Supporting Information

Ru(II)-Pheox-Catalyzed Si–H Insertion Reaction: Construction of Enantioenriched Carbon and Silicon Centers

Yoko Nakagawa, Soda Chanthamath,* Ikuhide Fujisawa, Kazutaka Shibatomi, and Seiji Iwasa* Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, JAPAN

CONTENTS:

1. Preparation of Various Functionalized Diazoesters	2
2. General Procedure for Catalytic Asymmetric Si-H Insertion Reaction to Constr	uct Chiral
Carbon	13
3. Analytical Data for Asymmetric Si-H Insertion Reaction Products(1)	14
4. Reduction of di(naphthalen-1-yl)methyl (R)-2-(triphenylsilyl)propanoate	
5. General Procedure for Catalytic Asymmetric Si-H Insertion Reaction to Constr	uct Chiral
Carbon and Silicon	
6. Analytical Data for Asymmetric Si-H Insertion Reaction Products (2)	
7. X-ray Crystal Structure	
8. NMR Spectral Data	
9. HPLC Spectral Data	91
10. References	124

General: All reactions were performed under an atmosphere of argon unless otherwise noted. Dichloromethane (CH_2Cl_2) was purchased from Kanto Chemical Co., Inc.. All reactions were monitored by thin layer chromatography (TLC), glass plates pre-coated with silica gel Merck KGaA 60 F₂₅₄, layer thickness 0.2 mm. The products were visualized by irradiation with UV light or by treatment with a solution of phosphomolybdic acid or by treatment with a solution of *p*-anisaldehyde. Flash column chromatography was performed using silica gel (Merck, Art. No. 7734). ¹H NMR (500 MHz, 400 MHz) and ¹³C NMR (125 MHz, 100 MHz) spectra were recorded on JEOL JNM-ECX500, JEOL JNM-ECS400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to CDCl₃ (7.26 ppm). Elemental analyses were measured on a Yanaco CHN CORDER MT-6. Optical rotations were performed with a JASCO P-1030 polarimeter at the sodium D line (1.0 ml sample cell). Enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analyses with a JASCO GULLIVER using Daicel CHIRALPAK or CHIRALCEL columns. DART mass (positive mode) analyses were

performed on a LC-TOF JMS-T100LP.

1. Preparation of Various Functionalized Diazoesters

To a stirred suspension of ethyl 2-methyl-3-oxobutanoate (432.5 mg, 3.0 mmol, 1 equiv.) in CH₃CN (30 mL) was added *p*-ABSA (1.08 g, 4.5 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (0.67 mL, 4.5 mmol, 1.5 equiv.). After stirring for 2 h at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give ethyl 2-diazopropanoate as yellow oil (198.9 mg, 52 %). ¹H NMR (400 MHz, CDCl₃) δ 4.21 (q, *J* = 7.02 Hz, 2H), 1.95 (s, 3H), 1.27 (t, *J* = 7.32 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 60.7, 50.8, 14.4, 8.3 ppm. IR (neat) v 2916, 2849, 2080, 1698, 1312, 1136 cm⁻¹. HRMS (DART) calcd for C₅H₁₂N₃O₂ [M+NH₄]⁺: 146.09295 found: 146.09223

Benzyl 2-methyl-3-oxobutanoate^[2]

To a stirred suspension of 2,2,5,6-Tetramethyl-4H-1,3-dioxane-4-one (0.44 mL, 3.0 mmol, 1.0 equiv.) in Xylene (5 mL) was added benzyl alcohol (0.34 mL, 3.3 mmol, 1.1 equiv.) under argon atmosphere.

After stirring overnight at 140 °C, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography with Hex/EA to give benzyl 2-methyl-3-oxobutanoate as colorless oil (489.6 mg, 79 %). ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.40 (m, 5H), 5.16-5.18 (m, 2H), 3.54 (q, *J* = 7.26 Hz, 1H), 2.19 (s, 3H), 1.36 (d, *J* = 7.26 Hz, 3H) ppm.

To a stirred suspension of benzyl 2-methyl-3-oxobutanoate (471.6 mg, 2.2 mmol, 1 equiv.) in CH₃CN (12 mL) was added 4-acetoamidobenzenesulfonyl azide (*p*-ABSA) (824.0 mg, 3.4 mmol, 1.5 equiv.) under argon atmosphere. The mixture was cooled down to 0 °C, and added DBU (0.52 mL, 3.4 mmol, 1.5 equiv.). After stirring for 2 h at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give benzyl 2-diazopropanoate as yellow oil (269.2 mg, 62 %). ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.40 (m, 5H), 5.21 (s, 2H), 1.98 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 136.0, 128.4, 128.0, 127.9, 66.2, 8.3 ppm. IR (neat) v 3032, 2956, 2076, 1694, 1307, 1125, 730, 694 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₄N₃O₂ [M+NH₄]⁺: 208.1086 found: 208.1089.

Benzhydryl 2-diazopropanoate (1e)

To a stirred suspension of 2,2,5,6-tetramethyl-4H-1,3-dioxane-4-one (0.44 mL, 3.0 mmol, 1.0 equiv.) in xylene (5 mL) was added diphenylmethanol (608.0 mg, 3.3 mmol, 1.1 equiv.) under argon atmosphere. After stirring overnight at 140 °C, the reaction mixture was concentrated under reduced pressure.

To a stirred suspension of benzhydryl 2-methyl-3-oxobutanoate (3.0 mmol, 1 equiv.) in CH₃CN (15 mL) was added 4-acetoamidobenzenesulfonyl azide (*p*-ABSA) (1081 mg, 4.5 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (0.68 mL, 4.5 mmol, 1.5 equiv.). After stirring for 1.5 h at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give benzhydryl 2-diazopropanoate as yellow oil (242.0 mg, 30 %). ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.41 (m, 10H), 1.99 (bs, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 140.2, 128.4, 127.8, 126.9, 76.9, 8.3 ppm. IR (neat) v 3028, 2933, 2096, 1682, 1307, 1116, 746, 699 cm⁻¹. HRMS (DART) calcd for C₁₆H₁₈N₃O₂ [M+NH₄]⁺: 284.1399 found: 284.1399.

2-Phenylpropan-2-yl 2-methyl-3-oxobutanoate^[3]

To a stirred solution of 1-methyl-1-phenylethyl alcohol (1.28 mL, 10.0 mmol, 1.0 equiv.) and CH₃COONa (82.0 mg, 1 mmol, 0.1 equiv.) in toluene (6 mL) was added diketene (0.85 mL, 11.0 mmol, 1.1 equiv.) at 60 °C, and the

mixture was stirred at 130 °C for 2 h.

The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL), extracted with CH_2Cl_2 , the combined organic layer was washed with brine (5 mL). The crude product of 2-phenylpropan-2-yl 3-oxobutanoate was dried over Na₂SO₄ and evaporated.

To a stirred suspension of NaH (420.0 mg, 10.5 mmol, 1.05 equiv.) in THF (12 mL) at 0 °C was added 1-methyl-1-phenylethyl 3-oxobutanoate (10.0 mmol, 1.0 equiv.) and the mixture was stirred for 5 min. MeI (0.65 mL, 10.5 mmol, 1.05 equiv.) was added slowly at 0 °C and the solution was stirred for 1 h at 0 ° to RT.

The reaction mixture was quenched with NH₄Cl aq. and the organic layer was separated and thr aqueous layer was extracted with Et₂O. The organic layer was dried over Mg₂SO₄ and the solvent was evapolated. Purification was performed by column chromatography of the crude product to give 2-phenylpropan-2-yl 2-methyl-3-oxobutanoate as colorless oil (526.1 mg, 22 %). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.31 (m, 3H), 7.29-7.23 (m, 2H), 3.48 (q, *J* = 7.02 Hz, 1H), 2.23 (s, 3H), 1.78 (s, 6H), 1.31 (d, *J* = 7.32 Hz, 3H) ppm.

2-Phenylpropan-2-yl 2-diazopropanoate (1g)

To a stirred suspension of 2-phenylpropan-2-yl 2-methyl-3-oxobutanoate (340.0 mg, 1.45 mmol, 1 equiv.) in CH3CN (15 mL) was added 4-Acetoamidobenzenesulfonyl azide (*p*-ABSA) (523.7 mg, 2.18 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (0.33 mL, 2.18 mmol, 1.5 equiv.). After stirring for 30 min at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA under cooling by ice to give benzhydryl 2-phenylpropan-2-yl 2-diazopropanoate as yellow oil (161.6 mg, 51 %). ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.46 (m, 4H), 1.91 (bs, 3H), 1.80 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 145.8, 128.2, 126.9, 124.1, 82.1, 51.4, 28.8, 8.3 ppm. IR (neat) v 2984, 2084, 1682, 1327, 1129, 766, 702 cm⁻¹.HRMS (DART) calcd for C₁₂H₁₈N₃O₂ [M+NH₄]⁺: 236.13990 found: 236.13996.

2-Methylbenzyl 2-methyl-3-oxobutanoate

To a stirred suspension of 2,2,5,6-tetramethyl-4H-1,3-dioxane-4-one (0.58 mL, 4.0 mmol, 1.0 equiv.) in xylene (12

mL) was added 2-methylbenzyl alcohol (537.5 mg, 4.4 mmol, 1.1 equiv.) under argon atmosphere.

After stirring overnight at 140 °C, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography with Hex/EA to give benzyl 2-methylbenzyl 2-methyl-3-oxobutanoate as colorless oil (669.0 mg, 76 %). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.16 (m, 5H), 5.19 (s, 2H), 3.54 (q, *J* = 6.88 Hz, 1H), 2.34 (s, 3H), 2.19 (s, 3H), 1.36 (d, *J* = 7.26 Hz, 3H) ppm.

2-Methylbenzyl 2-diazopropanoate (1d)

To a stirred suspension of benzyl 2-methyl-3-oxobutanoate (669.0 mg, 3.04 mmol, 1 equiv.) in CH₃CN (20 mL) was added 4-acetoamidobenzenesulfonyl azide (1.1 g, 4.6 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (0.69 mL, 4.6 mmol, 1.5 equiv.). After stirring overnight at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give 2-methylbenzyl 2-diazopropanoate as yellow oil (335.6 mg, 54 %). ¹H NMR (500 MHz, CDCl₃) δ 7.15-7.35 (m, 4H), 5.22 (s, 2H), 2.34 (s, 3H), 1.97 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 136.6, 133.8, 130.1, 128.8, 128.2, 125.7, 64.6, 18.6, 8.1 ppm. IR (neat) v 3024, 2928, 2084, 1694, 1320, 1129, 742 cm⁻¹. HRMS (DART) calcd for C₁₁H₁₆N₃O₂ [M+NH4]⁺: 222.1242 found: 222.1242.

2-Methoxy-2-oxoethyl 2-methyl-3-oxobutanoate

To a stirred solution of 1-methyl-1-phenylethyl alcohol (0.76 mL, 10.0 mmol, 1.0 equiv.) and CH₃COONa (82.0 mg, 1 mmol, 0.1 equiv.) in toluene (6 mL) was added diketene (0.85 mL, 11.0 mmol, 1.1 equiv.) at 60 °C, and the mixture was stirred at 130 °C for 2 h.

The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL), extracted with CH_2Cl_2 , the combined organic layer was washed with brine (5 mL). The crude product of 2-methoxy-2-oxoethyl 3-oxobutanoate was dried over Na₂SO₄ and evaporated.

To a stirred suspension of NaH (369.9 mg, 9.24 mmol, 1.05 equiv.) in THF (10 mL) at 0 °C was added 1-methyl-1-phenylethyl 3-oxobutanoate (1.5 g, 8.8 mmol, 1.0 equiv.) and the mixture was stirred for 5 min. MeI

(0.58 mL, 9.24 mmol, 1.05 equiv.) was added slowly at 0 °C and the solution was stirred for 1 h at 0 °C to RT. The reaction mixture was quenched with NH₄Cl aq. and the organic layer was separated and thr aqueous layer was extracted with Et₂O. The organic layer was dried over Mg₂SO₄ and the solvent was evapolated. Purification was performed by column chromatography of the crude product to give 2-methoxy-2-oxoethyl 2-methyl-3-oxobutanoate as brown oil (962.4 mg, 58 %). ¹H NMR (500 MHz, CDCl₃) δ 4.67 (s, 2H), 3.77 (s, 3H), 3.61 (q, *J* = 7.32 Hz, 1H), 2.31 (s, 3H), 1.39 (d, *J* = 7.02 Hz, 3H) ppm.

2-Methoxy-2-oxoethyl 2-diazopropanoate (1b)

To a stirred suspension of K_2CO_3 (330.3 mg, 2.4 mmol, 1.5 equiv) in CH₃CN (4 mL) was added 2-methoxy-2-oxoethyl 2-methyl-3-oxobutanoate (300.0 mg, 1.6 mmol, 1.0 equiv.) under argon atmosphere at 0 °C. The reaction mixture was added slowly *p*-ABSA (574.2 mg, 2.4 mmol, 1.5 equiv.) in CH₃CN (4 mL) at 0 °C. The progress of the reaction was monited by TLC. After stirring overnight at RT, the reaction mixture was

quenched with H₂O and extracted with Et₂O. The organic layer was dried over Na₂SO4 and evaporated to give crude product. Purification was performed by column chromatography to give 2-methoxy-2-oxoethyl 2-diazopropanoate as yellow oil (149.5 mg, 55 %). ¹H NMR (500 MHz, CDCl₃) δ 4.69 (s, 2H), 3.77 (s, 3H), 2.00 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 199.4, 168.4, 60.5, 52.1, 51.1, 8.3 ppm. IR (neat) v 3000, 2952, 2080, 1753, 1698, 1443, 1383, 1323, 1136 cm⁻¹. HRMS (DART) calcd for C₆H₉N₂O₄ [M+H]⁺: 173.0562 found: 173.0560.

Di(naphthalen-1-yl)methyl 2-diazopropanoate (1h)

To a stirred suspension of di-1-naphthylmethanol (3.13 g, 11.0 mmol, 1.1 equiv.) in xylene (10 mL) was added

2,2,5,6-tetramethyl-4H-1,3-dioxane-4-one (1.46 mL, 10.0 mmol, 1.0 equiv.) under argon atmosphere. After stirring for 1 day at 140 °C, the reaction mixture was concentrated under reduced pressure.

To a stirred suspension of di(naphthalen-1-yl)methyl 2-methyl-3-oxobutanoate (10.0 mmol, 1 equiv.) in CH3CN (60 mL) was added *p*-ABSA (3.6 g, 15.0 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (2.24 mL, 15.0 mmol, 1.5 equiv.). After stirring for 1 day at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA, and directly recrystallized in the test tube after column to give di(naphthalen-1-yl)methyl 2-diazopropanoate **6h** as yellow crystal (1.91 g, 52 %). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.04 (d, *J* = 8.03 Hz, 2H), 7.90 (m, 2H), 7.84 (d, *J* = 7.64 Hz, 2H), 7.45-7.53 (m, 4H), 7.36-7.42 (m, 4H), 2.00 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 134.9, 133.8, 131.0, 130.8, 129.0, 128.8, 126.6, 125.8, 125.2, 123.5, 71.1, 51.4, 8.5 ppm. IR (neat) v 3047, 2085, 1684, 1110, 760 cm⁻¹. HRMS (DART) calcd for C₂₄H₂₂N₃O₂ [M+NH₄]⁺: 384.1712 found: 384.1711.

(The crystal of dinaphylenyl diazopropionate 1h in the test tube)

tert-Butyl 2-methyl-3-oxobutanoate^[4]

To a stirred suspension of NaH (420 mg, 10.5 mmol, 1.05 equiv.) in THF (12 mL) at 0 °C was added tert-butyl acetoacetate (1.66 mL, 10.0 mmol, 1.0 equiv.) and the mixture was stirred for 5 min. MeI (0.65 mL, 10.5 mmol, 1.05 equiv.) was added slowly at 0 °C and the solution was stirred for 1 h at 0 ° to RT.

The reaction mixture was quenched with NH₄Cl aq. and the organic layer was separated and the aqueous layer was extracted with Et₂O. The organic layer was dried over Mg₂SO₄ and the solvent was evaporated. Purification was performed by column chromatography of the crude product to give *tert*-butyl 2-methyl-3-oxobutanoate as brown oil (600.0 mg, 32 %). ¹H NMR (500 MHz, CDCl₃) δ 3.39 (q, *J* = 6.88 Hz, 1H), 2.22 (s, 3H), 1.46 (s, 9H), 1.29 (t, *J* = 8.79 Hz, 3H) ppm.

tert-Butyl 2-diazopropanoate (1f)

To a stirred suspension of tert-butyl 2-methyl-3-oxobutanoate (600 mg, 3.12 mmol, 1 equiv.) in CH3CN (20 mL) was added *p*-ABSA (1.1 g, 4.7 mmol, 1.5 equiv.) under argon atmosphere.

The mixture was cooled down to 0 °C, and added DBU (0.71 mL, 4.7 mmol, 1.5 equiv.). After stirring for 30 min at 0 °C to RT, the reaction mixture was quenched with H₂O and extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give *tert*-butyl 2-diazopropanoate as yellow oil (132.3 mg, 27 %). ¹H NMR (500 MHz, CDCl₃) δ 1.89 (s, 3H), 1.45 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 80.9, 28.2, 27.7, 8.3 ppm. IR (neat) v 2933, 2080, 1686, 1331, 1136 cm⁻¹. HRMS (DART) calcd for C₇H₁₃N₂O₂ [M+H]⁺: 157.0977 found: 157.0974.

Ethyl 2-diazo-2-phenylacetate (1i)

To a stirred suspension of ethyl phenylacetate (0.8 mL, 5 mmol, 1 equiv.) in CH₃CN (25 mL) was added *p*-ABSA (1.80 g, 7.5 mmol, 1.5 equiv.) under argon atmosphere. The mixture was cooled down to 0 $^{\circ}$ C, and added DBU (1.1 mL, 7.5 mmol, 1.5 equiv.). After stirring for 3days at RT, the reaction mixture was quenched with H₂O and

extracted with Et₂O. The organic phase was dried over Na₂SO₄ and evaporated to give crude product. Purification was performed by column chromatography with Hex/EA to give ethyl 2-diazo-phenylacetate as yellow oil (617 mg, 65 % yield, 3.24 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.03 Hz, 2H), 7.39 (t, *J* = 7.64 Hz, 2H), 7.18 (t, *J* = 7.26 Hz, 1H), 4.33 (q, *J* = 6.88 Hz, 2H), 1.34 (t, *J* = 6.88 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 128.7, 125.5, 125.5, 123.8, 63.1, 60.8, 14.3 ppm. IR (neat) v 2987, 2083, 1703, 1600, 1250, 1345, 1168, 755 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₁N₂O₂ [M+H]⁺: 191.0820 found: 191.0822.

Dimethyl(*p*-tolyl)silane ^[6]

To a solution of *p*-bromotoluene (1.23 mL, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.44 mL, 13 mmol, 1.3 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give dimethyl(*p*-tolyl)silane as colorless oil (1.397 g, 93% yield, 9.3 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.64 Hz, 2H), 7.19 (d, *J* = 7.26 Hz, 2H), 4.41 (sept, *J* = 3.82 Hz, 1H), 2.35 (s, 3H), 0.33 (d, *J* = 3.82 Hz) ppm.

(4-Fluorophenyl)dimethylsilane

To a solution of 1-bromo-4-fluorobenzene (1.09 mL, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight. The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give (4-fluorophenyl)dimethylsilane as colorless oil (845.5 mg, 55% yield, 5.5 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.53 (m, 2H), 7.08-7.03 (m, 2H), 4.41 (sept, *J* = 3.82 Hz, 1H), 0.33 (d, *J* = 3.82 Hz, 6H) ppm.

(4-Bromophenyl)dimethylsilane

To a solution of 1,4-dibromobenzene (2.35 g, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (6.9 mL, 11 mmol, 1.1 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.33 mL, 12 mmol, 1.2 equiv.) and allowed to warm to RT overnight. The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give (4-bromophenyl)dimethylsilane as colorless oil (1.03 g, 48% yield, 4.79 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.41 Hz, 2H), 7.39 (d, *J* = 8.03 Hz, 2H), 4.39 (sept, *J* = 3.82 Hz, 1H), 0.33 (d, *J* = 3.82 Hz, 6H) ppm.

(4-Methoxyphenyl)dimethylsilane

To a solution of 4-bromoanisole (1.25 mL, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give (4-methoxyphenyl)dimethylsilane as colorless oil (811.9 mg, 49 % yield, 4.9 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.41 Hz, 2H), 6.92 (d, *J* = 8.79 Hz, 2H), 4.41 (sept, *J* = 3.82 Hz, 1H), 3.82 (s, 3H), 0.32 (d, *J* = 3.82 Hz, 6H) ppm.

(3-Methoxyphenyl)dimethylsilane

To a solution of 3-bromoanisole (1.87 g, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give (3-methoxyphenyl)dimethylsilane as colorless oil (1.375 g, 83 % yield, 8.3 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.26 Hz, 1H), 7.12 (d, *J* = 7.26 Hz, 1H), 7.08 (d, *J* = 2.68 Hz, 1H), 6.91 (dd, *J* = 2.68, 8.41 Hz, 1H), 4.41 (sept, *J* = 3.82 Hz, 1H), 3.82 (s, 3H), 0.34 (d, *J* = 3.82 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 139.0, 129.0, 126.1, 119.3, 114.5, 55.0, -3.8 ppm. IR (neat) v 2959, 2833, 2115, 1572, 1282, 1246, 889, 759 cm⁻¹.HRMS (DART) calcd for C₉H₁₅O₁Si₁ [M+H]⁺: 167.0892 found:167.0894.

(2-Methoxyphenyl)dimethylsilane

To a solution of 2-bromoanisole (1.87 g, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 100/1) to give (2-methoxyphenyl)dimethylsilane as colorless oil (1.566 g, 94 % yield, 9.4 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.42 (dd, *J* = 1.83, 7.02 Hz, 1H), 7.36 (dt, *J* = 1.83, 8.24 Hz, 1H), 6.95 (t, *J* = 7.02 Hz, 1H), 6.83 (d, *J* = 8.24 Hz, 1H), 4.39 (sept, *J* = 3.66 Hz, 1H), 3.82 (s, 3H), 0.33 (d, *J* = 3.66 Hz, 6H) ppm.

(3,5-Dimethoxyphenyl)dimethylsilane

To a solution of 1-bromo-3,5-dimethoxybenzene (2.17 g, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 50/1) to give (3,5-dimethoxyphenyl)dimethylsilane as colorless oil (1.65 g, 84% yield, 8.43 mmol). ¹H NMR (500 MHz, CDCl₃) δ 6.67 (d, *J* = 2.68 Hz, 2H), 6.47 (t, *J* = 2.29 Hz, 1H), 4.39 (sept, *J* = 3.82 Hz,

1H), 3.81 (s, 6H), 0.33 (d, J = 3.82 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 139.7, 111.3, 101.1, 55.1, -3.8 ppm. IR (neat) v 2954, 2837, 2123, 1581, 1285, 1152, 890 cm⁻¹.HRMS (DART) calcd for C₁₀H₁₆O₂Si₁ [M]⁺: 196.0919 found: 196.0917.

(2,5-Dimethylphenyl)dimethylsilane

To a solution of 2-bromo-1,4-dimethylbenzene (1.36 mL, 10 mmol) in THF (35 mL) was added 1.6M n-BuLi (7.5 mL, 12 mmol, 1.2 equiv.) at -78 °C. The resulting mixture was stirred for 3 h at -78 °C, after stirring for 3 h, the reaction mixture was added chlorodimethylsilane (1.67 mL, 15 mmol, 1.5 equiv.) and allowed to warm to RT overnight.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and washed with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed by column chromatography (Pentane/CH₂Cl₂ = 50/1) to give (2,5-dimethylphenyl)dimethylsilane as colorless oil (1.59 g, 97% yield, 9.7 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (s, 1H), 7.09 (d, *J* = 16.82 Hz, 1H), 7.07 (d, *J* = 16.82 Hz, 1H), 4.51 (sept, *J* = 3.82 Hz, 1H), 2.41 (s, 3H), 2.31 (s, 3H), 0.35 (d, *J* = 3.82 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 140.4, 135.8, 135.2, 134.1, 130.1, 129.4, 21.7, 20.9, -3.3 ppm. IR (neat) v 2997, 2954, 2880, 2123, 1476, 1249, 890 cm⁻¹.HRMS (DART) calcd for C₁₀H₁₇Si₁ [M+H]⁺: 165.1099 found: 165.1092.

4-(Dimethylsilyl)benzonitrile

i-PrMgCl (4.26 mL of 2M solution in THF, 8.52 mmol, 1.3 equiv.) was slowly added to a cooled solution of 4-iodobenzonitrile (1.5 g, 6.55 mmol) in THF (15 mL). After 30 min, the solution was slowly added a cooled solution of chlorodimethylsilane (1.09 mL, 9.82 mmol, 1.5 equiv.) in THF (15 mL). The reaction mixture was allowed to warm to RT over 4 h.

The crude mixture was quenched with NH₄Cl aq. at 0 °C and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated under reduced pressure to give 4-(dimethylsilyl)benzonitrile as yellow oil (1.054 g, 99.8% yield, 9.98 mmol). ¹H NMR (500 MHz, Acetone-D6) δ 7.77 (d, *J* = 16.82 Hz, 2H), 7.76 (d, *J* = 15.26 Hz, 2H), 4.44 (sept, *J* = 3.82 Hz, 1H), 0.39 (d, *J* = 3.82 Hz, 6H) ppm.

2. General Procedure for Catalytic Asymmetric Si-H Insertion Reaction to Construct Chiral Carbon

To a solution of Ru(II)-Pheox (0.001 mmol, 1.0 mol%) in CH_2Cl_2 (0.5 mL) and silane compound (0.2 mmol, 2.0 equiv.) was cooled down to 0 °C under argon atmosphere.

The mixture was added diazo ester (0.1 mmol, 1 equiv.) in CH₂Cl₂ (0.5 mL).

After stirring for 10 min at 0 °C, the reaction mixture was concentrated under reduced pressure to give crude product. Purification was performed by column chromatography with Hex/EA to give desired product. The *ee* value was determined by chiral HPLC analysis.

3. Analytical Data for Asymmetric Si-H Insertion Reaction Products(1)

Ethyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2a)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of ethyl 2-diazopropanoate **1a** (12.8 mg, 0.1 mmol) and dimethylphenylsilane (27.3 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ethyl

(*R*)-2-(dimethyl(phenyl)silyl) propanoate **2e** as colorless oil (85 % yield, 20.2 mg, 0.085 mmol), 54% *ee*. $[\alpha]^{22}_{D}$ = +29.8 (c 0.46, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.51 (m, 2H), 7.34-7.40 (m, 3H), 3.86 (q, *J* = 7.3 Hz, 2H), 2.25 (q, *J* = 7.3 Hz, 2H), 1.12-1.15 (m, 6H), 0.37 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.9, 136.2, 133.8, 129.4, 127.7, 59.7, 29.9, 14.2, 11.2, -4.0, -4.9 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 200/1, Flow late = 1.0 mL/min, tR = 10.6 min (major product), tR = 11.2 min (minor product). IR (neat) v 3075, 2956, 1710, 1320, 1184, 822, 734, 699 cm⁻¹. HRMS (DART) calcd for C₁₃H₂₄N₁O₂Si₁ [M+NH₄]⁺: 254.1576 found: 254.1570.

Ethyl (R)-2-(triphenylsilyl)propanoate (2t)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of ethyl 2-diazopropanoate 1a (25.7 mg, 0.2 mmol) and triphenylsilane (104.2 mg, 0.4 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give Ethyl

(R)-2-(dimethyl(phenyl)silyl) propanoate **2t** as colorless oil (84 % yield, 60.8 mg, 0.16 mmol), 91% *ee*. $[\alpha]^{22}_{D}$ = +44.1 (c 0.56, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.75 (m, 6H), 7.44-7.39 (m, 3H), 7.38-7.33 (m, 6H), 3.85 (dq, *J* = 7.26, 10.70 Hz, 1H), 3.71 (dq, *J* = 7.26, 10.70 Hz, 1H), 2.96 (q, *J* = 7.26 Hz, 1H), 1.36 (d, *J* = 7.26 Hz, 3H), 0.86 (t, *J* = 7.26 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 136.1, 132.8, 129.7, 127.7, 60.0, 28.4, 13.7, 13.0 ppm.

The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 100/1, Flow late = 1.0 mL/min, tR = 6.5 min (major product), tR = 10.4 min (minor product). IR (neat) v 2979, 1714, 1428, 1110, 741, 700 cm⁻¹. HRMS (DART) calcd for $C_{23}H_{28}N_1O_2Si_1$ [M+NH₄]⁺: 378.1889 found: 378.1889.

Benzyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2c)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of Benzyl 2-diazopropanoate 1c (38.0 mg, 0.2 mmol) and dimethylphenylsilane (54.5 mg, 0.4 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give benzyl (*R*)-2-(dimethyl(phenyl)silyl) propanoate 2c as colorless oil (88 % yield, 52.8 mg,

0.18 mmol), 50% *ee*. $[\alpha]^{30}_{D}$ = +31.9 (c 2.86, CHCl₃). ¹H NMR (500 MHz, CDCl₃) & 7.51-7.45 (m, 2H), 7.29-7.42 (m, 6H), 7.23-7.27 (m, 2H), 5.01 (dd, *J* = 12.23, 32.87 Hz, 2H), 2.34 (q, *J* = 7.26 Hz, 1H), 1.19 (d, *J* = 9.94 Hz, 3H), 0.35 (d, *J* = 4.20 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) & 175.7, 136.1, 136.0, 133.8, 129.4, 128.4, 127.9, 127.7, 65.8, 29.9, 11.3, -4.1, -4.8 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK OJ-H), UV detector 254 nm, eluent: Hex/IPA = 1000/1, Flow late = 1.0 mL/min, tR = 39.6 min (major product), tR = 59.2 min (minor product). IR (neat) v 3032, 2960, 1716, 1315, 1229, 1138, 734, 699 cm⁻¹. HRMS (DART) calcd for $C_{18}H_{26}N_1O_2Si_1$ [M+NH₄]⁺: 316.1732 found: 316.1737.

Benzhydryl (R)-2-(dimethyl(phenyl)silyl)propanoate (2e)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of benzhydryl 2-diazopropanoate **1e** (26.6 mg, 0.1 mmol) and dimethylphenylsilane (0.03 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give benzhydryl (R)-2-(dimethyl (phenyl)silyl) propanoate **2e** as colorless oil (99% yield,

37.2 mg, 0.1 mmol), 78 %*ee*. $[\alpha]^{28}_{D}$ = -7.25 (c 0.88, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.44 (m, 15H), 6.86 (s, 1H), 2.40 (q, *J* = 7.26 Hz, 1H), 1.20 (d, *J* = 7.26 Hz, 3H), 0.26 (d, *J* = 10.70 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 140.5, 133.8, 129.4, 128.3, 123.2, 127.7, 127.7, 127.6, 126.9, 76.4, 30.0, 11.4, -4.1, -4.7 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 200/1, Flow late = 1.0 mL/min, tR = 11.3 min (major product), tR = 9.2 min (minor product). IR (neat) v 3080, 2960, 1716, 1170, 761, 699 cm⁻¹. HRMS (DART) calcd for C₂₄H₂₇O₂Si₁ [M+H]⁺: 375.1780 found: 375.1781.

2-Methylbenzyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2d)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of 2-methylbenzyl 2-diazopropanoate **1d** (20.4 mg, 0.1 mmol) and dimethylphenylsilane (0.03 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give 2-methylbenzyl (R)-2-(dimethyl (phenyl)silyl)propanoate **2d** as colorless oil

(92% yield, 28.8 mg, 0.09 mmol), 57 %*ee*. $[\alpha]^{20}_{D}$ = +71.5 (c 1.44, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.49 (m, 2H), 7.31-7.40 (m, 4H), 7.26-7.20 (m, 2H), 7.19-7.14 (m, 2H), 5.11 (d, *J* = 12.23 Hz, 1H), 4.97 (d, *J* = 12.61

Hz, 1H), 2.33 (q, J = 7.26 Hz, 1H), 2.29 (s, 3H), 1.19 (d, J = 6.88 Hz, 3H), 0.34 (d, J = 5.73 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 136.8, 134.2, 133.8, 130.1, 129.4, 129.2, 128.2, 127.8, 125.8, 63.9, 30.0, 18.8, 11.3, -4.1, -4.8 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK OZ-H), UV detector 254 nm, eluent: Hex/IPA = 4000/1, Flow late = 1.0 mL/min, tR = 80.1 min (major product), tR = 70.9 min (minor product). IR (neat) v 3048, 2960, 1715, 1174, 736, 700 cm⁻¹. HRMS (DART) calcd for C₁₉H₂₅O₂Si₁ [M+H]⁺: 313.1623 found: 313.1629.

2-Methoxy-2-oxoethyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2b)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of 2-methoxy-2-oxoethyl 2-diazopropanoate **1b** (17.2 mg, 0.1 mmol) and dimethylphenylsilane (0.03 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give 2-methoxy-2-oxoethyl (R)-2-(dimethyl(phenyl)silyl)propanoate **2b** as

colorless oil (98% yield, 27.4 mg, 0.1 mmol), 54 %*ee*. $[\alpha]^{24}{}_{D}$ = +25.7 (c 1.34, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.54 (m, 2H), 7.33-7.41 8m, 3H), 4.52 (q, *J* = 16.05 Hz, 2H), 3.74 (s, 3H), 2.37 (q, *J* = 7.26 Hz, 1H), 1.16 (d, *J* = 7.26 Hz, 3H), 0.42 (d, *J* = 5.73 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 168.6, 136.0, 133.8, 129.5, 127.8, 60.3, 52.0, 29.7, 11.2, -3.8, -5.3 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK OJ-H), UV detector 254 nm, eluent: Hex/IPA = 800/1, Flow late = 1.0 mL/min, tR = 25.7 min (major product), tR = 35.0 min (minor product). IR (neat) v 3070, 1957, 1764, 1729, 1166, 791, 701 cm⁻¹. HRMS (DART) calcd for C₁₄H₂₄N₁O₄Si₁ [M+NH₄]⁺: 298.1474 found: 298.1474.

2-Phenylpropan-2-yl (R)-2-(dimethyl(phenyl)silyl)propanoate (2g)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of 2-phenylpropan-2-yl 2-diazopropanoate **1g** (15.0 mg, 0.07 mmol) and dimethylphenylsilane (0.02 mL, 0.14 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc

as an eluent to give 2-phenylpropan-2-yl (R)-2-(dimethyl(phenyl)silyl)propanoate **2g** as colorless oil (36% yield, 8.2 mg, 0.025 mmol), 90 %*ee*. $[\alpha]^{24}_{D}$ = +42.5 (c 0.28, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.51-7.57 (m, 2H), 7.32-7.41 (m, 3H), 7.17-7.30 (m, 5H), 2.27 (q, *J* = 7.26 Hz, 1H), 1.67 (s, 3H), 1.62 (s, 3H), 1.13 (d, *J* = 7.26 Hz, 3H), 0.38 (d, *J* = 9.17 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174. 4, 146.1, 136.6, 134.0, 129.3, 128.0, 127.7, 126.7, 124.3, 80.9, 30.5, 29.0, 27.8, 11.4, -4.0, -4.4 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK OJ-H), UV detector 254 nm, eluent: Hex/IPA = 600/1, Flow late = 1.0 mL/min, tR = 24.7 min (major product), tR = 21.8 min (minor product). IR (neat) v 2977, 1718, 1133, 733, 698 cm⁻¹. HRMS (DART) calcd for C₂₀H₂₇O₂Si₁ [M+H]⁺: 327.1780 found: 327.1781.

tert-Butyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2f)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of tert-butyl 2-diazopropanoate 1f (15.6 mg, 0.1 mmol) and dimethylphenylsilane (0.03 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give tert-butyl

(*R*)-2-(dimethyl(phenyl)silyl) propanoate **2f** as colorless oil (80% yield, 21.2 mg, 0.08 mmol), 81% *ee*. $[\alpha]^{18}_{D}$ = +41.4 (c 0.925, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.54 (m, 2H), 7.32-7.38 (m, 3H), 2.17 (q, *J* = 7.26 Hz, 1H), 1.33(s, 9H), 1.10 (d, *J* = 7.26 Hz, 3H), 0.36 (d, *J* = 8.79 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 136.6, 133.9, 129.2, 127.7, 79.4, 30.5, 28.1, 11.3, -3.9, -4.6 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 500/1, Flow late = 1.0 mL/min, tR = 10.1 min (major product), tR = 11.8 min (minor product). IR (neat) v 3070, 2975, 1712, 1366, 1158, 734, 700 cm⁻¹. HRMS (DART) calcd for C₁₅H₂₅O₂Si₁ [M+H]⁺: 265.1623 found: 265.1624.

tert-Butyl (R)-2-(triphenylsilyl)propanoate (2u)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of tert-butyl 2-diazopropanoate 1f (15.6 mg, 0.1 mmol) and triphenylsilane (52.08 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give tert-butyl

(*R*)-2-(dimethyl(phenyl)silyl)propanoate **2u** as colorless oil (84% yield, 32.5 mg, 0.08 mmol), 99% *ee*. $[\alpha]^{23}_{D}$ = +54.9 (c 0.165, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.64 (m, 6H), 7.32-7.45(m, 9H), 2.88 (q, *J* = 7.26 Hz, 1H), 1.31 (d, *J* = 9.94 Hz, 3H), 1.09 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 136.2, 133.1, 129.6, 127.7, 80.0, 28.9, 27.6, 13.1 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 100/1, Flow late = 1.0 mL/min, tR = 4.6 min (major product), tR = 5.2 min (minor product). IR (neat) v 3049, 2976, 1709, 1428, 1141, 741, 700 cm⁻¹. HRMS (DART) calcd for C₂₅H₃₂N₁O₂Si₁ [M+NH₄]⁺:406.2202 found:406.2209.

Di(naphthalen-1-yl)methyl (R)-2-(dimethyl(phenyl)silyl)propanoate (2h)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and dimethylphenylsilane (0.03 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl

(R)-2-(dimethyl(phenyl)silyl)propanoate **2h** as white solid (86% yield, 40.9 mg, 0.0085 mmol), 97% *ee*. $[\alpha]^{25}_{D} = -44.5$ (c 0.535, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.17 (d, *J* =

8.79 Hz, 1H), 7.78-7.99 (m, 5H), 7.37-7.54 (m, 6H), 7.23-7.34 (m, 5H), 7.19 (t, J = 7.64 Hz, 2H), 2.43 (q, J = 6.88 Hz, 1H), 1.20 (d, J = 6.88 Hz, 3H), 0.16 (d, J = 20.64 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 136.0,

135.4, 133.8, 130.8, 129.2, 128.8, 128.7, 128.7, 128.6, 127.6, 126.6, 126.5, 126.1, 125.7, 125.7, 125.2, 123.6, 123.6, 69.8, 30.1, 11.7, -4.0, -4.9 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 400/1, Flow late = 1.0 mL/min, tR = 38.9 min (major product), tR = 54.3 min (minor product). IR (neat) v 3050, 2961, 1714, 1170, 735, 653 cm⁻¹. HRMS (DART) calcd for $C_{32}H_{34}N_1O_2Si_1 [M+NH_4]^+$: 492.2358 found: 492.2354.

Di(naphthalen-1-yl)methyl (R)-2-(methyldiphenylsilyl)propanoate (2r)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and diphenylmethylsilane (0.04 mL, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl

(*R*)-2-(methyldiphenylsilyl)propanoate **2r** as white solid (94% yield, 50.6 mg, 0.09 mmol), 99% *ee*. $[\alpha]^{23}_{D} = -18.5$ (c 1.235, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.02 (d, *J* = 8.41 Hz, 1H), 7.96 (d, *J* = 8.41 Hz, 1H), 7.90 (d, *J* = 8.03 Hz, 1H), 7.87 (d, *J* = 8.41 Hz, 1H), 7.84 (d, *J* = 8.03 Hz, 1H), 7.78 (d, *J* = 8.41 Hz, 1H), 7.17-7.55 (m, 17H), 7.09 (d, *J* = 7.26 Hz, 1H), 2.84 (q, *J* = 7.26 Hz, 1H), 1.33 (d, *J* = 7.26 Hz, 3H), 0.48 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 135.5, 135.1, 134.7, 134.6, 134.2, 134.2, 133.7, 133.6, 130.8, 130.8, 129.4, 128.7, 128.6, 128.6, 127.7, 127.6, 126.5, 126.5, 125.8, 125.7, 125.6, 125.4, 125.1, 123.5, 123.4, 70.0, 28.8, 12.4, -5.5 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 400/1, Flow late = 1.0 mL/min, tR = 49.0 min (major product), tR = 58.8 min (minor product). IR (neat) v 3049, 2935, 1714, 1428, 1174, 735, 700 cm⁻¹. HRMS (DART) calcd for C₃₇H₃₆N₁O₂Si₁ [M+NH₄]⁺: 554.2515 found: 554.2519.

Di(naphthalen-1-yl)methyl (R)-2-(dimethyl(p-tolyl)silyl)propanoate (2i)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction di(naphthalen-1-yl)methyl of 2-diazopropanoate 1h (36.6 mg, 0.1 mmol) and dimethyl(p-tolyl)silane (30.1 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-(dimethyl(p-tolyl)silyl)propanoate 2i as white

solid (84 % yield, 41.3 mg, 0.08 mmol), 89% *ee*. $[\alpha]^{19}{}_{D}$ = -59.0 (c 0.835, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.15 (d, *J* = 8.41 Hz, 1H), 7.89 (q, *J* = 9.17 Hz, 3H), 7.82 (q, *J* = 8.03 Hz, 2H), 7.36-7.53 (m, 6H), 7.31 (t, J = 7.26 Hz, 1H), 7.17-7.25 (m, 3H), 6.83-6.76 (m, 2), 2.39 (q, *J* = 6.88 Hz, 1H), 1.55 (s, 2H), 1.21 (d, *J* = 7.26 Hz, 3H), 0.16 (d, *J* = 9.94 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 164.6, 162.6, 136.7, 135.6, 135.3, 133.7, 131.3, 131.3, 130.9, 130.7, 128.8, 128.8, 128.7, 128.6, 126.6, 126.4, 126.1, 125.7, 125.7, 125.1, 125.0, 123.6, 123.4, 114.8, 114.6, 69.7, 30.1, 11.6, -4.2, -4.4 ppm. The *ee* value was determined by chiral HPLC analysis.

Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 400/1, Flow late = 1.0 mL/min, tR = 44.3 min (major product), tR = 62.4 min (minor product). IR (neat) v 3055, 2960, 1713, 1313, 1165, 820, 784 cm⁻¹. HRMS (DART) calcd for $C_{33}H_{36}N_1O_2Si_1$ [M+NH₄]⁺: 506.2515 found: 506.2513.

Di(naphthalen-1-yl)methyl (R)-2-((4-fluorophenyl)dimethylsilyl)propanoate (2j)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl (36.6 2-diazopropanoate 1h mg, 0.1 mmol) and (4-fluorophenyl)dimethylsilane (30.8 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-((4-fluorophenyl)dimethylsilyl)

propanoate **2j** as white solid (86% yield, 42.3 mg, 0.085 mmol), 94% *ee*. $[\alpha]^{17}_{D} = -58.85$ (c 0.755, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.18 (d, *J* = 8.03 Hz, 1H), 7.96-7.81 (m, 5H), 7.55-7.37 (m, 6H), 7.35-7.31 (m, 1H), 7.28-7.20 (m, 3H), 6.79-6.85 (m, 2H), 2.42 (q, *J* = 6.88 Hz, 1H), 1.24 (d, *J* = 7.26 Hz, 3H), 0.19 (d, *J* = 13.0 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 164.6, 162.6, 135.7, 135.6, 135.3, 133.7, 131.3, 131.3, 130.9, 130.7, 128.8, 128.8, 128.7, 128.6, 126.6, 126.4, 126.1, 125.7, 125.7, 125.1, 125.0, 123.6, 123.4, 114.8, 114.6, 69.7, 30.1, 11.6, -4.2, -4.4 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 300/1, Flow late = 1.0 mL/min, tR = 27.2 min (major product), tR = 37.3 min (minor product). IR (neat) v 3047, 2956, 1710, 1307, 1232, 1168, 778, 734 cm⁻¹. HRMS (DART) calcd for C₃₂H₃₃FNO₃Si₁ [M+NH4]⁺: 510.2264 found: 510.2264.

Di(naphthalen-1-yl)methyl (R)-2-((4-bromophenyl)dimethylsilyl)propanoate (2k)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (4-bromophenyl) dimethylsilane (43.0 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-((4-bromophenyl)dimethylsilyl) propanoate

2k as white solid (87% yield, 48.3 mg, 0.087 mmol), 93% *ee*. $[\alpha]^{20}_{D} = -59.84$ (c 2.125, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.17 (d, *J* = 8.03 Hz, 1H), 7.80-7.96 (m, 5H), 7.37-7.56 (m, 6H), 7.33 (t, *J* = 7.26 Hz, 1H), 7.21-7.27 (m, 3H), 7.06-7.12 (m, 2H), 2.42 (q, *J* = 6.88 Hz, 1H), 1.24 (d, *J* = 7.26 Hz, 3H), 0.18 (d, *J* = 8.79 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 135.6, 135.3, 135.2, 134.6, 133.7, 130.9, 130.7, 130.7, 128.9, 128.8, 128.7, 128.7, 126.6, 126.4, 126.1, 125.7, 125.7, 125.1, 125.1, 125.0, 124.1, 123.5, 123.4, 69.7, 29.8, 11.6, -4.5 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 300/1, Flow late = 1.0 mL/min, tR = 36.2 min (major product), tR = 50.3 min (minor product). IR (neat) v 3047, 2960, 1714, 1375, 1168, 1065, 781, 727 cm⁻¹. HRMS (DART) calcd for C₃₂H₃₃BrNO₂Si₁ [M+NH₄]⁺: 570.1463 found: 570.1463.

Di(naphthalen-1-yl)methyl (R)-2-((4-methoxyphenyl)dimethylsilyl)propanoate (2m)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (4-methoxyphenyl) dimethyl silane (33.2 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give

di(naphthalen-1-yl)methyl (*R*)-2-((4-methoxyphenyl)dimethyl silyl)propanoate **2m** as white solid (84% yield, 42.5 mg, 0.84 mmol), 95% *ee*. $[\alpha]^{22}_{D} = -57.22$ (c 2.066, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 8.22-8.17 (m, 1H), 7.98 (d, *J* = 8.41 Hz, 1H), 7.87-7.93 (m, 2H), 7.84 (d, *J* = 11.47 Hz, 1H), 7.83 (d, *J* = 11.47 Hz, 1H), 7.54-7.39 (m, 6H), 7.28-7.36 (m, 2H), 7.25-7.22 (m, 2H), 6.73 (d, *J* = 8.79 Hz, 2H), 3.78 (s, 3H), 2.42 (q, *J* = 7.26 Hz, 1H),1.23 (d, *J* = 7.2 Hz, 3H), 0.18 (d, *J* = 13.0 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 160.4, 135.7, 135.4, 135.2, 133.7, 131.0, 130.8, 128.7, 128.7, 128.7, 128.6, 126.7, 126.6, 126.4, 126.1, 125.7, 125.7, 125.1, 125.1, 123.6, 123.5, 113.3, 69.6, 54.8, 30.3, 11.7, -3.9, -4.6 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/CH₂Cl₂ = 300/1, Flow late = 1.0 mL/min, tR = 43.1 min (major product), tR = 65.1 min (minor product). IR (neat) v 3059, 2958, 2833, 1709, 1592, 1503, 1245, 1167, 797, 734 cm⁻¹. HRMS (DART) calcd for C₃₃H₃₆NO₃Si₁ [M+NH₄]⁺: 522.2464 found: 522.2463.

Di(naphthalen-1-yl)methyl (R)-2-((3-methoxyphenyl)dimethylsilyl)propanoate (2n)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (3-methoxyphenyl) dimethyl silane (33.2 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give

di(naphthalen-1-yl)methyl (*R*)-2-((3-methoxyphenyl)dimethylsilyl)propanoate **2n** as white solid (89% yield, 44.7 mg, 0.089 mmol), 96% *ee*. $[\alpha]^{25}_{D} = -50.00$ (c 2.235, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.17 (d, *J* = 8.79 Hz, 1H), 7.97 (d, *J* = 8.41 Hz, 1H), 7.86-7.93 (m, 2H), 7.84 (d, *J* = 11.85 Hz, 1H), 7.82 (d, *J* = 12.23 Hz, 1H), 7.38-7.54 (m, 6H), 7.36-7.69 (m, 2H), 7.17 (t, *J* = 7.26 Hz, 1H), 6.91-6.99 (m, 2H), 6.89-6.84 (m, 1H), 3.73 (s, 3H), 2.45 (q, *J* = 7.26 Hz, 1H), 1.23 (d, *J* = 7.26 Hz, 3H), 0.19 (s, 3H), 0.14 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 158.8, 137.7, 135.6, 135.4, 133.7, 133.7, 131.0, 130.8, 128.9, 128.8, 128.7, 128.7, 128.6, 126.6, 126.4, 126.1, 126.0, 125.7, 125.7, 125.2, 125.1, 123.6, 123.5, 119.3, 114.5, 69.8, 54.9, 30.0, 11.7, -3.9, -5.0 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/CH₂Cl₂ = 300/1, Flow late = 1.0 mL/min, tR = 30.1 min (major product), tR = 43.8 min (minor product). IR (neat) v 3063, 2954, 1833, 1709, 1573, 1234, 1171, 781 cm⁻¹. HRMS (DART) calcd for C₃₃H₃₆NO₃Si₁ [M+NH₄]⁺: 522.2464 found: 522.2463.

Di(naphthalen-1-yl)methyl (R)-2-((2-methoxyphenyl)dimethylsilyl)propanoate (20)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (3-methoxyphenyl) dimethyl silane (33.2 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl

(*R*)-2-((2-methoxyphenyl) dimethylsilyl)propanoate **20** as white solid (90% yield, 45.4 mg, 0.09 mmol), 95% *ee*. [α]²⁴_D = -37.23 (c 2.26, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.15 (d, *J* = 8.41 Hz, 1H), 7.97 (d, *J* = 8.41 Hz, 1H), 7.89 (d, *J* = 7.45 Hz, 2H), 7.84 (d, *J* = 7.64 Hz, 1H), 7.80 (d, *J* = 8.03 Hz, 1H), 7.53-7.39 (m, 6H), 7.34-7.23 (m, 3H), 7.18 (dd, *J* = 1.53, 7.26 Hz, 1H), 6.82 (t, *J* = 8.03 Hz, 1H), 6.73 (d, *J* = 8.41 Hz, 1H), 3.70 (s, 3H), 2.75 (q, *J* = 7.26 Hz, 1H), 1.20 (d, *J* = 7.26 Hz, 3H), 0.20 (s, 3H), 0.14 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 164.0, 135.9, 135.5, 135.4, 133.7, 131.2, 131.0, 130.9, 128.6, 128.6, 128.6, 126.5, 126.4, 126.0, 125.6, 125.2, 125.1, 124.1, 123.7, 123.6, 120.3, 109.3, 69.6, 54.8, 29.1, 11.7, -3.7, -4.6 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/CH₂Cl₂ = 300/1, Flow late = 1.0 mL/min, tR = 29.6 min (major product), tR = 42.8 min (minor product). IR (neat) v 3055, 2954, 2833, 1718, 1581, 1507, 1234, 1163, 1023, 781 cm⁻¹. HRMS (DART) calcd for C₃₃H₃₆N₁O₃Si₁ [M+NH₄]⁺: 522.2464 found: 522.2467.

Di(naphthalen-1-yl)methyl (R)-2-((3,5-dimethoxyphenyl)dimethylsilyl)propanoate (2p)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (3-methoxyphenyl) dimethyl silane (39.26 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-((3,5-dimethoxyphenyl)dimethylsilyl)

propanoate **2p** as white solid (89% yield, 47.8 mg, 0.09 mmol), 96% *ee*. $[\alpha]^{24}_{D} = -41.81$ (c 2.335, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.52(s, 3H), 8.13-8.17 (m, 1H), 7.97 (d, J = 8.41 Hz, 1H), 7.87-7.91 (m, 2H), 7.83 (d, J = 14.33 Hz, 1H), 7.82 (d, J = 12.61 Hz, 1H), 7.53-7.39 (m, 7H), 7.33 (t, J = 7.26 Hz, 1H), 7.28 (d, J = 6.12 Hz, 1H), 6.56 (d, J = 2.10 Hz, 2H), 6.43 (t, J = 2.29 Hz, 1H), 3.77 (s, 3H), 2.45 (q, J = 6.88 Hz, 1H), 1.23 (d, J = 7.26 Hz, 3H), 0.19 (s, 3H), 0.14 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 160.2, 138.6, 135.6, 135.3, 133.7, 130.9, 130.8, 129.0, 128.8, 128.7, 128.7, 126.6, 126.4, 126.1, 125.7, 125.7, 125.2, 125.1, 123.6, 123.5, 111.3, 101.2, 69.9, 55.1, 29.9, 11.8, -3.8, -5.0 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/CH₂Cl₂ = 80/1, Flow late = 1.0 mL/min, tR = 14.1 min (major product), tR = 20.1 min (minor product). IR (neat) v 3055, 2958, 2837, 1709, 1577, 1159, 860, 785 cm⁻¹. HRMS (DART) calcd for C₃₄H₃₈N₁O₄Si₁ [M+NH₄]⁺: 552.2570 found: 552.2574.

Di(naphthalen-1-yl)methyl (R)-2-((2,5-dimethylphenyl)dimethylsilyl)propanoate (2q)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (2,5-dimethylphenyl) dimethyl silane (32.86 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-((2,5-dimethyl phenyl)dimethylsilyl)

propanoate **2q** as white solid (87% yield, 43.7 mg, 0.087 mmol), 92% *ee*. $[\alpha]^{27}{}_{D}$ = -50.56 (c 2.17, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 1H), 8.14 (d, J = 8.98 Hz, 1H), 7.95 (d, J = 8.41 Hz, 1H), 7.85 (d, J = 9.17 Hz, 2H), 7.80 (d, J = 16.44 Hz, 1H), 7.78 (d, J = 16.44 Hz, 1H), 7.36-7.50 (m, 6H), 7.28 (t, J = 7.26 Hz, 1H), 7.22 (d, J = 8.03 Hz, 1H), 7.10 (s, 1H), 7.02 (d, J = 7.64 Hz, 1H), 6.96 (d, J = 7.64 Hz, 1H), 2.6 (q, J = 7.26 Hz, 1H), 2.31 (s, 3H), 2.21 (s, 3H), 1.17 (d, J = 7.26 Hz, 3H), 0.21 (s, 3H), 0.13 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 140.2, 135.7, 135.6, 135.4, 134.3, 133.9, 133.7, 133.7, 130.9,130.9, 130.3, 129.9, 128.7, 128.6, 126.4, 126.1, 125.7, 125.2, 125.1, 123.6, 123.5, 69.8, 29.6, 22.6, 21.0 11.9, -2.6, -3.7 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 300/1, Flow late = 1.0 mL/min, tR = 24.6 min (major product), tR = 33.6 min (minor product). IR (neat) v 3059, 2954, 1709, 1510, 1316, 1163, 789, 734 cm⁻¹. HRMS (DART) calcd for C₃₄H₃₈N₁O₂Si₁ [M+NH₄]⁺: 520.2671 found: 520.2672.

Di(naphthalen-1-yl)methyl (R)-2-((4-cyanophenyl)dimethylsilyl)propanoate (21)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and 4-(dimethylsilyl) benzonitrile (32.2 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (R)-2-((4-cyanophenyl) dimethylsilyl)propanoate **2l**

as white solid (56 % yield, 29.0 mg, 0.056 mmol), 80% *ee*. $[\alpha]^{25}_{D} = -61.42$ (c 1.25, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.12 (d, *J* = 8.41 Hz, 1H), 7.90 (d, *J* = 8.03 Hz, 1H), 7.88-7.80 (m, 4H), 7.40-7.54 (m, 6H), 7.34 (t, *J* = 6.88 Hz, 1H), 7.29 (t, *J* = 7.45 Hz, 1H), 7.23-7.15 (m, 5H), 2.44 (q, *J* = 6.88 Hz, 1H), 1.25 (d, *J* = 7.26 Hz, 3H), 0.21 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 142.5, 138.3, 135.4, 135.1, 133.9, 133.8, 133.7, 130.9, 130.6, 130.4, 129.0, 128.9, 128.7, 128.7, 126.7, 126.5, 126.2, 125.8, 125.7, 125.1, 125.1, 124.8, 123.5, 123.3, 118.7, 112.6, 69.8, 29.5, 11.5, -4.2, -5.0 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 20/1, Flow late = 1.0 mL/min, tR = 14.0 min (major product), tR = 15.8 min (minor product). IR (neat) v 3061, 2963, 2225, 1714, 1506, 1168, 1132, 783, 728 cm⁻¹. HRMS (DART) calcd for C₃₃H₂₉N₁O₂Si₁ [M]⁺: 499.1967 found: 499.1966.

Di(naphthalen-1-yl)methyl (R)-2-(triethylsilyl)propanoate (2x)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and Triethylsilane (0.16 mL, 1 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl (*R*)-2-(triethylsilyl)propanoate **2x** as white solid (95 % yield, 43.3 mg, 0.095 mmol), 92 % *ee*. $[\alpha]^{18}_{D} = -83.7$ (c 2.165,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 8.33-8.27 (m, 1H), 7.95 (d, *J* = 8.79 Hz, 1H), 7.81-7.93 (m, 4 H), 7.61 (d, *J* = 7.26 Hz, 1H), 7.43-7.56 (m, 4H), 7.33-7.42 (m, 3H), 2.34 (q, *J* = 7.26 Hz, 1H), 1.28 (d, *J* = 7.26 Hz, 3H), 0.78 (t, *J* = 7.64 Hz, 9H), 0.42 (q, *J* = 7.64 Hz, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 135.8, 135.6, 133.7, 131.0, 130.7, 128.8, 128.7, 128.6, 128.5, 126.5, 126.3, 125.7, 125.6, 125.1, 124.8, 123.7, 123.6, 69.5, 27.2, 11.5, 7.1, 2.3, The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 400/1, Flow late = 1.0 mL/min, tR = 22.0 min (major product), tR = 31.7 min (minor product). IR (neat) v 3064, 2948, 2877, 1714, 1320, 1168, 778, 722 cm⁻¹. HRMS (DART) calcd for C₃₀H₃₄O₂Si₁ [M]⁺: 454.2328 found: 454.2328.

Di(naphthalen-1-yl)methyl (R)-2-(tripropylsilyl)propanoate (2y)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and tripropylsilane (0.4 ml, 1.0 mmol, 10 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl) methyl (*R*)-2-(tripropylsilyl)propanoate **2y** as white solid (89% yield, 44.1 mg, 0.089 mmol), 94% *ee*. $[\alpha]^{20}_{D} = -105.4$ (c 2.15, CHCl₃). ¹H NMR (500

MHz, CDCl₃) δ 8.60 (s, 1H), 8.33 (d, *J* = 7.64 Hz, 1H), 7.80-7.94 (m, 5H), 7.64 (d, *J* = 6.88 Hz, 1H), 7.58-7.41 (m, 4H), 7.32-7.40 (m, 3H), 2.31 (q, *J* = 6.88 Hz, 1H), 1.27 (d, *J* = 7.26 Hz, 3H), 1.25-1.07 (m, 6H), 0.75 (t, *J* = 9.94 Hz, 9H), 0.39 (t, *J* = 9.17 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 135.8, 135.7, 133.8, 133.7, 131.1, 130.7, 128.8, 128.7, 128.6, 128.5, 126.6, 126.4, 126.3, 125.7, 125.6, 125.1, 125.1, 124.6, 123.7, 123.5, 69.3, 27.8, 18.3, 17.0, 14.0, 11.4 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 300/1, Flow late = 1.0 mL/min, tR = 16.95 min (major product), tR = 25.72 min (minor product). IR (neat) v 3050, 2959, 1721, 1163, 776 cm⁻¹. HRMS (DART) calcd for C₃₃H₄₁O₂Si₁ [M+H]⁺: 497.2875 found: 497.2874.

Ethyl (R)-2-phenyl-2-(triphenylsilyl)acetate (2v)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of ethyl 2-diazo-2-phenylacetate **1i** (19.0 mg, 0.1 mmol) and triphenylsilane (52.1 mg, 0.2 mmol, 2 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ethyl (R)-2-phenyl-2 -(triphenylsilyl)acetate **2v** as colorless oil (53% yield, 22.6 mg, 0.05 mmol), 63% *ee*.

 $[\alpha]^{24}_{D}$ = + 17.42 (c 1.055, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.35 (m, 9H), 7.30-7.35 (m, 6H), 7.13 (s, 5H), 4.26 (s, 1H), 3.86-3.95 (m, 2H), 0.94 (t, *J* = 6.88 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 136.5, 132.2, 129.9, 129.8, 127.9, 127.6, 126.0, 60.5, 44.6, 13.7 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK OD-H), UV detector 230 nm, eluent: Hex/IPA = 100/1, Flow late = 1.0 mL/min, tR = 6.8 min (major product), tR = 17.9 min (minor product). IR (neat) v 3069, 2978, 1714, 1424, 1274, 1109, 736, 697 cm⁻¹. HRMS (DART) calcd for C₂₈H₃₀N₁O₂Si₁ [M+NH₄]⁺: 440.2045 found: 440.2041.

• Si-H insertion of triphenylsilane with 2-diazo-2-ethylacetate (1j)

2-Diazo-2-ethylacetate **1j** was prepared following a previous report.⁸ (**1j** : ¹H NMR (500 MHz, CDCl₃) δ 4.21 (q, J = 7.02 Hz, 2H), 2.34 (q, J = 7.63 Hz, 2H), 1.26 (t, J = 7.02 Hz, 3H), 1.12 (t, J = 7.32 Hz, 3H) ppm.)

To a solution of Ru(II)-Pheox (1 mol%, 0.002 mmol) in CH_2Cl_2 (2 mL) and triphenylsilane (2 equiv., 0.4 mmol) was cooled down to 0 °C under argon atmosphere. The mixture was added 2-Diazo-2-ethylacetate **1j** in CH_2Cl_2 (2 mL). After stirring at 0 °C for 10 min, the reaction mixture was concentrated under reduced pressure. As the result, cis- α , β -unsaturated compound was obtained in high yield (determined by crude ¹H NMR).

cis-α, β-unsaturated compound : ¹H NMR (500 MHz, CDCl₃) δ 6.36-6.28 (m, 1H), 5.82-5.76 (m, 1H), 4.18 (dq, J = 6.88, 3.06 Hz, 2H), 2.13-2.16 (3H, m), 1.29 (dt, J = 3.06, 7.26 Hz, 3H) ppm.

4. Reduction of di(naphthalen-1-yl)methyl (R)-2-(triphenylsilyl)propanoate

(*R*)-2-(triphenylsilyl)propan-1-ol (4)

To the solution of di(naphthalen-1-yl)methyl (*R*)-2-(triphenylsilyl)propanoate **2s** (0.05 mmol, 29.9 mg) in CH₂Cl₂ (1 mL) was cooled down to - 78 °C and stirred for 10 min. A hexane solution of diisobutylaluminum hydride (0.15 mmol, 0.15 mL, 3.0 equiv.) was added slowly to the CH₂Cl₂ solution and stirred for 90 min at - 78 °C.

The mixture was quenched with 1N HCl aq., allowed to warm to room temperature, extracted with CH₂Cl₂. Purification was performed by flush column chromatography to give corresponding alcohol; (*R*)-2-(triphenylsilyl)propan-1-ol **4** (88% yield, 14.0 mg, 0.04 mmol), 98% *ee*. $[\alpha]^{21}_{D}$ = +11.3 (c 0.395, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.58 (m, 6H), 7.34-7.43 (m, 9H), 3.99 (dd, *J* = 3.82, 10.70 Hz, 1H), 3.66 (dd, *J* = 9.59, 10.70 Hz, 1H), 2.06-1.97 (m, 1H), 1.24 (d, *J* = 726 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 135.9, 133.8, 129.4, 127.9, 65.7, 22.6, 12.8 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 100/1, Flow late = 1.0 mL/min, tR = 23.7 min (major product), tR = 25.5 min (minor product). IR (neat) v 3398, 3068, 2952, 2920, 2864, 1427, 1105, 1005, 699 cm⁻¹. HRMS (DART) calcd for C₂₁H₂₆N₁O₂Si₁ [M+NH₄]⁺: 336.1783 found: 336.1784.

5. General Procedure for Catalytic Asymmetric Si-H Insertion Reaction to Construct Chiral Carbon and Silicon^[7]

To a solution of Ru(II)-Pheox (0.001 mmol, 1.0 mol%) in CH_2Cl_2 (0.5 mL) and silane compound (0.5 mmol, 5.0 equiv.) was cooled down to -30 °C under argon atmosphere.

The mixture was added diazo ester (0.1 mmol, 1 equiv.) in CH₂Cl₂ (0.5 mL).

After stirring at -30 °C, the reaction mixture was concentrated under reduced pressure to give crude product. Purification was performed by column chromatography with Hex/EA to give desired product.

The insertion product was dissolved in dichloromethane (1 mL). The solution was cooled down to -78 °C and stirred for 10 min. A hex solution of diisopropylalminum hydride (1.0 M) was added to the dichloromethane solution and stirred for 90 min at -78 °C. The mixture was quenched with 1N HCl aqu. (10 drops), allowed to warm to room temperature, extracted with dichloromethane. The combined organic layer were dried over Na₂SO₄ and concentrated. Purification was performed by column chromatography to give desired product. The *ee* value was determined by chiral HPLC analysis.

6. Analytical Data for Asymmetric Si-H Insertion Reaction Products (2)

Ethyl ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propanoate

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of ethyl 2-diazopropanoate (25.6 mg, 0.2 mmol) and methylphenylsilane (0.14 mL, 1.0 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to

give ethyl ((*S*)-Si, (*R*)-C)-2-(methyl(phenyl)silyl)propanoate as colorless oil (91% yield, 40.3 mg, 0.18 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.51-7.57 (m, 2H), 7.34-7.43 (m, 3H), 4.43 (dq, *J* = 1.53, 3.82 Hz, 0.6H), 4.39 (dq, *J* = 0.76, 3.06 Hz, 0.4H), 3.99-4.08 (m, 2H), 2.88-2.31 (m, 1H), 1.22 (dd, *J* = 8.79 Hz, 3H), 1.14 (q, *J* = 15.29 Hz, 3H), 0.44 (dd, *J* = 3.44 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 175.5, 134.6, 134.5, 133.3, 133.3, 129.8, 127.9, 60.0, 28.2, 28.1, 14.2, 11.8, 11.4, -6.9, -7.1 ppm. IR (neat) v 3072, 2960, 2924, 2128, 1718, 1427, 1256, 1120, 1065, 873, 794, 699 cm⁻¹. HRMS (DART) calcd for C₁₂H₂₂N₁O₂Si₁ [M+NH₄]⁺: 240.1419 found: 240.1417.

tert-Butyl ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propanoate

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of *t*-buthyl 2-diazopropanoate # (31.2 mg, 0.2 mmol) and methylphenylsilane (0.14 mL, 1.0 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to

give tert-butyl ((*S*)-Si, (*R*)-C)-2-(methyl(phenyl)silyl)propanoate as colorless oil (64 yield, 32 mg, 0.13 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.57 (m, 2H), 7.33-7.41 (m, 3H), 4.42 (dq, *J* = 1.53, 3.82 Hz, 06H), 4.38 (dq, *J* = 0.76, 3.82 Hz, 0.4H), 2.27 (dq, *J* = 2.10, 7.26 Hz, 1H), 1.34 (s, 3.6H), 1.33 (s, 5.4H), 1.19 (d, *J* = 7.26 Hz, 1.2H), 1.17 (d, *J* = 6.88 Hz, 1.8H), 0.44 (d, *J* = 1.53 Hz, 1.8H), 0.43 (d, *J* = 1.15 Hz, 1.2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 134.7, 134.6, 134.0, 133.7, 129.7, 129.7, 127.8, 79.8, 79.7, 28.8, 28.1, 28.0, 11.9, 11.4, -6.8, -7.0 ppm. IR (neat) v 3065, 2970, 2939, 2873, 2130, 1718, 1428, 1365, 8, 1321, 1251, 1153, 878, 831, 725, 697 cm⁻¹. HRMS (DART) calcd for C₁₄H₂₃O₂Si₁ [M+H]⁺: 251.1467 found: 251.1465.

Benzhydryl ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propanoate

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of benzhydryl 2-diazopropanoate # (26.6 mg, 0.1 mmol) and methylphenylsilane (0.07 mL, 0.5 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give benzhydryl ((*S*)-Si, (*R*)-C)

-2-(methyl(phenyl) silyl) propanoate as colorless oil (84 yield, 30.4 mg, 0.084 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.44 (m, 15H), 6.85 (s, 1H), 4.48 (dq, *J* = 1.91, 5.73 Hz, 0.6H), 4.42 (dq, *J* = 2.68, 6.50 Hz, 0.4H), 2.45-2.54 (m, 1H), 1.24 (dd, *J* = 7.26, 22.17 Hz, 3H), 0.30 (dd, *J* = 3.82, 17.58 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ

174.5, 140.5, 140.4, 140.3, 134.6, 134.6, 133.4, 133.2, 132.9, 129.8, 129.8, 128.3, 128.3, 127.9, 127.7, 127.6, 127.6, 127.4, 127.4, 127.0, 126.9, 76.6, 28.3, 28.2, 11.9, 11.3, -7.2, -7.3 ppm. IR (neat) v 3065, 3025, 2978, 2939, 2130, 1729, 1455, 1494, 1428, 1172, 1080, 835, 736, 700 cm⁻¹. HRMS (DART) calcd for $C_{23}H_{24}O_2Si_1$ [M]⁺: 360.1545 found: 360.1547.

Di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propanoate (3a)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and methylphenylsilane (0.068 mL, 0.5 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl ((*S*)-Si,(*R*)-C)-2-(methyl(phenyl)silyl)

propanoate **3a** as white solid (93 yield, 42.6 mg, 0.093 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.12 (d, J = 7.64 Hz, 0.3H), 8.06 (d, J = 8.41 Hz, 0.7H), 7.98 (d, J = 8.41 Hz, 0.8H), 7.92 (d, J = 8.79 Hz, 0.2H), 7.78-7.91 (m, 4H), 7.27-7.53 (m, 11H), 7.15-7.21 (m, 2H), 4.45 (dq, J = 3.44, 3.55 Hz, 0.7H), 4.37 (dq, J = 3.82, 7.26 Hz, 0.3H), 2.35 (dq, J = 1.91, 7.26 Hz, 0.7H), 2.48 (dq, J = 2.29, 7,26 Hz, 0.3H), 1.26 (d, J = 7.26 Hz, 1H), 1.23 (d, J = 7.26 Hz, 2H), 3.82 (d, J = 3.82 Hz, 2H), 0.21 (d, J = 3.82 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 135.4, 135.2, 135.2, 134.5, 133.7, 133.1, 132.9, 131.0, 130.9, 130.9, 129.7, 129.7, 128.8, 128.8, 128.7, 127.8, 127.7, 126.6, 126.5, 126.5, 126.2, 125.9, 125.7, 125.6, 125.5, 125.3, 125.1, 123.6, 123.5, 70.3, 28.4, 28.1, 12.1, 11.4, -7.1, -7.6 ppm. IR (neat) v 3060, 2968, 2937, 2128, 1710, 1312, 1172, 1136, 834, 778, 727, 694 cm⁻¹. HRMS (DART) calcd for C₃₁H₃₂N₁O₂Si₁ [M+H]⁺: 478.2202 found: 478.2201.

Di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-(isopropyl(phenyl)silyl)propanoate (3b)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and isopropylphenylsilane (75.15 mg, 0.5 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl ((*S*)-Si, (*R*)-C)-2-(methyl(phenyl)silyl)

propanoate **3b** as white solid (92% yield, 45.2 mg, 0.092 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 0.2H), 8.48 (s, 0.8H), 8.17 (d, *J* = 7.26 Hz, 0.2H), 8.13 (d, *J* = 8.03 Hz, 0.7H), 7.95-7.77 (m, 5H), 7.52-7.22 (m, 11H), 7.18 (t, *J* = 7.26 Hz, 0.4H), 7.09 (t, *J* = 8.03 Hz, 1.6H), 4.15 (t, *J* = 3.06 Hz, 0.2H), 4.10 (dd, *J* = 2.68, 3.82 Hz, 0.8H), 2.57-2.66 (m, 1H), 1.31 (d, *J* = 7.26 Hz, 2.4H), 1.25 (d. *J* = 7.26 Hz, 0.6H), 0.99-1.09 (m, 1H), 0.97 (d, *J* = 6.88 Hz, 2.4H), 0.87 (d, *J* = 7.26 Hz, 0.6H), 0.82-0.77 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 174.7, 135.5, 135.3, 133.7, 131.3, 130.9, 130.8, 129.6, 129.6, 128.9, 128.8, 128.7, 128.7, 127.7, 127.5, 126.5, 126.5, 126.3, 126.1, 125.7, 125.7, 125.2, 125.1, 123.6, 123.5, 70.2, 70.1, 26.8, 26.5, 18.2, 18.1, 17.9, 17.8, 12.4, 12.2, 10.7, 10.6 ppm.

IR (neat) v 3051, 2944, 2864, 2120, 1718, 1312, 1168, 781, 735, 699 cm⁻¹. HRMS (DART) calcd for $C_{33}H_{33}O_2Si_1$ [M+H]⁺: 489.2249 found: 489.2247.

Di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-((2,6-dimethylphenyl)(phenyl)silyl)propanoate (3c)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and (2,6-dimethylphenyl) phenylsilane (106.18 mg, 0.5 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl ((*S*)-Si, (*R*)-C)-2-((2,6-dimethyl

phenyl)(phenyl)silyl) propanoate **3c** as white solid (87 yield, 47.9 mg, 0.87 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 0.54H), 8.36 (s, 0.46H), 8.00 (t, J = 9.59 Hz, 1H), 7.69-7.92 (m, 5H), 7.13-7.53 (m, 12H), 7.06-6.97 (m, 2H), 6.95 (d, *J* = 7.64 Hz, 1H), 6.73 (d, *J* = 7.64 Hz, 1H), 5.35 (d, *J* = 5.35 Hz, 0.5H), 5.16 (d, *J* = 4.59 Hz, 0.5H), 2.97-3.05 (m, 1H), 2.30 (s, 3H), 2.22 (m, 1H), 1.50 (d, *J* = 6.88 Hz, 1.3H), 1.24 (d, *J* = 7.26 Hz, 1.7H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 175.0, 144.9, 144.7, 135.5, 135.3, 135.2, 135.0, 134.9, 133.8, 133.7, 133.6, 132.6, 132.4, 131.0, 130.9, 130.7, 130.1, 130.1, 129.9, 129.8, 129.6, 129.3, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.0, 127.8, 127.6, 127.5, 126.5, 126.5, 126.4, 125.9, 125.7, 125.6, 125.5, 125.4, 125.1, 123.6, 123.4, 123.3, 123.3, 70.7, 70.3, 27.5, 26.9, 24.5, 24.4, 13.9, 12.8 ppm. IR (neat) v 3057, 2963, 2928, 2873, 2161, 1718, 1451, 1310, 1168, 776, 736, 700 cm⁻¹. HRMS (DART) calcd for C₃₈H₃₈N₁O₂Si₁ [M+NH₄]⁺: 568.2671 found: 568.2679.

Di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-(naphthalen-1-yl(phenyl)silyl)propanoate (3d)

This compound was prepared according to the typical procedure for asymmetric Si-H insertion reaction of di(naphthalen-1-yl)methyl 2-diazopropanoate **1h** (36.6 mg, 0.1 mmol) and 1-Naphthylphenylsilane (117.2 mL, 0.5 mmol, 5 equiv.). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give di(naphthalen-1-yl)methyl ((*S*)-Si, (*R*)-C)-2-(naphthalen-1-yl)

(phenyl)silyl) propanoate **3d** as white solid (91% yield, 52.4 mg, 0.091 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.41 (s, 0.7H), 8.37 (s, 0.3H), 7.75-8.00 (m, 8H), 7.72 (t, *J* = 8.41 Hz, 1H), 7.64 (d, *J* = 5.73 Hz, 0.4H), 7.58 (d, *J* = 6.88 Hz, 0.6H), 7.50-7.16 (m, 13H), 7.01-7.14 (m, 3H), 5.38 (d, *J* = 3.06 Hz, 0.3H), 5.35 (d, *J* = 3.44 Hz, 0.7H), 3.10-3.00 (m, 1H), 1.38 (d, *J* = 6.88 Hz, 1H), 1.33 (d, *J* = 6.88 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 137.0, 136.9, 136.3, 135.9, 135.5, 135.4, 135.3, 135.3, 134.8, 133.7, 133.6, 133.6, 133.1, 133.1, 131.6, 131.5, 130.9, 130.8, 129.9, 129.9, 128.9, 128.8, 128.7, 128.6, 128.5, 127.9, 127.8, 127.6, 126.5, 126.4, 126.4, 126.1, 126.1, 125.9, 125.8, 125.7, 125.6, 125.6, 125.5, 125.1, 125.1, 125.1, 125.0, 125.0, 123.5, 123.4, 70.6, 27.6, 27.4, 12.9, 12.7 ppm. IR (neat) v 3057, 2959, 2936, 2877, 2142, 1718, 1506, 1310, 1172, 776, 732, 697 cm⁻¹. HRMS (DART) calcd for C₄₀H₃₆N₁O₂Si₁ [M+H]⁺: 590.2515 found: 590.2514.

((S)-Si, (R)-C)-2-(Methyl(phenyl)silyl)propan-1-ol (4a)

This compound was prepared according to the typical procedure for reduction of di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propanoate **3a** (42 mg, 0.09 mmol) at -5 °C. The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ((S)-Si, (R)-C)-2-(methyl(phenyl)silyl)propan-1-ol **4a** as yellow oil (88% yield, 14.2 mg, 0.079

mmol), . ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 7.64 Hz, 2H), 7.33-7.41 (m, 3H), 4.29 (dq, *J* = 3.44, 7.26 Hz, 1H), 3.76 (ddd, *J* = 4.97, 10.32 Hz, 1H), 3.56-3.62 (m, 1H), 1.27-1.37 (m, 1H), 1.07 (dd, *J* = 5.35, 7.26 Hz, 3H), 0.37 (dd, *J* = 1.53, 3.82 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 134.9, 134.6, 134.6, 129.4, 127.9, 127.8, 66.0, 65.9, 23.0, 22.9, 12.3, 12.1, -7.3 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 220 nm, eluent: Hex/IPA = 350/1, Flow late = 1.0 mL/min, tR = 35.8 min (major product, major), tR = 43.5 min (manor product, minor), tR = 40.1 min (minor product, major), tR = 38.3 min (minor product, minor). IR (neat) v 3351, 3065, 2928, 2860, 2110, 1428, 1251, 1113, 869, 831, 725, 700 cm⁻¹. HRMS (DART) calcd for C₁₀H₂₀N₁O₁Si₁ [M+NH₄]⁺: 198.1314 found: 198.1317.

((S)-Si, (R)-C)-2-(Isopropyl(phenyl)silyl)propan-1-ol (4b)

This compound was prepared according to the typical procedure for reduction of di(naphthalen-1-yl)methyl (2R, 3S)-2-(isopropyl(phenyl)silyl)propanoate **3b** (26.2 mg, 0.05 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ((S)-Si, (R)-C)-2-(isopropyl(phenyl) silyl)propan-1 -ol **4b** as colorless oil (47% yield, 5.3 mg, 0.025 mmol), 99% *ee* (major),

96% *ee* (minor), d.r. = 79:21. ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.50 (m, 2H), 7.32-7.41 (m, 3H), 4.05 (t, *J* = 2.68 Hz, 0.2H), 4.00 (t, *J* = 3.06 Hz, 0.8H), 3.83 (dd, *J* = 4.97, 10.32 Hz, 0.2H), 3.72 (dd, *J* = 4.97, 10.70 Hz, 0.8H), 3.60 (dd, *J* = 8.79, 10.70 Hz, 0.2H), 3.55 (dd, *J* = 9.17, 10.70 Hz, 0.8H), 1.43-1.51 (m, 0.2H), 1.32-1.24 (m, 0.8H), 1.14 (d, *J* = 7.26 Hz, 3H), 1.08 (d, *J* = 7.26 Hz, 2.4H), 1.06 (d, *J* = 7.26 Hz, 0.6H), 1.00 (d, *J* = 7.26 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 135.4, 135.3, 133.3, 133.2, 129.3, 129.3, 127.8, 66.1, 66.0, 25.3, 21.2, 18.6, 18.5, 18.4, 18.4, 12.8, 12.4, 10.6, 10.4 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IF-3), UV detector 254 nm, eluent: Hex/IPA = 350/1, Flow late = 1.0 mL/min, tR = 25.6 min (major product, major), tR = 30.0 min (major product, minor), tR = 27.5 min (minor product, major), tR = 28.9 min (minor protduct, minor). IR (neat) v 3343, 3065, 2928, 2860, 2102, 1467, 1113, 999, 803, 780, 736, 693 cm⁻¹. HRMS (DART) calcd for C₁₂H₂₁O₁Si₁ [M+H]⁺: 209.1361 found: 209.1361.

((S)-Si, (R)-C)-2-((2,6-Dimethylphenyl)(phenyl)silyl)propan-1-ol (4c)

This compound was prepared according to the typical procedure for reduction of di(naphthalen-1-yl)methyl (2R, 3S)-2-((2,6-dimethylphenyl)(phenyl)silyl) propanoate **3c** (33 mg, 0.06 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ((*S*)-Si, (*R*)-C)-2-(2,6-dimethyl (phenyl)silyl)propan-1-ol **4c** as colorless oil (33 % yield, 5.4

mg, 0.02 mmol), 99.9% *ee* (major), 99.7% *ee* (minor), d.r. = 58:42. ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.53 (m, 2H), 7.29-7.38 (m, 3H), 7.19 (dt, *J* = 4.97, 7.26 Hz, 1H), 7.00 (t, *J* = 6.88 Hz, 2H), 5.05 (t, *J* = 4.97 Hz, 1H), 4.04 (dd, *J* = 4.97, 10.70 Hz, 0.4H), 3.81-3.72 (m, 1H), 3.61 (dd, *J* = 8.41, 10.70 Hz, 0.6H), 2.41 (s, 6H), 1.87-1.97 (m, 1H), 1.35 (d, *J* = 7.26 Hz, 1.8H), 1.08 (d, *J* = 1.3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 144.8, 144.8, 135.1, 134.1, 133.8, 131.4, 131.0, 129.8, 129.7, 129.3, 129.2, 128.0, 127.9, 127.7, 127.7, 66.7, 66.2, 24.6, 24.5, 21.9, 21.7, 14.3, 12.9 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IC), UV detector 220 nm, eluent: Hex/IPA = 99.5/0.5, Flow late = 0.5 mL/min, tR = 45.0 min (major product, major), tR = 43.2 min (major product, minor), tR = 58.7 min (minor product, major), tR = 48.2 min (minor product, minor). IR (neat) v 3324, 3053, 2923, 2860, 2142, 1585, 1443, 1105, 996, 783, 740 cm⁻¹. HRMS (DART) calcd for C₁₇H₂₆N₁O₁Si₁ [M+NH₄]⁺:288.1783 found:288.1788.

((S)-Si, (R)-C)-2-(Naphthalen-1-yl(phenyl)silyl)propan-1-ol (4d)

This compound was prepared according to the typical procedure for reduction of di(naphthalen-1-yl)methyl (2R, 3S)-2-(naphthalen-1-yl(phenyl)silyl)propanoate **3c** (31.8 mg, 0.05 mmol). The resulting mixture was purified by silica gel column chromatography with Hexane/EtOAc as an eluent to give ((S)-Si, (R)-C)-2-(naphthalene-1-yl(phenyl)silyl)propan-1-ol **4c** as colorless oil (83% yield, 13.5 mg, 0.046 mmol), 99% *ee* (major), 99% *ee* (minor), d.r. = 64:36 . ¹H NMR

(500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.26 Hz, 1H), 7.91 (dd, *J* = 3.06, 8.41 Hz, 1H), 7.86 (d, *J* = 7.86 Hz, 1H), 7.81 (dt, *J* = 1.15, 6.50 Hz, 1H), 7.62 (d, *J* = 6.50 Hz, 2H), 7.50-7.41 (m, 3H), 7.41-7.32 (m, 3H), 5.20 (dd, *J* = 3.06, 6.12 Hz, 1H), 3.91 (dd, *J* = 4.97, 10.70 Hz, 0.5H), 3.82 (dd, *J* = 4.59, 10.70 Hz, 0.5H), 3.72 (dd, *J* = 8.79, 10.70 Hz, 0.5H), 3.64 (dd, *J* = 8.79, 10.70 Hz, 0.5H) 1.99-1.90 (m, 1H), 1.25 (d, *J* = 7.26 Hz, 1.5H), 1.16 (d, *J* = 7.26 Hz, 1.5H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 137.2, 135.8, 135.5, 135.4, 133.3, 133.2, 133.1, 131.5, 131.2, 130.6, 130.6, 129.7, 129.6, 128.9, 128.1, 128.0, 1287.9, 127.9, 126.1, 126.1, 125.7, 125.6, 125.1, 125.1, 66.1, 66.1, 29.6, 22.3, 13.2, 13.2 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK IB), UV detector 254 nm, eluent: Hex/IPA = 100/1, Flow late = 1.0 mL/min, tR = 34.6 min (major product, major), tR = 27.4 min (major product, minor), tR = 39.8 min (minor product, major), tR = 32.1 min (minor product, minor). IR (neat) v 3368, 3057, 2928, 2857, 2119, 1428, 1113, 1003, 835, 791, 736, 697 cm⁻¹. HRMS (DART) calcd for C₁₉H₂₁O₁Si₁ [M+H]⁺: 293.1361 found: 293.1361.

7. X-ray Crystal Structure

Di(naphthalen-1-yl)methyl (R)-2-(triphenylsilyl)propanoate (7s)

(CCDC 1520036)

Empirical formula	C42 H34 O2 Si	
Formula weight	598.78	
Temperature	150(2) K	
Wavelength	1.54187 Å	
Crystal system	Triclinic	
Space group	P 1	
Unit cell dimensions	a = 10.9103(2) Å	α= 94.2055(15)°.
	b = 12.8039(3) Å	β=104.2240(14)°.
	c = 12.8160(3) Å	$\gamma = 112.0732(14)^{\circ}.$
Volume	1580.65(6) Å ³	
Ζ	2	
Density (calculated)	1.258 Mg/m ³	
Absorption coefficient	0.933 mm ⁻¹	
F(000)	632	
Crystal size	0.20 x 0.20 x 0.10 mm ³	
Theta range for data collection	3.62 to 71.78°.	
Index ranges	-13<=h<=13, -15<=k<=15, -15<=l<=15	
Reflections collected	27464	
Independent reflections	10310 [R(int) = 0.0254]	
Completeness to theta = 71.78°	96.4 %	
Max. and min. transmission	0.9125 and 0.8353	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	10310 / 3 / 813	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.0927	
R indices (all data)	R1 = 0.0439, wR2 = 0.1058	
Absolute structure parameter	0.01(2)	
Largest diff. peak and hole	0.309 and -0.282 e.Å ⁻³	

Di(naphthalen-1-yl)methyl ((S)-Si, (R)-C)-2-(isopropyl(phenyl)silyl)propanoate CCDC 1520048

Empirical formula	C33 H32 O2 Si	
Formula weight	488.68	
Temperature	120(2) K	
Wavelength	0.71069 Å	
Crystal system	Orthorhombic	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 7.8733(3) Å	α= 90°.
	b = 11.1819(4) Å	β= 90°.
	c = 29.7290(11) Å	$\gamma = 90^{\circ}$.
Volume	2617.30(17) Å ³	
Ζ	4	
Density (calculated)	1.240 Mg/m ³	
Absorption coefficient	0.118 mm ⁻¹	
F(000)	1040	
Crystal size	0.50 x 0.20 x 0.10 mm ³	
Theta range for data collection	2.28 to 28.50°.	
Index ranges	-10<=h<=8, -14<=k<=14, -39<=l<=39	
Reflections collected	37625	
Independent reflections	6259 [R(int) = 0.0281]	
Completeness to theta = 28.50°	96.0 %	
Max. and min. transmission	0.9883 and 0.9432	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6259 / 0 / 332	
Goodness-of-fit on F ²	1.054	
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0950	
R indices (all data)	R1 = 0.0404, wR2 = 0.0969	
Absolute structure parameter	0.03(10)	
Largest diff. peak and hole	0.551 and -0.278 e.Å ⁻³	

8. NMR Spectral Data

9. HPLC Spectral Data

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	10.467	664692	38730	49.637	47.004
2	11.200	674425	43667	50.363	52.996

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	10.567	451522	29940	72.066	67.872
2	11.192	175015	14172	27.934	32.128

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	6.300	1048419	110743	51.175	62.774
2	9.475	1000276	65671	48.825	37.226

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	6.508	2202440	223826	95.722	97.238
2	10.375	98443	6359	4.278	2.762

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	41.750	2739150	14298	50.703	66.145
2	57.050	2663231	7318	49.297	33.855

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	39.617	4459275	20431	75.449	82.086
2	59.217	1451077	4459	24.551	17.914

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	9.700	2856347	166932	50.510	55.740
2	12.025	2798716	132551	49.490	44.260

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	9.192	905090	67685	10.731	14.366
2	11.267	7529180	403446	89.269	85.634

PEAK	RT [min]	AREA [µV·sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	72.192	1340033	4071	49.145	47.578
2	87.733	1386649	4485	50.855	52.422

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	28.992	1427104	13655	50.112	53.822
2	36.083	1420709	11715	49.888	46.178

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	25.733	5503167	36163	77.188	75.320
2	34.975	1626383	11849	22.812	24.680

PEAK	RT [min]	AREA [µV·sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	20.533	1015901	10588	50.347	58.002
2	25.350	1001915	7666	49.653	41.998

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	21.858	140007	1760	4.971	8.745
2	24.767	2676577	18362	95.029	91.255

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	8.942	1584158	60034	50.702	58.342
2	10.008	1540267	42866	49.866	41.658

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	9.627	1553053	40689	90.367	87.305
2	11.422	165562	5917	9.633	12.695

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	4.675	1839614	186745	50.306	49.379
2	5.383	1817262	191445	49.694	50.621

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	4.567	1731039	193023	99.589	99.313
2	5.195	7140	1336	0.411	0.687

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	38.575	4613146	75145	50.595	60.625
2	47.667	4504718	48805	49.405	39.375

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	38.985	13163666	158099	98.367	98.013
2	54.348	218597	3205	1.633	1.987

F	PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
	1	48.000	22098728	167352	51.635	56.628
	2	52.617	20699596	128179	48.365	43.372

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	49.025	28718024	154990	99.545	99.056
2	58.892	131284	1477	0.455	0.994

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	11.317	11183505	455993	50.120	60.383
2	13.817	11130094	299175	49.880	39.617

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	10.417	6845550	241709	99.707	99.466
2	12.183	20100	1298	0.293	0.534

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	46.283	18623992	148896	50.188	60.366
2	63.517	18484712	97759	49.812	39.634

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	44.367	22484327	154947	94.399	91.365
2	62.417	1334044	14644	5.601	8.635

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	27.458	16506491	257847	49.766	59.905
2	35.533	16661700	172580	50.234	40.095

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	27.292	22749793	343584	96.953	96.697
2	37.367	715078	11735	3.047	3.303

All Articles		1/		-2	20160208-5 - CH1
100000 - Iutersity [Iv/] 50000 -			2	Br	
	30.0	35.0 40.0 R	45.0 etention Time [min]	50.0 5	5.0 60.0
PEAK	RT [min]	AREA [µV·sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	37.050	11942922	123947	50.377	58.776
2	48.350	11763938	86932	49.623	41.224

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	44.017	14161549	105247	50.113	60.597
2	59.683	14097438	68438	49.887	39.403

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [μV]	AREA%	HEIGHT%
1	43.142	24746209	179914	97.679	97.750
2	65.175	588015	4141	2.321	2.250

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	30.775	11430656	140554	51.332	67.162
2	45.300	10837645	68724	48.668	32.838

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	30.150	12016097	161655	97.985	98.210
2	43.875	247084	2947	2.015	2.015

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	31.600	8036730	138511	49.824	56.218
2	38.658	8093594	107871	50.176	43.782

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	29.642	17122402	200642	97.681	97.743
2	42.775	406421	406421	2.319	2.257

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.100	5481137	262192	50.509	65.031
2	18.958	5370721	140986	49.491	34.969

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.108	14746886	584786	98.158	98.861
2	20.108	276746	6740	1.842	1.139

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	25.367	7683508	191412	49.755	59.971
2	33.525	7759058	127764	50.245	40.029

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	24.692	18363996	398575	96.192	96.483
2	33.617	727015	14528	3.808	3.517

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.267	8999624	528932	49.224	52.290
2	16.108	9283309	482607	50.776	47.710

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.025	10536798	625347	89.819	90.358
2	15.867	1194375	66727	10.181	9.642

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	6.533	1401680	108716	49.819	78.734
2	17.917	1411887	29364	50.181	21.266

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	6.867	3799493	198828	81.300	91.548
2	17.900	873949	18356	18.700	18.700

PEAK	RT [min]	AREA [µV·sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	23.792	594905	25718	99.187	99.306
2	25.558	4875	180	0.813	0.694

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	26.158	141373	5420	27.822	29.980
2	28.067	113492	4204	22.335	23.254
3	29.017	110044	3947	21.831	21.831
4	30.608	143223	4508	24.936	24.936

PEAK	RT [min]			AREA%	HEIGHT%
12/00		/		/ ((() / () / (
1	25.624	1035084	38648	78.306	79.888
2	27.567	262373	9292	19.850	19.207
3	28.975	11743	1	0.888	0.001
4	30.058	12602	437	0.953	0.904

PEAK	RI[min]	AREA [µV∙sec]	ΗΕΙGΗΤ [μν]	AREA%	HEIGH1%
1	43.408	16137621	218937	24.104	27.121
2	47.250	15743903	201863	23.516	25.006
3	50.825	17363421	211889	25.935	26.248
4	62.458	17703811	174567	26.444	21.625

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	43.225	12448	397	0.026	0.069
2	45.050	28245553	367478	58.029	63.544
3	48.233	28957	458	0.059	0.079
4	58.700	20387557	209974	41.885	36.308

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	28.525	1125041	24584	31.546	39.819
2	34.000	664590	12204	18.635	19.768
3	41.742	1133145	16099	31.773	26.075
4	46.900	643578	8852	18.046	14.338

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	27.475	21333	608	0.371	0.633
2	32.108	8974	309	0.156	0.321
3	34.675	3647355	61553	63.468	64.084
4	39.883	2069089	33581	36.005	34.962

Temperature effect (-5 °C)

4

43.533

30908

2.588

2.668

1237039

Temperature effect (-10 °C)

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [μV]	AREA%	HEIGHT%
1	35.275	28672984	750944	63.712	64.888
2	37.667	1196990	36476	2.660	3.152
3	39.408	14038291	340673	31.193	29.437
4	42.650	1095925	29197	2.435	2.523

Temperature effect (-30 °C)

4

45.092

7422

1.954

1.850

297931

Substrate screening (from ethyl (2R, 3S)-2-(methyl(phenyl)silyl)propanoate)

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	36.667	2813400	86285	33.184	36.038
2	38.817	1447198	42115	17.070	17.590
3	41.225	1400186	39211	16.515	16.377
4	44.008	2817317	71816	33.231	29.995

Substrate screening (from tert-butyl (2R, 3S)-2-(methyl(phenyl)silyl)propanoate)

Substrate screening (from benzhydryl (2R, 3S)-2-(methyl(phenyl)silyl)propanoate)

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [μV]	AREA%	HEIGHT%
1	36.667	2813400	86285	33.184	36.038
2	38.817	1447198	42115	17.070	17.590
3	41.225	1400186	39211	16.515	16.377
4	44.008	2817317	71816	33.231	29.995

PEAK	RT [min]	AREA [µV∙sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	35.400	4009382	119645	50.387	52.651
2	37.525	548814	16450	6.897	7.239
3	39.433	2729895	73880	34.307	32.512
4	42.458	669049	17265	8.408	7.598

Substrate screening (from di(naphthalen-1-yl)methyl (2R, 3S)-2-(methyl(phenyl)silyl)propanoate)

7422

1.954

1.850

297931

4

45.092

10. References

- [1] T. Osako, D. Panichakul, Y. Uozumi, Org. Lett. 2012, 14(1), 194-197.
- [2] V. Bizet, V. Lefebvre, J. Baudoux, M. –C. Lasne, A. Boulange, S. Leleu, X. Franck, J. Rouden, *Eur. J. Org. Chem.* **2011**, 4170–4175.
- [3] M. Honma, T. Sawada, Y. Fujisawa, M. Utsugi, H. Watanabe, A. Umino, T. Matsumura, T. Hagihara, M.
- Takano, M. Nakada, J. Am. Chem. Soc. 2003, 125(10), 2860-2861.
- [4] B. C. Giglio, E. J. Alexanian, Org. Lett. 2014, 16(16), 4304-4307.
- [5] D. M. Guptill, C. M. Cohen, H. M. L. Davies, Org. Lett. 2013, 15(24), 6120-6123.
- [6] Rayment, J. E., Summerhill, N., Anderson, A. E. J. Org. Chem. 2012, 77, 7052-7060.
- [7] Y. Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 4510-4511.
- [8] L, Huang, W. D. Wulff, J. Am. Chem. Soc. 2011, 133, 8892-8895.