Electronic Supporting Information

Ring-opening of cyclic ethers by aluminum hydridotriphenylborate

Debabrata Mukhejee, Hassan Osseili, Khai-Nghi Truong,

Thomas P. Spaniol, and Jun Okuda*

Institute of Inorganic Chemistry, RWTH Aachen University,

Landoltweg 1, 52056 Aachen, Germany.

Table of Contents

General remarks	S1
Synthetic procedures and spectroscopic data for 1-4	S1
Deuterium labeling study	S11
Hydroboration catalysis	S13
X-ray crystallography	S13
References	S15

General remarks

All manipulations were performed under argon atmosphere using standard Schlenk or glove box techniques. Prior to use, the glassware were dried overnight at 130 °C and solvents were dried, distilled and degassed using standard methods. (Me₃TACD)H (LH) was synthesized following a literature procedure.^{S1} AlH₃(NMe₂Et) (0.5 M in toluene) and pinacolborane (HBpin) were purchased from Sigma-Aldrich and used as received. BPh₃ (95%) was purchased from abcr and purified by sublimation. Tetrahydropyran (THP) was purchased from Sigma-Aldrich and dried, distilled, and degassed prior storing over molecular sieves inside the glove box. NMR measurements were performed on a Bruker DRX 400 at ambient temperature unless otherwise mentioned. The chemical shifts (δ ppm) in the ¹H and ¹³C{¹H} NMR spectra were referenced to the residual proton signals of the deuterated solvents and reported relative to tetramethylsilane.^{S2} Abbreviations for NMR spectra: s (singlet), d (doublet), t (triplet), quint (quintet), sept (septet), br (broad). IR spectra were measured as KBr pellets using an AVATAR 360 FT-IR spectrometer. Abbreviations for IR spectra: w (weak), m (medium), s (strong), br. (broad). Elemental analyses were performed on an *elementar vario EL* machine.

Synthetic procedures and spectroscopic data for 1-4 [(L)AlH₂] (1) and [(L)AlD₂] (1-d₂)

A 0.5 M solution of AlH₃(NMe₂Et) (2 mL) was added dropwise with a syringe to a solution of LH (0.214 g, 0.998 mmol) in 2 mL of toluene at room temperature. The solution became turbid while mixing and precipitation of a colorless solid was complete within 15 min. The solid was isolated by filtration and washed with *n*-pentane (3×5 mL). Drying the solid under

vacuum afforded analytically pure [(L)AlH₂] (0.184 g, 0.759 mmol, 76% yield) as a colorless powder. ¹H NMR (400 MHz, bromobenzene- d_5): δ 5.00-2.90 (br, sext, ¹ J_{AlH} = 172 Hz, 2 H, AlH₂), 3.13-3.06 (m, 2 H, CH₂), 2.88-2.83 (m, 2 H, CH₂), 2.77-2.72 (m, 2 H, CH₂), 2.65-2.59 (m, 2 H, CH₂), 2.57-2.52 (m, 2 H, CH₂), 2.50-2.47 (m, 4 H, CH₂), 2.38-2.28 (m, 2 H, CH₂), 2.31 (s, 3 H, CH₃), 2.11 (s, 6 H, CH₃). ¹³C{¹H} NMR (100 MHz, bromobenzene- d_5): δ 59.5, 55.5, 53.0, 44.9, 43.6, 41.6. ²⁷Al NMR (104 MHz, bromobenzene- d_5): δ 100.4 (quint, ¹ J_{AlH} = 172 Hz). IR (KBr, cm⁻¹): 1804 (s, v_{AlH}), 1664 (s, br, v_{AlH}). Anal. Calcd. for C₁₁H₂₇N₄Al: C, 52.52; H, 11.23; N, 23.12. Found: C, 52.02; H, 11.16; N, 22.80. [(L)AlD₂] (**1-** d_2) was synthesized in an analogous fashion using AlD₃(NMe₂Et). ²⁷Al NMR (104 MHz, bromobenzene- d_5): δ 100.0 (s). IR (KBr, cm⁻¹): 1301 (s, v_{AlD}), 1218 (s, v_{AlD}).

Figure S1. ¹H NMR spectrum of $[(L)AlH_2]$ (1) in bromobenzene- d_5 .

Figure S2. ¹³C{¹H} NMR spectrum of $[(L)AlH_2]$ (1) in bromobenzene- d_5 .

Figure S3. ²⁷Al NMR spectrum of $[(L)AlH_2]$ (1) in bromobenzene- d_5 .

Figure S4. Solid-state IR (KBr pellet) spectrum of [(L)AlH₂] (1).

Figure S6. Solid-state IR (KBr pellet) spectrum of [(L)AlD₂] (1-d₂).

[(L)Al(OnBu)][HBPh₃] (2)

A solution of **1** (0.050 g, 0.206 mmol) and BPh₃ (0.100 g, 0.413 mmol) in 3 mL of THF was stirred for 30 min at room temperature. Removing all the volatiles under reduced pressure gave a colorless solid, which was recrystallized by slow diffusion of *n*-pentane into a concentrated THF solution at -30° C. Repeating the purification procedure three times followed by drying the solid under vacuum gave analytically pure [(L)Al(OnBu)][HBPh₃] (**2**, 0.033 g, 0.117 mmol, 28% yield) as a colorless powder. Single crystals for X-ray diffraction were grown from THF/*n*-pentane. ¹H NMR (400 MHz, THF-*d*₈): δ 7.38 (m, 6 H, *o*-aryl), 7.01 (m, 6 H, *m*-aryl), 6.90 (m, 3 H, *p*-aryl), 3.74 (t, 2 H, ³J_{HH} = 6.5 Hz, CH₂), 3.48 (br, s, 1 H,

*H*B), 2.96-2.90 (m, 2 H, *CH*₂), 2.81-2.44 (m, 12 H, *CH*₂), 2.43 (s, 6 H, *CH*₃), 2.32 (s, 3H, *CH*₃), 1.49-1.42 (m, 2 H, *CH*₂), 1.39-1.26 (m., 2 H, *CH*₂), 0.90 (t, 3 H, ${}^{3}J_{\text{HH}} = 7.3$ Hz, *CH*₃). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (THF-*d*₈, 100 MHz): δ 137.2, 126.9, 124.5, 64.0, 60.8, 55.5, 52.5, 45.7, 45.4, 43.3, 38.4, 20.2, 14.6. ${}^{11}\text{B}$ NMR (128 MHz, THF-*d*₈): δ -7.9 (d, ${}^{1}J_{\text{BH}} = 78$ Hz). ${}^{27}\text{Al}$ NMR (104 MHz, THF-*d*₈): no resonance was observed. IR (KBr, cm⁻¹): 2019-2008 (multiple bands, v_{BH}). Anal. Calcd. for C₃₃H₅₀BN₄OAl: C, 71.21; H, 9.06; N, 10.07. Found: C, 70.88; H, 9.66; N, 10.40.

Figure S7. ¹H NMR spectrum of $[(L)Al(OnBu)][HBPh_3]$ (2) in THF- d_8 .

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of [(L)Al(OnBu)][HBPh₃] (2) in THF- d_8 .

Figure S9. Solid-state IR spectrum (KBr pellet) of [(L)Al(OnBu)][HBPh₃] (2).

[(L)Al(OnPent)][HBPh₃] (3)

A solution of **1** (0.050 g, 0.206 mmol) and BPh₃ (0.100 g, 0.413 mmol) in 3 mL of THP was stirred for 12 h at room temperature. Removing all the volatiles under reduced pressure gave a white sticky residue, which was purified by slow precipitation by diffusion of *n*-pentane into a concentrated THF solution at -30 °C. Repeating the purification procedure three times followed by drying under vacuum gave [(L)Al(*On*Pent)][HBPh₃] (**3**, 0.047 g, 0.082 mmol, 40% yield) as a sticky colorless solid. ¹H NMR (400 MHz, THF-*d*₈): δ 7.38 (m, 6 H, *o*-aryl), 6.97 (m, 6 H, *m*-aryl), 6.80 (m, 3 H, *p*-aryl), 3.69 (m, 2 H, *CH*₂), 3.48 (br s, 1 H, *H*B), 2.89-2.83 (m, 2 H, *CH*₂), 2.64-2.42 (m, 10 H, *CH*₂), 2.38-2.32 (m, 2 H, *CH*₂), 2.29 (s, 6 H, *CH*₃), 2.29-2.23 (m, 2 H, *CH*₂), 2.16 (s, 3 H, *CH*₃), 1.48-1.26 (m, 6 H, *CH*₂), 0.91 (m, 3 H, *CH*₃). ¹³C{¹H} NMR (THF-*d*₈, 100 MHz): δ 164.5, 136.8, 126.7, 122.9, 64.3, 60.6, 55.4, 52.2, 45.6, 45.4, 43.3, 38.4, 29.3, 20.2, 14.7. ¹¹B NMR (128 MHz, THF-*d*₈): δ -7.9 (d, ¹*J*_{BH} = 78 Hz). ²⁷Al NMR (104 MHz, THF-*d*₈): no resonance was observed. IR (KBr, cm⁻¹): 2203 (br, v_{BH}). Anal. Calcd. for C₃₄H₅₂BN₄OAl: C, 71.57; H, 9.19; N, 9.82. Found: C, 70.90; H, 9.47; N, 9.39.

Figure S11. ¹³C{¹H} NMR spectrum of $[(L)Al(OnPent)][HBPh_3]$ (3) in THF-d₈.

Figure S12. Solid-state IR spectrum (KBr pellet) of [(L)Al(OnPent)][HBPH₃] (3).

$[(L)AlH][HBPh_3](4)$

A suspension of $[(L)Al(H)_2]_2$ (1, 0.050 g, 0.206 mmol) and BPh₃ (0.050 g, 0.206 mmol) in 5 mL of benzene was stirred at room temperature for 30 min. A colorless solid was isolated by filtration and washed with *n*-pentane (3×5mL). Drying the solid under vacuum afforded analytical pure $[(L)AlH][HBPh_3]$ (4, 0.065 g, 0.117 mmol, 57% yield) as a colorless powder. ¹H NMR (400 MHz, THF-*d*₈): δ 7.31 (m, 6 H, *o*-aryl), 6.89 (m, 6 H, *m*-aryl), 6.72 (m, 3 H, *p*-aryl), 3.78-3.18 (br, q, 1 H, *H*B),* 3.00-2.94 (m, 2 H, *CH*₂), 2.81-2.72 (m, 4 H, *CH*₂), 2.70-2.48 (m, 10 H, *CH*₂), 2.34 (s, 6 H, *CH*₃), 2.26 (s, 3H, *CH*₃). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 165.9, 136.7, 129.2, 122.1, 60.3, 56.2, 53.7, 46.0, 44.1, 41.5, 25.5. ¹¹B NMR (128 MHz, THF-*d*₈): δ -7.9 (d, ¹*J*_{BH} = 78 Hz). ²⁷Al NMR (104 MHz, THF-*d*₈): δ 101.9 (br). IR (KBr, cm⁻¹): 2196-2134 (v_{BH}), 1803 (v_{AIH}). Anal. Calcd. for C₂₉H₄₂BN₄Al: C, 71.90; H, 8.74; N, 11.56. Found: C, 71.45; H, 8.49; N, 11.77. *The Al*H* resonance is broad and likely overlapping with the B*H* resonance and could not be assigned unambiguously.

Figure S14. ¹³C{¹H} NMR spectrum of $[(L)AlH][HBPh_3]$ (4) in THF- d_8 .

Figure S15. ¹¹B NMR spectrum of [(L)AlH][HBPh₃] (4) in THF-*d*₈.

Figure S16. ²⁷Al NMR spectrum of [(L)AlH][HBPh₃] (4) in THF- d_8 .

Figure S17. Solid-state IR spectrum (KBr pellet) of [(L)AlH][HBPH₃] (4).

Deuterium labeling study

Figure S18. ${}^{2}D{}^{1}H{}$ NMR of 2-d₂ in THF.

Figure S20. ¹H NMR of 2- d_8 in THF- d_8 .

Hydroboration catalysis

In a typical run, a 2.5 mL solution of **1** (0.019 mg, 0.078 mmol), BPh₃ (0.038 mg, 0.157 mmol) and HBpin (0.100 mg, 0.781 mmol) in THF or THP was transferred to a 25 mL Schlenk tube. The mixture was stirred at room temperature and aliquots were drawn intermittently to monitor the reaction progress by analyzing by ¹H and ¹¹B NMR spectroscopy. The products pinB(OR) (R = *n*Bu and *n*Pent) were characterized by NMR spectroscopy and confirmed by comparison with literature data.^{S3}

X-ray crystallography

Single-crystal X-ray diffraction measurements of **2** and **4** were performed on a Bruker AXS diffractometer equipped with an Incoatec microsource and an APEX area detector using MoK α radiation ($\lambda = 0.71073$ Å), multilayer optics and ω -scans. Temperature control was achieved with an Oxford cryostream 700. The SMART program was used for data collection and unit cell determination; processing of the raw data frame was performed using SAINT+,⁸⁴ multi scan absorption corrections were applied with SADABS.⁸⁵ The structures were solved by direct methods (SHELXS-2013).⁸⁶ Refinements were performed against F^2 using all reflections with the program SHELXL-2013.⁸⁶ Hydrogen atoms were included as riding on calculated positions with $U_{iso}(H) = 1.2U_{eq.}$ or $1.5U_{eq.}(non-H)$, except for the hydride atoms H1 in **2** as well as H1 and H2 in **4**. These atoms were localized in difference Fourier maps and refined in their positions with isotropic displacement parameters. All non-hydrogen atoms were refined anisotropically. The structure of **2** contains one co-crystallized solvent molecule

THF within the lattice. Refinement results are given in Table S1. Graphical representations were performed with the program DIAMOND.^{S7} CCDC reference numbers CCDC-1530667 (2) and 1530668 (4). These data can be obtained free of charge from the Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	2	4
chemical formula	C ₁₅ H ₃₄ AlN ₄ O, C ₁₈ H ₁₆ B	$C_{11}H_{26}AlN_4, C_{18}H_{16}B$
fw (g·mol ⁻¹)	628.66	484.45
space group	Pī	Pī
crystal size (mm)	$0.12 \times 0.14 \times 0.19$	$0.20\times0.25\times0.29$
unit cell parameters		
<i>a</i> (Å)	10.748(8)	9.8159(18)
<i>b</i> (Å)	11.615(9)	10.726(2)
<i>c</i> (Å)	15.531(12)	13.269(2)
α (°)	103.493(11)	87.579(4)
β (°)	107.633(10)	75.801(3)
γ (°)	97.170(9)	83.365(3)
$V(\text{\AA}^3)$	1756(2)	1345.2(4)
Z	2	2
<i>T</i> (K)	100(2)	100(2)
$\mu(Mo K_{\alpha}) (mm^{-1})$	0.096	0.100
reflns	11357	16590
independent reflns $(R_{int.})$	6333 (0.1492)	5563 (0.0886)
observed reflns	3782	4247
parameters	414	325
goodness of fit on F^2	1.025	1.035
final R indices		
<i>R</i> 1, <i>wR</i> 2 [$I \ge 2\sigma(I)$]	0.0778, 0.1795	0.0592, 0.1361
<i>R</i> 1, <i>wR</i> 2 (all data)	0.1335, 0.2089	0.0793, 0.1454

Table S1. Crystal data and structure refinement.

References

- S1 M. Ohashi, M. Konkol, I. Del Rosal, R. Poteau, L. Maron and J. Okuda, *J. Am. Chem. Soc.* 2008, **130**, 6920–6921.
- S2 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics* 2010, **29**, 2176–2179.
- S3 E. A. Romero, J. L. Peltier, R. Jazzar and G. Bertrand, *Chem. Commun.* 2016, **52**, 10563–10565.
- S4 Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
- S5 Bruker, SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004.
- S6 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- S7 K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany, 2017.