qinghua Meng, ${ }^{*, \dagger}$ and Wanbin Zhang ${ }^{*, \uparrow, \dagger}$
${ }^{\dagger}$ School of Chemistry and Chemical Engineering and ${ }^{\ddagger}$ School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

CONTENTS

1. General Experimental Details S2
2. Optimization of the Reaction Conditions Using Allylic Alcohols S3
3. General Procedure for Direct Amination with Allylic Alcohols S3
4. General Procedure for Allylic Amination with Allylic Amines. S9
5. Direct One-step Synthesis of Cinnarizine and Naftifine S12
6. Asymmetric Catalysis and Control Experiments. S13
7. The Allylic Aminations with Diallylamine and Triallylamine S13
8. The Competition Reaction with a 1:1 Mixture of Cinnamyl Alcohol and Cinnamyl
Amine S14
9. References. S15
10. NMR Spectra S16

1. General Experimental Details

All reactions were performed in flame-dried glassware under an atmosphere of dry nitrogen, and the workup was carried out in air, unless otherwise noted. All solvents were purchased from commercial sources and used as such. The NMR spectra were recorded on a Varian MERCURY plus$400\left(400 \mathrm{MHz},{ }^{1} \mathrm{H} ; 101 \mathrm{MHz},{ }^{13} \mathrm{C}\right)$ spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard tetramethylsilane. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian instrument (376 MHz , respectively) and referenced relative to PhCF_{3}. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant(s) in Hz, integration). Mass spectrometry analysis was carried out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Melting points were measured with SGW X-4 micro melting point apparatus. IR was measured on a PerkinElmer Spectrum 100 FT-IR Spectrometer.

DPPF (1,1'-Bis(diphenylphosphino)ferrocene) was purchased from Energy Chemical Inc. The other chemicals were purchased from Energy Chemical Inc. or J\&K Scientific Inc. and used without further purification unless otherwise stated. Substituted cinnamyl alcohols were prepared according to the literature procedure ${ }^{[1]}$.

2. Optimization of the Reaction Conditions Using Allylic Alcohol

Table S1. Optimization of the Reaction Conditions Using Allylic Alcohol ${ }^{\text {a }}$

Entry	The amount of amine	Solvent	$\mathrm{pK}_{\mathrm{a}}{ }^{\text {b }}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield (\%) ${ }^{\text {c }}$
1	1.5 (equiv)	MeOH	15.5	rt	12	96
2	1.5 (equiv)	EtOH	15.9	rt	12	84
3	1.5 (equiv)	n-PrOH	16.1	rt	12	71
4	1.5 (equiv)	$i-\mathrm{PrOH}$	17.1	rt	12	67
5^{d}	1.5 (equiv)	t - BuOH	18.0	30	12	52
6	1.5 (equiv)	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	12.4	rt	24	trace
7	1.5 (equiv)	Toluene	--	rt	24	NR
8	1.5 (equiv)	THF	--	rt	24	NR
9	1.5 (equiv)	MeOH	15.5	60	4	96
10	1.0 (equiv)	MeOH	15.5	rt	12	79
11	2.0 (equiv)	MeOH	15.5	rt	12	96

${ }^{a}$ Reaction of cinnamyl alcohol ($0.50 \mathrm{mmol}, 1.0$ equiv) with 1 -methyl-aminomethyl naphthalene ($0.75 \mathrm{mmol}, 1.5$ equiv) was performed using $\operatorname{dppf}(5.0 \mathrm{~mol} \%)$ and $\left[\mathrm{Pd}\left(\eta^{3} \text {-allyl }\right) \mathrm{Cl}\right]_{2}(2.5 \mathrm{~mol} \%)$ as a catalytic system in solvent (2 mL) at rt. ${ }^{b}$ See ref 2. ${ }^{c}$ Yield of isolated product. ${ }^{d} 30{ }^{\circ} \mathrm{C}$ instead of rt ; The ligand was $1,1^{\prime}-$ $\operatorname{bis}($ diphenylphosphino)ferrocene $(\mathrm{dppf}), \mathrm{NR}=$ no reaction.

3. General Procedure for Allylic Amination with Allylic Alcohols

A mixture of phosphine ligand $(14.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(4.6 \mathrm{mg}, 0.0125$ $\mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under a N_{2} atmosphere for 60 min . Allylic alcohol ($0.50 \mathrm{mmol}, 1.0$ equiv) was added and the mixture was stirred for another 10 min , followed by the addition of amine ($0.75 \mathrm{mmol}, 1.5$ equiv). The reaction was monitored by GC-MS or TLC. The crude reaction mixture was concentrated by rotary evaporation and the residue was then purified by SiO_{2} column chromatography ($\mathrm{PE} / \mathrm{EA} / \mathrm{TEA}=10: 1 / 0.4$) to give the desired products.
(E)-N-Methyl- N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine (3a) ${ }^{[3]}$

3a
Yellow oil, $137.5 \mathrm{mg}, 96 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.16(\mathrm{~m}, 9 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=12.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.92(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2$, $134.9,134.0,132.8,132.6,128.6,128.5,128.0,127.8,127.6,127.5,126.4,126.0,125.7,125.2,124.7$, 60.5, 60.2, 42.6.

(E)-3-(2-Methoxyphenyl)- N -methyl- N -(naphthalen-1-ylmethyl)prop-2-en-1-amine (3b)

3b
Yellow oil, $152.1 \mathrm{mg}, 96 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,135.2,134.1,132.8,128.7,128.4,128.2$, $127.8,127.8,127.1,126.4,126.2,125.8,125.4,125.0,120.9,111.1,61.3,60.2,55.7,42.8$; HRMS (QTOF Premier) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 318.1858$; found: 318.1852.
(E)-3-(3-Methoxyphenyl)- N -methyl- N -(naphthalen-1-ylmethyl)prop-2-en-1-amine (3c)

Light yellow oil, $131.2 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dd}, J=16.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1$, $138.9,135.1,134.2,132.9,132.8,129.8,128.8,128.3,127.8,126.2,125.9,125.4,124.9,119.3,113.4$, $111.8,60.7,60.5,55.5,42.8$; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 318.1858$; found: 318.1852 .
(E)-3-(4-Methoxyphenyl)- N-methyl- N-(naphthalen-1-ylmethyl)prop-2-en-1-amine (3d) ${ }^{[4]}$

Yellow oil, $145.7 \mathrm{mg}, 92 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.51(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,135.1,134.1,132.7,132.5,130.1$, 128.7, 128.2, 127.7, 126.2, 125.8, 125.5, 125.4, 124.9, 114.2, 60.8, 60.3, 55.5, 42.7.
(E)-3-(3-Fluorophenyl)- N-methyl- N-(naphthalen-1-ylmethyl)prop-2-en-1-amine (3e)

3 e
Yellow oil, $138.6 \mathrm{mg}, 91 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.92$ $-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=6.6$
$\mathrm{Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1\left(\mathrm{~d}, J_{C-F}=246.4 \mathrm{~Hz}\right), 139.5\left(\mathrm{~d}, J_{C-F}=8.08\right.$ Hz), 134.7, 133.9, 132.5, 131.6, $130.0\left(\mathrm{~d}, J_{C-F}=8.08 \mathrm{~Hz}\right), 129.2,128.5$, 128.1, 127.5, 126.0, 125.7, $125.2,124.6,122.2\left(\mathrm{~d}, J_{C-F}=3.03 \mathrm{~Hz}\right), 114.2\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 112.8\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 60.2,60.1$, 42.5 ; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.53$; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}(\mathrm{M}+\mathrm{H})^{+}$: 306.1658; found: 306.1652.

(E)-3-(4-Fluorophenyl)- N -methyl- N -(naphthalen-1-ylmethyl)prop-2-en-1-amine (3f) ${ }^{[4]}$

Yellow oil, $133.8 \mathrm{mg}, 88 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dt}, J=15.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4\left(\mathrm{~d}, J_{C-F}=246.4 \mathrm{~Hz}\right.$), 135.0, 134.1, 133.5, 132.7, $131.7,128.7,128.2,128.0\left(\mathrm{~d}, J_{C-F}=7.1 \mathrm{~Hz}\right), 127.7,127.5,126.2,125.8,125.4,124.8,115.7\left(\mathrm{~d}, J_{C-F}=\right.$ $22.2 \mathrm{~Hz}), 60.6,60.4,42.7$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.79.
(E)- N-Methyl- N-(naphthalen-1-ylmethyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-amin (3g) ${ }^{[4]}$

Yellow oil, $118.6 \mathrm{mg}, 84 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 8 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dt}, J=15.9$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7$, $134.5,134.1,132.6,131.6,130.5,129.3,128.7,128.4,127.9,126.7,126.2,125.9,125.7$ (q, $J_{C-F}=3.4$ $\mathrm{Hz}), 125.4,124.7,60.4,60.3,42.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.44.

(E)-3-(Benzo[d][1,3]dioxol-5-yl)- N-methyl- N-(naphthalen-1-ylmethyl)prop-2-en-1-amine (3h)

3h

Yellow solid, $140.1 \mathrm{mg}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.82(\mathrm{~m}$, $2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=$ 6.7 Hz, 2H), 2.35 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,147.1,135.0,134.0,132.6,132.4$, $131.7,128.5,128.0,127.5,126.0,125.8,125.7,125.2,124.7,121.0,108.3,105.7,101.1,60.5,60.1$, 42.5; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 332.1650 ; found: 332.1644; m.p. 68.5$69.5^{\circ} \mathrm{C}$.

$3 \mathbf{i}$

Yellow solid, $154.5 \mathrm{mg}, 92 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.48(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ (dt, $J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.2,134.9,134.3,134.0,133.3,133.1,132.9,128.8,128.5,128.4,128.35,128.3,128.0$, $127.9,126.6,126.5,126.3,126.1,126.0,125.5,125.0,124.0,60.8,60.6,42.9$; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 338.1908$; found: 338.1902; m.p. 82.0-83.0 ${ }^{\circ} \mathrm{C}$.

(E)-3-(Furan-2-yl)- N -methyl- N -(naphthalen-1-ylmethyl)prop-2-en-1-amine (3j)

Yellow oil, $113.1 \mathrm{mg}, 82 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.32(\mathrm{~m}$, $1 \mathrm{H}), 6.33-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.22 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,128.7,128.3,127.8,126.2,125.9,125.4,124.8$, 121.7, 111.4, 107.6, 60.0, 42.4; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 278.1545$; found: 278.1538 .

N-Methyl- N-(naphthalen-1-ylmethyl)prop-2-en-1-amin (31) ${ }^{[4]}$

Colorless oil, $88.6 \mathrm{mg}, 84 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.99(\mathrm{dt}, J=16.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J$ $=23.9,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,135.1,134.1,132.7,128.7,128.2,127.7,126.1,125.8,125.4,124.9,118.0,61.5,60.1,42.6$.

(E)-N-Methyl- N -(naphthalen-1-ylmethyl)but-2-en-1-amine (3m)

Colorless oil, $87.9 \mathrm{mg}, 78 \%$ yield $(E: Z=5: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.74-5.58(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, $2 \mathrm{H}), 3.06(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $135.0,133.9,132.5,129.0,128.44,128.4,127.9,127.5,125.9,125.6,125.1,124.7,60.4,59.8,42.3$, 17.9; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 226.1595; found: 226.1590.

$N, 3-$ Dimethyl- N-(naphthalen-1-ylmethyl)but-2-en-1-amine (3n)

Light yellow oil, $60.5 \mathrm{mg}, 51 \%$ yield, ($1: \mathrm{b}=8: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.44-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (s, 2H), $3.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.4,135.1,133.9,132.5,128.4,127.8,127.5,125.9,125.5,125.1,124.7,121.7,60.0,55.6,42.4$, 26.0, 18.1; HRMS (Q-TOF Premier) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 240.1752; found: 240.1747.

(E)-N-Benzyl-3-phenylprop-2-en-1-amine (3o) ${ }^{[5]}$

30
Yellow oil, $69.8 \mathrm{mg}, 63 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.56(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.0,137.1,131.6,128.6,128.5,128.45,128.3,127.4,127.1,126.3,53.3,51.2$.

(E)-N-Benzyl- N-cinnamyl-3-phenylprop-2-en-1-amine ${ }^{[5]}$

30^{\prime}
Yellow oil, $8.1 \mathrm{mg}, 6 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.41(\mathrm{~m}, 15 \mathrm{H}), 6.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.34(\mathrm{dt}, J=16.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.3,131.0,129.3,128.8,128.7,128.5,128.2,127.7,127.2,126.5,58.1,56.2$.

(E)-N-Benzhydryl-3-phenylprop-2-en-1-amine (3p) ${ }^{[6]}$

Yellow oil, $116.2 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.17(\mathrm{~m}, 15 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.0,137.2,131.4,128.6,128.5,127.4,127.1,126.3,66.6,50.0$.

1-Cinnamylpyrrolidine (3q) ${ }^{[7]}$

Yellow oil, $88.7 \mathrm{mg}, 95 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.54(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.30-6.38(\mathrm{dt}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.86-$ $1.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.1,132.0,128.5,127.6,127.4,126.3,58.4,54.1,23.5$.

4-Cinnamylmorpholine (3r) ${ }^{[7]}$

3r
Light yellow oil, $97.3 \mathrm{mg}, 96 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.34$ ($\mathrm{m}, 2 \mathrm{H}$), 7.32-7.28 (m, 2H), $7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=4.0$ $\mathrm{Hz}, 4 \mathrm{H}), 3.15(\mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,133.4$, 128.6, 127.6, 126.3, 126.0, 67.0, 61.5, 53.7.

1-Cinnamylpiperidine (3s) ${ }^{[8]}$

3s
Light yellow oil, $83.2 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,132.6,128.5,127.4,127.2,126.3,61.9,54.6,26.0,24.4$.

1-Benzhydryl-4-cinnamylpiperazine (3t) ${ }^{[7]}$

White solid, $165.1 \mathrm{mg}, 90 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, 2H), $7.29-7.16(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0$, $137.2,133.4,128.9,128.8,128.2,127.8,127.2,126.8,126.6,76.5,61.3,53.7,52.1 ;$ m.p. 120.0-121.0 ${ }^{\circ} \mathrm{C}$.

1-Cinnamylindoline (3u) ${ }^{[9]}$

3u
Colorless oil, $97.3 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.49(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{dt}, J=12.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.5,137.2,132.6,130.6,128.9,127.8,127.6,126.7,126.2,124.8,118.1,107.8,53.7,51.9$, 28.9.

(E)-1-(3-Phenyl-2-propenyl)-1,2,3,4-tetrahydroquinoline (3v) ${ }^{[9]}$

$3 v$
Colorless oil, $92.1 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.56(\mathrm{~m}$,
$2 \mathrm{H}), 6.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=5.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-$ $3.25(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4$, $137.0,131.0,129.1,128.5,127.4,127.2,126.3,125.6,122.6,115.9,111.1,53.5,49.2,28.2,22.4$.

(E)-N,N-Dibenzyl-3-phenylprop-2-en-1-amine (3w) $)^{[7]}$

3w
Colorless oil, $102.3 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.25(\mathrm{~m}$, $8 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=16.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 4 \mathrm{H}$), 3.21 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9,137.5,132.8,129.1,128.8,128.5,128.0$, 127.6, 127.1, 126.5, 58.2, 56.1.

N-Butyl- N-cinnamylbutan-1-amine (3x) ${ }^{[7]}$

$3 x$
Light yellow oil, $64.1 \mathrm{mg}, 52 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=12.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,132.0,128.5,127.9,127.2,126.2,56.7,53.6,29.1$, 20.8, 14.1.

4. General Procedure for Allylic Amination with Allylic Amines

4.1 General procedure for the synthesis of allylic amine substrates ${ }^{[10]}$

To a solution of cinnamyl alcohol ($4.20 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (8 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$ was added triphenylphosphine ($5.46 \mathrm{mmol}, 1.3$ equiv) and phthalimide (6.29 mmol , 1.5 equiv). Then DEAD (5.46 mmole, 1.3 equiv) was added over 10 min at $0^{\circ} \mathrm{C}$. After one hour at 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was warmed up to room temperature and stirred overnight. The resulting mixture was concentrated and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EA} / \mathrm{PE}\right)$. The residue was dissolved in 20 mL EtOAc and $20 \mathrm{~mL} \mathrm{KOH}(1 \mathrm{M})$. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal the solvent, 2-cinnamylisoindoline-1,3-dione was obtained smoothly (57-65\%). To a solution of 2-cinnamylisoindoline-1,3-dione ($2.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(40 \mathrm{~mL}$) at room temperature was added hydrazine monohydrate ($8.0 \mathrm{mmol}, 4.0$ equiv). The mixture was stirred overnight. The solution was concentrated under reduced pressure. The reaction mixture was diluted with 20 mL of DCM and 20 mL of $\mathrm{KOH}(1 \mathrm{M})$ and stirred for 30 min . The aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent, the corresponding amine was obtained (90-99\%).

(E)-3-Phenylprop-2-en-1-amine ${ }^{[10]}$

4a
Yellow oil, $318.9 \mathrm{mg}, 57 \%$ yield (two steps); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.50$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.4,131.4,129.7,128.8,127.5,126.5,44.5$.

(E)-3-(p-Tolyl)prop-2-en-1-amine ${ }^{[11]}$

Yellow oil, $358.1 \mathrm{mg}, 58 \%$ yield (two steps); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, 2 H), $2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 137.3, 134.6, 130.4, 129.6, 129.5, 126.3, 44.6, 21.4.

(E)-3-(4-Chlorophenyl)prop-2-en-1-amine

Yellow oil, $441.9 \mathrm{mg}, 63 \%$ yield (two steps); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.45$ $(\mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.9,132.1,129.9,128.9,128.5,127.6,44.4$.

4.2 General procedure for allylic amination with allylic amines

A mixture of phosphine ligand $(14.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(4.6 \mathrm{mg}, 0.0125$ $\mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under a N_{2} atmosphere for 30 min . Prop-2-en-1-amine ($0.75 \mathrm{mmol}, 1.5$ equiv) was added and the mixture was stirred for another 10 min , followed by the addition of amine ($0.50 \mathrm{mmol}, 1.0$ equiv). The reaction was monitored by TLC. The crude reaction mixture was concentrated by rotary evaporation and the residue was then purified by SiO_{2} column chromatography ($\mathrm{PE} / \mathrm{EA} / \mathrm{TEA}=10 / 1 / 0.4$) to give the desired products.
(E)-N-Methyl- N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine (3a) ${ }^{[3]}$

3a
Yellow oil, $138.7 \mathrm{mg}, 97 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.16(\mathrm{~m}, 9 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=12.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.92(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2$, 134.9, 134.0, 132.8, 132.6, 128.6, 128.5, 128.0, 127.8, 127.6, 127.5, 126.4, 126.0, 125.7, 125.2, 124.7, 60.5, 60.2, 42.6.
(E)-N-Methyl- N-(naphthalen-1-ylmethyl)-3-(p-tolyl)prop-2-en-1-amine (3y) ${ }^{[4]}$

Yellow oil, $122.1 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), $6.63(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=6.6,0.5 \mathrm{~Hz}$, 2H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,134.9$, 134.4, 134.0, 132.7, $132.6,129.3,128.5,128.0,127.5,126.5,126.3,126.0,125.6,125.2,124.7,60.6,60.1,42.5,21.3$.

(E)-3-(4-Chlorophenyl)- N -methyl- N -(naphthalen-1-ylmethyl)prop-2-en-1-amine (3z) ${ }^{[4]}$

$3 z$
Yellow oil, $143.2 \mathrm{mg}, 89 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{dt}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.6,134.8,133.9,133.0,132.5,131.4,128.7,128.51,128.45,128.0,127.53$, 127.50, 125.9, 125.6, 125.2, 124.6, 60.3, 42.6.
N-Methyl- N-(naphthalen-1-ylmethyl)prop-2-en-1-amine (3aa) ${ }^{[12]}$

Yellow oil, $82.3 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.11-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.21(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,135.1,134.1$, $132.8,128.7,128.2,127.7,126.1,125.8,125.4,124.9,118.0,61.5,60.2,42.6$.

N-Benzylprop-2-en-1-amine (3ab) ${ }^{[13]}$

Yellow oil, $34.3 \mathrm{mg}, 47 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{dt}, J=6.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,128.7,128.5$, 127.3, 116.5, 53.4, 51.9, 29.9 .

N -Allyl- N -benzylprop-2-en-1-amine ${ }^{[14]}$
$\cdots \lambda_{2} \sim_{\mathrm{Ph}}$
3ab'
Yellow oil, $7.0 \mathrm{mg}, 7 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{ddt}, J=16.6$, $10.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.22-5.12(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{dt}, J=6.4,1.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2,135.7,129.0,128.2,126.9,117.5,57.5,56.4$

N-Benzhydrylprop-2-en-1-amine (3ac) ${ }^{[15]}$

Yellow oil, $68.2 \mathrm{mg}, 61 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.15(\mathrm{~m}, 10 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H})$, $5.20-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=5.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.1,136.9,128.8,127.6,127.3,116.3,66.7,50.7$.

1-Allyl-4-benzhydrylpiperazine (3ad)

Yellow solid, $119.9 \mathrm{mg}, 82 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.28 $-7.09(\mathrm{~m}, 6 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,135.3,128.7,128.2,127.1,118.3,76.5,62.1,53.6,52.1$.

1-Allylindoline (3ae) ${ }^{[16]}$

3ae
Yellow oil, $63.8 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dt}, J=7.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.18(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dt}, J=6.0,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.37(\mathrm{dd}, J=8.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,134.4$, $130.5,127.5,124.7,118.0,117.6,107.7,53.5,52.5,28.8$.

1-Allyl-1,2,3,4-tetrahydroquinoline (3af) ${ }^{[17]}$

3af
Yellow oil, $56.8 \mathrm{mg}, 66 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.78$ (m, 1H), $5.22-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dt}, J=4.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2H), $1.99-1.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.5,133.8,129.3,127.3,122.7,116.2$, 116.0, 111.3, 54.1, 49.4, 28.4, 22.6.

N, N-Dibenzylprop-2-en-1-amine (3ag) ${ }^{[18]}$

3ag
Colorless oil, $67.6 \mathrm{mg}, 57 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H})$, $5.33-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.14(\mathrm{dt}, J=6.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9$, 136.3, 129.1, 128.5, 127.1, 117.7, 58.0, 56.6.

5. Direct One-step Synthesis of Cinnarizine and Naftifine

A mixture of phosphine ligand $(166.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(54.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry $\mathrm{MeOH}(24 \mathrm{~mL})$ was stirred at room temperature under a N_{2} atmosphere for 60 min . Cinnamyl alcohol ($6.0 \mathrm{mmol}, 1.0$ equiv) was added and the mixture was stirred for another 10 min , followed by the addition of amine ($9.0 \mathrm{mmol}, 1.5$ equiv). The reaction was monitored by TLC. The crude reaction mixture was concentrated by rotary evaporation and the residue was then purified by SiO_{2} column chromatography $(\mathrm{PE} / \mathrm{EA} / \mathrm{TEA}=10: 1 / 0.4)$ to give the desired products.

6. Asymmetric Catalysis and Control Experiments

A mixture of chiral ferrocene-based phosphinooxazoline ligand ($30.0 \mu \mathrm{~mol}$) and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$ $(25.0 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under N_{2} atmosphere for 1 h . Allylic substrates ($0.50 \mathrm{mmol}, 1.0$ equiv) were added and the mixture was stirred for another 10 min , followed by the addition of amine ($0.75 \mathrm{mmol}, 1.5$ equiv). The reaction was monitored by TLC. The crude reaction mixture was concentrated by rotary evaporation and the residue was then purified by SiO_{2} column chromatography $(\mathrm{PE} / \mathrm{EA} / \mathrm{TEA}=10: 1 / 0.4)$ to give the desired products.

(E)-1-(1,3-Diphenylallyl)pyrrolidine (3ah)

3ah
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.59(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=15.8,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,137.3,133.3,130.1,128.8,128.7,127.9,127.6,127.4,126.7,74.7,53.4,23.6$.

Using chiral OD-H (95/5 n-hexane $/ \mathrm{i}-\mathrm{PrOH}, 0.5 \mathrm{~mL} \mathrm{~min}-1,254 \mathrm{~nm}, \mathrm{t}($ minor $)=7.8 \mathrm{~min}, \mathrm{t}$ (major) $=8.3$ $\min , 94 \%$ ee.

7. The Allylic Aminations with Diallylamine and Triallylamine

A mixture of phosphine ligand $(14.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(4.6 \mathrm{mg}, 0.0125$ $\mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under a N_{2} atmosphere for 30 min . diallylamine ($0.50 \mathrm{mmol}, 1.0$ equiv) was added and the mixture was stirred for another 10 min , followed by the addition of 1-methyl-aminomethyl naphthalene ($0.50 \mathrm{mmol}, 1.0$ equiv). Using the same method, triallylamine was reacted at the same time. The reaction was monitored by TLC. After 3 h , the crude reaction mixture was concentrated by rotary evaporation and the residue was then purified by SiO_{2} column chromatography ($\mathrm{PE} / \mathrm{EA} / \mathrm{TEA}=10 / 1 / 0.4$) to give the desired products $(90 \%$ yield for diallylamine; 95% yield for triallylamine).

8. The Competition Reaction with a $1: 1$ Mixture of Cinnamyl Alcohol

and Cinnamyl Amine

A mixture of phosphine ligand $(14.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(4.6 \mathrm{mg}, 0.0125$ $\mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under a N_{2} atmosphere for 30 min . Then the mixture was added to a $1: 1$ mixture of cinnamyl alcohol ($0.5 \mathrm{mmol}, 1.0$ equiv) and cinnamyl amine ($0.5 \mathrm{mmol}, 1.0$ equiv), which was stirred for another 10 min , followed by the addition of 1 -methylaminomethyl naphthalene ($0.50 \mathrm{mmol}, 1.0$ equiv). The reaction was monitored by TLC. After $12 \mathrm{~h}, 1-$ methyl-aminomethyl naphthalene was completely transformed into the desired product (97% yield) with 86% cinnamyl alcohol recovery.

9. References

[1] (a) Meiß, R.; Kumar, K.; Waldmann, H. Chem. Eur. J. 2015, 21, 13526. (b) Talwar, D.; Wu, X.; Saidi, O.; Salguero, N. P.; Xiao, J. Chem. Eur. J. 2014, 20, 12835. (c) Peng, D.; Zhang, M.; Huang, Z. Chem. Eur. J. 2015, 21, 14737. (d) Lightburn, T. E.; Paolis, O. A. D.; Cheng, K. H.; Tan, K. L. Org. Lett. 2011, 13, 2686. (e) Ren, K.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, Z. J. Org. Chem. 2014, 79, 2170. (f) Angle, S. R.; Choi, I.; Tham, F. S. J. Org. Chem. 2008, 73, 6268. (g) Okamoto, R.; Tanaka, K. Org. Lett. 2013, 15, 2112.
[2] McMurry, J. E. Organic Chemistry, 6th ed.; Brooks/Cole: Belmont, CA, 2003.
[3] Nishikata, T.; Lipshutz, B. H. Org. Lett. 2009, 11, 2377.
[4] Ye, Z.; Brust, T. F.; Watts, V. J.; Dai, M. Org. Lett. 2015, 17, 892.
[5] Ohshima, T.; Miyamoto, Y.; Ipposhi, J.; Nakahara, Y.; Utsunomiya, M.; Mashima, K. J. Am. Chem. Soc. 2009, 131, 14317.
[6] Mukherjee, S.; List, B. J. Am. Chem. Soc., 2007, 37, 11336.
[7] Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
[8] Krishnan, D.; Wu, M.; Chiang, M.; Li, Y.; Leung, P. H.; Pullarkat, S. A. Organometallics 2013, 32 ,2389.
[9] Chen, Q. A.; Chen, Z.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 8392.
[10] Lambert, K. M.; Bobbitt, J. M.; Eldirany, S. A.; Kissane, L. E.; Sheridan, R. K.; Stempel, Z. D.; Sternberg, F. H.; Bailey, W. F. Chem. Eur. J. 2016, 22, 5156.
[11] Katritzky, A. R.; Jiang, J.; Steel, P. J. J. Org. Chem. 1994, 59, 4551.
[12] Ye, Z.; Brust, T. F.; Watts, V. J.; Dai, M. Org. Lett. 2015, 17, 892.
[13] Guérin, C.; Bellosta, V.; Guillamot, G.; Cossy, J. Org. Lett. 2011, 13, 3534.
[14] Adak, L.; Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2009, 10, 3982.
[15] Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
[16] Zeng, X.; Soleilhavoup, M.; Bertrand, G. Org. Lett. 2009, 11, 3166.
[17] Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F. Org. Lett. 2001, 3, 3781.
[18] Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.

10. NMR Spectra

(l)

170	160	150	140	130	120	110	100	$90_{\mathrm{f} 1(\mathrm{ppm})}{ }^{80}$	70	60	50	40	30	20	10	0

区－	88
三大\％	\％00
＋	，

$\begin{array}{lllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 10 & 10 & 10 & 1 & 10 & 10 & 10 & 10 & 10 & 10\end{array}$

l

Nouncond

 	$\stackrel{\bar{j}}{\underset{j}{j}}$		$\underset{T}{\underset{T}{T}}$
β			
$1 \times r$	I	1	5

[^0]

$$
\|_{l} / /
$$

Nゥ~ if 1

170	160	150	140	130	120	110	100	90	$\mathrm{f} 1(\mathrm{ppm})$	70	60	50	40	30	20	10	0

$\int \mid$

$\stackrel{i}{i}$

3a

60	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10

-152.32

º m
今N

88
88
80
10

$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{1}{1}$

N,

MNल.
$\stackrel{8}{7}$
$\stackrel{?}{8}$
$\stackrel{\text { ® }}{\substack{0 \\ 1}}$

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	
								1 (ppm)							2		

[^0]:

